System for generation of a large-scale database of hetrogeneous speech

Information

  • Patent Grant
  • 10331737
  • Patent Number
    10,331,737
  • Date Filed
    Thursday, April 28, 2016
    8 years ago
  • Date Issued
    Tuesday, June 25, 2019
    4 years ago
Abstract
A system for generating a large-scale database of heterogeneous speech is provided. The system comprises a processor a plurality of independent computation cores configured to generate signatures of a plurality of speech segments; a large scale database configured to maintain a plurality of transcribed multimedia signals; a memory, the memory containing instructions that, when executed by the processor, configure the system to: randomly select a plurality of speech segments from the plurality of multimedia signals, wherein each speech segment of the plurality of speech segments is of a random length; provide the plurality of speech segments to the plurality of independent computation cores for generation of the signatures; collect the signatures from the plurality of independent computation cores; and populate the large-scale database with the plurality of signatures respective of the plurality of multimedia signals.
Description
TECHNICAL FIELD

The disclosure generally relates to content-based clustering, recognition, classification and search of high volumes of multimedia data in real-time, and more specifically to generation of signatures of high volumes of multimedia content-segments in real-time.


BACKGROUND

With the abundance of multimedia data made available through various means in general and the Internet and world-wide web (WWW) in particular, there is also a need to provide for effective ways of searching for such multimedia data. Searching for multimedia data in general and video data in particular may be challenging at best due to the huge amount of information that needs to be checked. Moreover, when it is necessary to find a specific content of video, existing solutions revert to using various metadata that describes the content of the multimedia data. However, such content may be complex by nature and, therefore, not necessarily adequately documented as metadata.


The rapidly increasing number and size of multimedia databases, accessible for example through the Internet, call for the application of effective means for search-by-content. Searching for multimedia in general and for video data in particular is challenging due to the huge amount of information that has to be classified. Moreover, existing solutions revert to model-based methods to define and/or describe multimedia data. Some other existing solutions can determine whether an image that matches a known image to classify the content in the image. Those solutions cannot, however, may be unable to identify a match if, for example, content within the known image is of a different color, shown at a different angle, and so on.


By its very nature, the structure of such multimedia data may be too complex to be adequately represented by means of metadata. The difficulty arises in cases where the target sought for multimedia data cannot be adequately defined in words, or respective metadata of the multimedia data. For example, it may be desirable to locate a car of a particular model in a large database of video clips or segments. In some cases, the model of the car would be part of the metadata, but in many cases it would not. Moreover, the car may be at angles different from the angles of a specific photograph of the car that is available as a search item. Similarly, if a piece of music, as in a sequence of notes, is to be found, it is not necessarily the case that in all available content the notes are known in their metadata form, or for that matter, the search pattern may just be a brief audio clip.


A system implementing a computational architecture (hereinafter “The Architecture”) typically consists of a large ensemble of randomly, independently, generated, heterogeneous processing cores, mapping in parallel data-segments onto a high-dimensional space and generating compact signatures for classes of interest. The Architecture is based on a PCT patent application number WO 2007/049282 and published on May 3, 2007, entitled “A Computing Device, a System and a Method for Parallel Processing of Data Streams”, assigned to common assignee, and is hereby incorporated by reference for all the useful information it contains.


It would be advantageous to use The Architecture to overcome the limitations of the prior art described hereinabove. Specifically, it would be advantageous to show a framework, a method, a system, and respective technological implementations and embodiments, for large-scale matching-based multimedia deep content classification, that overcomes the well-known limitations of the prior art.


SUMMARY

Certain embodiments disclosed herein include a system for generating a large-scale database of heterogeneous speech. The system comprises a processor; a plurality of independent computation cores configured to generate signatures of a plurality of speech segments; a large scale database configured to maintain a plurality of transcribed multimedia signals; a memory, the memory containing instructions that, when executed by the processor, configure the system to: randomly select a plurality of speech segments from the plurality of multimedia signals, wherein each speech segment of the plurality of speech segments is of a random length; provide the plurality of speech segments to the plurality of independent computation cores for generation of the signatures; collect the signatures from the plurality of independent computation cores; and populate the large-scale database with the plurality of signatures respective of the plurality of multimedia signals.


Certain embodiments disclosed herein also include a method for generating a large-scale database of heterogeneous speech. The method comprises randomly selecting a plurality of speech segments from a plurality of transcribed multimedia signals, wherein each speech segment of the plurality of speech segments is of a random length; generating signatures of the plurality of randomly selected speech segments; and populating a large-scale database with the plurality of signatures respective of the plurality of multimedia signals.





BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter disclosed herein is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the disclosed embodiments will be apparent from the following detailed description taken in conjunction with the accompanying drawings.



FIG. 1 is the block diagram showing the basic flow of a large-scale video matching system implemented in accordance with an embodiment.



FIG. 2 is a bars-plot showing an exemplary distribution of values of a coupling node.



FIG. 3 is an example of a Signature and a corresponding Robust Signature for a certain frame.



FIG. 4 is a diagram depicting the process of generating a signature for a segment of speech implemented in accordance with an embodiment.



FIG. 5 is a diagram depicting a process executed by a Large-Scale Speech-to-Text System according to an embodiment.



FIG. 6 is a diagram showing the flow of patches generation, response vector generation, and signature generation in a Large-Scale Speech-to-Text System according to an embodiment.



FIG. 7 is a diagram showing the difference between complex hyper-plane generated by prior art techniques, and the large-scale classification techniques of the disclosed embodiments where multiple robust hyper-plane segments are generated.



FIG. 8 is a diagram showing the difference in decision making using prior art techniques and the disclosed embodiments, when the sample to be classified differs from other samples that belong to the training set.



FIG. 9 is a diagram showing the difference in decision making using prior art techniques and the disclosed embodiments, in cases where the sample to be classified closely resembles samples that belong to two classes.





DETAILED DESCRIPTION

It is important to note that the embodiments disclosed herein are only examples of the many advantageous uses of the innovative teachings herein. In general, statements made in the specification of the present application do not necessarily limit any of the various claimed embodiments. Moreover, some statements may apply to some inventive features but not to others. In general, unless otherwise indicated, singular elements may be in plural and vice versa with no loss of generality. In the drawings, like numerals refer to like parts through several views


Certain embodiments of disclosed herein include a framework, a method, a system, and their technological implementations and embodiments, for large-scale matching-based multimedia Deep Content Classification (DCC). The system is based on an implementation of a computational architecture (“The Architecture”) based on “A Computing Device, a System and a Method for Parallel Processing of Data Streams” technology, having a PCT patent application number WO 2007/049282 and published on May 3, 2007. The Architecture consists of a large ensemble of randomly, independently, generated, heterogeneous processing computational cores, mapping in parallel data-segments onto a high-dimensional space and generating compact signatures for classes of interest.


In accordance with the principles of the disclosed embodiments, a realization of The Architecture embedded in a large-scale matching system (“The System”) for multimedia DCC is disclosed. The System receives as an input stream, multimedia content segments, injected in parallel to all computational cores. The computational cores generate compact signatures for the specific content segment, and/or for a certain class of equivalence and interest of content-segments. For large-scale volumes of data, the signatures are stored in a conventional way in a database of size N, thereby allowing matching between the generated signatures of a certain content-segment and the signatures in the database, in low-cost, in terms of complexity, i.e. <=O(log N), and response time.


For the purpose of explaining the principles of the disclosure there are now demonstrated two embodiments: a Large-Scale Video Matching System; and a Large-Scale Speech-to-Text System. However, it is appreciated that other embodiments will be apparent to one of ordinary skill in the art.


Characteristics and advantages of the System include, but are not limited to:

  • The System is flat and generates signatures at an extremely high throughput rate;
  • The System generates robust natural signatures, invariant to various distortions of the signal;
  • The System is highly-scalable for high-volume signatures generation;
  • The System is highly-scalable for matching against large-volumes of signatures;
  • The System generates Robust Signatures for exact-match with low-cost, in terms of complexity and response time;
  • The System accuracy is scalable versus the number of computational cores, with no degradation effect on the throughput rate of processing;
  • The throughput of The System is scalable with the number of computational threads, and is scalable with the platform for computational cores implementation, such as FPGA, ASIC, etc.; and
  • The signatures produced by The System are task-independent, thus the process of classification, recognition and clustering can be done independently from the process of signatures generation, in the superior space of the generated signatures.


    Large-Scale Video Matching System


The goal of a large-scale video matching system is effectively to find matches between members of large-scale Master DB of video content-segments and a large-scale Target DB of video content-segments. The match between two video content segments should be invariant to a certain set of statistical distortions performed independently on two relevant content-segments. Moreover, the process of matching between a certain content-segment from Master DB to Target DB consisting of N segments, cannot be done by matching directly the Master content-segment to all N Target content-segments, for large-scale N, since such a complexity of O(N), will lead to non-practical response times. Thus, the representation of content-segments by both Robust Signatures and Signatures is critical application-wise. The System embodies a specific realization of The Architecture for the purpose of Large-Scale Video Matching System.


A high-level description of the process for large-scale video matching is depicted in FIG. 1. Video content segments (2) from Master and Target databases (6) and (1) are processed in parallel by a large number of independent computational Cores (3) that constitute the Architecture. Further details are provides in the cores generator for Large-Scale Video Matching System section below. The independent Cores (3) generate a database of Robust Signatures and Signatures (4) for Target content-segments (5) and a database of Robust Signatures and Signatures (7) for Master content-segments (8). The process of signature generation is shown in detail in FIG. 6. Finally, Target Robust Signatures and/or Signatures are effectively matched, by matching algorithm (9), to Master Robust Signatures and/or Signatures database to find all matches between the two databases.


To demonstrate an example of signature generation process, it is assumed, merely for the sake of simplicity and without limitation on the generality of the disclosed embodiments, that the signatures are based on a single frame, leading to certain simplification of the computational cores generation. This is further described in the cores generator for Large-Scale Video Matching System section. The system is extensible for signatures generation capturing the dynamics in-between the frames.


Signature Generation


Creation of Signature Robust to Additive Noise


Assuming L computational cores, generated for Large-Scale Video Matching System. A frame i is injected to all the cores. The cores generate two binary response vectors the Signature {right arrow over (S)} and Robust Signature {right arrow over (RS)}.


For generation of signatures robust to additive noise, such as White-Gaussian-Noise, scratch, etc., but not robust to distortions, such as crop, shift and rotation, the core Ci={ni} may consist of a single (LTU) node or more than one node. The node equations are:







V
i

=



j








w
ij



k
j








where, ni=θ(Vi−Thx); θ is a Heaviside step function; wij is a coupling node unit (CNU) between node i and image component j (for example, grayscale value of a certain pixel j);

    • kj is an image component j (for example, grayscale value of a certain pixel j);
    • Thx is a constant Threshold value where x is ‘S’ for Signature and ‘RS’ for Robust Signature; and
    • Vi is a coupling node value.


The Threshold Thx values are set differently for Signature generation and for Robust Signature generation. For example, as shown in FIG. 2, for a certain distribution of Vi values (for the set of nodes), the thresholds for Signature ThS and Robust Signature ThRS are set apart, after optimization, according to the following criteria:

  • I: For:

    Vi>ThRS
    1−p(V>ThS)=1−(1−ε)l<<1
    • i.e., given that l nodes (cores) constitute a Robust Signature of a certain image I, the probability that not all of these l nodes will belong to the Signature of same, but noisy image, Ĩ is sufficiently low (according to a system's specified accuracy).
  • II:

    p(Vi>ThRS)≈l/L
    • i.e., approximately l out of the total L nodes can be found to generate Robust Signatures according to the above definition.
  • III: Both Robust Signature and Signature are generated for a certain frame i. An example for generating Robust Signature and Signature for a certain frame is provided in FIG. 3.


    Creation of Signatures Robust to Noise and Distortions


Assume L denotes the number of computational cores in the System. Having generated L cores by the core generator that constitute the Large-Scale Video Matching System, a frame i is injected to all the computational cores. The computational cores map the image frame onto two binary response vectors: the Signature {right arrow over (S)} and the Robust Signature {right arrow over (RS)}.


In order to generate signatures robust to additive noises, such as White-Gaussian-Noise, scratch, etc., and robust to distortions, such as crop, shift and rotation, etc., the core Ci should consist of a group of nodes (LTUs): Ci={nim}, where m is the number of nodes in each core i, generated according to certain statistical process, modeling variants of certain set of distortions.


The first step in generation of distortions-invariant signatures is to generate m Signatures and Robust Signatures, based on each of the m nodes in all the L cores, according to the algorithm described herein above. The next step is to determine a subset V of m potential signatures-variants for a certain frame i. This is done by defining a certain consistent and robust selection criterion, for example, select top f signature-variants out of m, with highest firing-rate across all L computational cores. The reduced set will be used as Signature and Robust Signature, invariant to distortions which were defined and used in the process of computational cores generation.


Computational Cores Generation


Computational Cores Generation is a process of definition, selection, and tuning of the Architecture parameters for a certain realization in specific system and application. The process is based on several design considerations, such as:

  • (a) The cores should be designed so as to obtain maximal independence, i.e., the projection from a signal space should generate a maximal pair-wise distance between any two computational cores' projections in a high-dimensional space.
  • (b) The computational cores should be optimally designed for the type of signals, i.e. the computational cores should be maximally sensitive to the spatio-temporal structure of the injected signal, for example, and in particular, sensitive to local correlations in time and space.
  • (c) The computational cores should be optimally designed with regard to invariance to set of signal distortions, of interest in relevant application.


Following is a non-limiting example of core-generator module for large-scale video-matching system. The first step is a generation of L nodes, 1 for each of the L computational cores, following design optimization criteria (a) and (b).


Criterion (a) is implemented by formulating it as a problem of generating L projections, sampling uniformly a D-dimensional hemisphere. This problem cannot be solved analytically for an arbitrary L. However, there are singular solutions, obtained by Neil Sloane for a certain number of points for a given dimension. The definition of core-generator stochastic process is based on this singular solution. Another constraint embedded in this process definition is local distribution of coupling node currents (CNCs) according to design optimization criterions (b), i.e. the sparse connectivity has local characteristics in image space. Other solutions of almost uniform tessellations exist.


The second step is to fulfill design optimization criterion (c), by generating for each of the nodes of the computational cores, M variants, so that the cores will produce signatures robust to specific distortions of interest. This is done by applying to the functions of each node M.


Large-Scale Speech-to-Text System


The goal of large-scale speech-to-text system is to reliably translate fluent prior art technologies are based on model-based approaches, i.e., speech recognition through phonemes recognition and/or word recognition by Hidden-Markov-Models (HMM) and other methods, natural-language-processing techniques, language models and more, the disclosed approach constitutes a paradigm-shift in the speech-recognition domain. The disclosed System for speech-to-text is based on a previously-disclosed computational paradigm-shift, The Architecture.



FIG. 4 shows high-level steps for generating a signature for a voice segment implemented according to an embodiment. The System receives a large-scale database of speech (10) with relevant database of text (11) and generates a database of Robust Signatures (5) to patches of the speech signals (13) provided in the original database.



FIG. 5 shows an exemplary more detailed overall process of speech-to-text translation implemented in accordance with certain embodiments of the disclosure. In the process of speech-to-text translation, the system performs first speech-to-speech match, i.e. the system finds M best matches (18) between the speech-segment received as an input (16), and the N speech-segments provided in the training database (17). Similar to the case of visual signal, the match between two speech-segments should be invariant to a certain set of statistical processes performed independently on two relevant speech-segments, such as generation of the speech by different speakers, plurality noisy channels, various intonations, accents and more. Moreover, the process of matching between a certain speech-segment to a database consisting of N segments, cannot be done by matching directly the speech-segment to all N speech-segments, for large-scale N, since such a complexity of O(N), will lead to non-practical response times. Thus, the representation of speech-segments by Robust Signatures is critical application-wise. The System embodies a specific realization of The Architecture for the purpose of Large-Scale Speech-to-Speech System creation and definition. Finally, after matching the speech-segment to M best matches in database, the relevant text attached to the M segments is post-processed (19), generating the text (20) of the speech-segment provided as an input.


High-level description of the system is further depicted, in FIG. 5. Speech-segments are processes by computational Cores (3), a realization of The Architecture (see cores generator for Large-Scale Speech-to-Text System). The computational Cores (3) generate a database of Signatures (5) for a large-scale database of speech-segments (17) and Robust Signatures (15) for speech-segment presented as an input (16). The process of signature generation is described below. Next, Robust Signatures (15) and/or Signatures (5) are effectively matched to Robust Signatures (15) and/or Signatures (5) in the database to find all matches between the two, and finally extract all the relevant text to be post-processed and presented as a text output (20).


Signatures Generation


The signatures generation process will be described with reference to FIG. 6. The first step in the process of signatures generation from a given speech-segment is to break-down the speech-segment to K patches (14) of random length P and random position within the speech segment (12). The break-down is performed by the patch generator component (21). The value of K and the other two parameters are determined based on optimization, considering the tradeoff between accuracy rate and the number of fast matches required in the flow process of the System.


In the next step, all the K patches are injected in parallel to all L computational Cores (3) to generate K response vectors (22).


Having L computational cores, generated by the cores generator for Large-Scale Speech-to-Text System, a patch i is injected to all the computational cores. Processing by the computational cores yields a response vector {right arrow over (R)}, for example, in the following way:


A computational core Ci consists of a m nodes (LTUs), generated according to cores-generator: Ci={nim}.








n
im



(
t
)


=

θ






(



V
i



(
t
)


-
Th

)










V
i



(
t
)


=



(

1
-
L

)




V
i



(

t
-
1

)



+

V
im









V
im

=



j








w

i
,
jn




k

i


,
j











    • wij is a CNU between node j (in Core i) and patch component n (for example, MFCC coefficient), and/or between node j and node n in the same core i.

    • ki,j is a patch component n (for example, MFCC coefficient), and/or node j and node n in the same core i.



  • θ is a Heaviside step function; and

  • TH is a constant threshold value of all nodes.



The response vector {right arrow over (R)} is the firing rate of all nodes, {nim}. The Signature (4) and the Robust Signature may be generated, for example, similarly as to the case of video content-segment, i.e., {right arrow over (S)} by applying the threshold {right arrow over (ThS)} to {right arrow over (R)}, and {right arrow over (RS)} by applying the threshold {right arrow over (ThRS)} to {right arrow over (R)}.


Speech-to-Speech-to-Text Process


Upon completion of the process of speech-to-speech matching, yielding M best matches from the database, the output of the relevant text is obtained by post-processing (19) of the attached text to the M records, for example, by finding the common dominator of the M members.


As an example, if the match yielded the following M=10 attached text records:

  • This dog is fast
  • This car is parking
  • Is it barking
  • This is a dog
  • It was barking
  • This is a king
  • His dog is playing
  • He is barking
  • This dog is nothing
  • This frog is pink


    The output text to the provided input speech-segment will be:
  • . . . this dog is barking . . . .


The proposed System for speech-to-text constitutes a major paradigm-shift from existing approaches to the design of prior art speech-to-text systems in several aspects. First, it is not model-based, i.e. no models are generated for phonemes, key-words, speech-context, and/or language. Instead, signatures generated for various speech-fragments, extract this information, which is later easily retrieved by low-cost database operations during the recognition process. This yields a major computational advantage in that no expert-knowledge of speech understanding is required during the training process, which in the disclosed method and its embodiment is signature generation. Second, the System does not require an inference of the input speech-segment to each of the generated models. Instead, for example, the Robust Signature generated for the input segment is matched against the whole database of signatures, in a way which does not require a complexity greater than O(log N). This yields inherent scalability characteristics of the System, and extremely short response times.


Synthesis for Generation of Large-scale “Knowledge” Databases


One of the main challenges in developing speech-to-text systems, with superior performance, is the process of collecting a large-scale and heterogeneous enough, “training” database. In the disclosed embodiments, an innovative approach for meeting this challenge is presented. For the purpose of large-scale database generation of transcribed speech, a prior art synthesizer is used. A synthesizer receives two inputs: (1) Large text database (2) Speech data-base with multiple speakers, intonations, etc. The synthesizer also generates a large database of heterogeneous speech, transcribed according to the provided text database. The generated large-scale database of transcribed speech is used according to the presented System flow.


Large-scale Classification Paradigm-Shift


The presented System implements a computational paradigm-shift required for classification tasks of natural signals, such as video and speech, at very large scales of volume and speed. For very large-scale tasks, such as the classification tasks related to the web content and/or any other large-scale database in terms of volume and update frequencies, the required performance envelope is extremely challenging. For example, the throughput rate of The System signature generation process should be equal to the rate of update process of the content database. Another example is the false-alarm or false-positive rate required for the System to be effective. A 1% false-positive rate for a certain content-segment may turn to 100% false-positive rate for a data-base of N content-segments being matched against another large-scale data-base. Thus, the false-positive rates should be extremely low. The presented System does afford such a low false-positive rate due to the paradigm-shift in its computational method for large-scale classification tasks. Unlike prior art learning systems, which generate a complex hyper-plane separating a certain class from the entire “world”, and/or model-based method, which generate a model of a certain class, the presented System generates a set of Robust Signatures for the presented samples of the class according to teachings described above. Specifically, the signatures are generated by maximally independent, transform/distortions-invariant, and signal-based characteristics of optimally designed computational cores. The generalization from a certain set of samples to a class is well defined in terms of invariance to transforms/distortions of interest, and the signatures' robustness, yielding extremely low false-positive rates. Moreover, the accuracy is scalable by the signatures length due to the low dependence of the computational cores.


Several differences between the prior art techniques and the scale classification techniques disclosed herein are illustrated in FIGS. 7, 8, and 9. Specifically, FIG. 7 shows a diagram illustrating the difference between a complex hyper-plane the large-scale classification where multiple robust hyper-plane segments and are generated, where the prior art classification is shown on the left and the classification according to the principles of the disclosed embodiments is shown on the right. Prior art classification attempts to find a sophisticated classification line (24) that best separates between objects (25) belonging to one group and objects (26) that belong to another group. Typically, one or more of the objects of one group are found to be classified into the other group, in this example, there is an object (26) within the group of different objects (25). In accordance with an embodiment of the disclosure, each object is classified separately (27) and matched to its respective objects. Therefore, an object will belong to one group or another providing for a robust classification.



FIG. 8 illustrates the difference in decision making when the sample to be classified differs from other samples that belong to the training set, where the prior art classification is shown on the left and the classification according to the principles of the disclosed embodiments is shown on the right. When a new object (28), not previously classified by the system is classified according to prior art as belonging to one group of objects, in this exemplary case, objects (26). In accordance with the disclosed embodiments, as the new object (28) does not match any object (27) it will be recorded as unrecognized, or no match.



FIG. 9 shows the difference in decision making in cases where the sample to be classified closely resembles samples that belong to two classes, prior art classification shown on the left and classification according to the principles of the disclosed embodiments on the right. In this case the new object (29) is classified by prior art systems as belonging to one of the two existing, even though line (24) may require complex computing due to the similarity of the new object (29) to wither one of the objects (25) and (26). However, in accordance with an embodiment of the disclosed embodiments, as each object is classified separately (27) it is found that the new object (29) does not belong to any one of the previously identified objects and therefore no match is found.


The various embodiments disclosed herein can be implemented as hardware, firmware, software, or any combination thereof. Moreover, the software is preferably implemented as an application program tangibly embodied on a program storage unit or computer readable medium consisting of parts, or of certain devices and/or a combination of devices. The application program may be uploaded to, and executed by, a machine comprising any suitable architecture. Preferably, the machine is implemented on a computer platform having hardware such as one or more central processing units (“CPUs”), a memory, and input/output interfaces. The computer platform may also include an operating system and microinstruction code. The various processes and functions described herein may be either part of the microinstruction code or part of the application program, or any combination thereof, which may be executed by a CPU, whether or not such a computer or processor is explicitly shown. In addition, various other peripheral units may be connected to the computer platform such as an additional data storage unit and a printing unit. Furthermore, a non-transitory computer readable medium is any computer readable medium except for a transitory propagating signal.


All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the principles of the disclosed embodiment and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the disclosed embodiments, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.


The computer platform may also include an operating system and microinstruction code. The various processes and functions described herein may be either part of the microinstruction code or part of the application program, or any combination thereof, which may be executed by a CPU, whether or not such computer or processor is explicitly shown. In addition, various other peripheral units may be connected to the computer platform such as an additional data storage unit and a printing unit.

Claims
  • 1. A system for generating a large-scale database of heterogeneous speech, comprising: a processor;a plurality of independent computation cores configured to generate signatures of a plurality of speech segments;a large scale database configured to maintain a plurality of transcribed multimedia signals;a memory, the memory containing instructions that, when executed by the processor, configure the system to:randomly select a plurality of speech segments from the plurality of multimedia signals, wherein each speech segment of the plurality of speech segments is of a random length;provide the plurality of speech segments to the plurality of independent computation cores for generation of the signatures;collect the signatures from the plurality of independent computation cores; andpopulate the large-scale database with the plurality of signatures respective of the plurality of multimedia signals.
  • 2. The system of claim 1, wherein the system is further configured to: transcribe the plurality of multimedia signals retrieved from the large scale database and a speech database.
  • 3. The system of claim 1, wherein the large scale database multimedia signal comprises speech that is pronounced according to any of: a plurality of speakers, a plurality of intonations, and a plurality of accents.
  • 4. The system of claim 1, wherein each signature of the generated signatures is robust to any of: noise, and distortion.
  • 5. The system of claim 1, wherein each signature of the generated signatures is independent, transform invariant, and distortion invariant.
  • 6. The system of claim 1, wherein the system is further configured to: determine, for each multimedia signal of the plurality of multimedia signals, if the multimedia signal matches at least one class of multimedia signals based on the plurality of signatures and a set of representative signatures of the class of multimedia signals.
  • 7. The system of claim 6, wherein the system is further configured to: create a new class of multimedia signals, wherein the new class of multimedia signals comprises the plurality of signatures as new representative signatures of the new class of multimedia signals.
  • 8. The system of claim 1, wherein each multimedia signal of the plurality of multimedia signals is at least any of: an audio stream, and an audio clip.
  • 9. The system of claim 1, wherein the plurality of independent computation cores are configured to map the plurality of speech segments onto a high-dimensional space for generation of compact signatures.
  • 10. The system of claim 1, wherein the plurality of computation cores are sensitive to a spatio-temporal structure of the plurality of speech segments.
  • 11. A method for generating a large-scale database of heterogeneous speech, comprising: randomly selecting a plurality of speech segments from a plurality of transcribed multimedia signals, wherein each speech segment of the plurality of speech segments is of a random length;generating, by a plurality of independent computation cores, signatures of the plurality of randomly selected speech segments; andpopulating a large-scale database with the plurality of signatures respective of the plurality of multimedia signals.
  • 12. The method of claim 11, further comprising: transcribing a plurality of multimedia signals retrieved from a large text database and a speech database.
  • 13. The method of claim 11, wherein the speech database further comprises: speech that is pronounced according to any of: a plurality of speakers, a plurality of intonations, and a plurality of accents.
  • 14. The method of claim 11, wherein each signature of the generated signatures is robust to any of: noise, and distortion.
  • 15. The method of claim 11, wherein each signature of the generated signatures is independent, transform invariant, and distortion invariant.
  • 16. The method of claim 11, further comprising: determining, for each multimedia signal of the plurality of multimedia signals, if the multimedia signal matches at least one class of multimedia signals based on the plurality of signatures and a set of representative signatures of the class of multimedia signals.
  • 17. The method of claim 16, further comprising: creating a new class of multimedia signals, wherein the new class of multimedia signals comprises the plurality of signatures as new representative signatures of the new class of multimedia signals.
  • 18. The method of claim 11, wherein each multimedia signal of the plurality of multimedia signals is at least any of: an audio stream, and an audio clip.
  • 19. The method of claim 11, wherein the signatures of the plurality of randomly selected speech segments are generated by a plurality of independent computation cores.
  • 20. The method of claim 19, wherein further comprising: configuring the plurality of independent computation cores to map the plurality of speech segments onto a high-dimensional space for generation of compact signatures.
  • 21. The method of claim 11, wherein the signatures are generated by a plurality of computation cores, wherein the computation cores are sensitive to a spatio-temporal structure of the plurality of speech segments.
  • 22. A non-transitory computer readable medium having stored thereon instructions for causing one or more processing units to execute the method according to claim 11.
  • 23. The system according to claim 1 wherein the plurality of independent computation cores comprise neural networks and the signatures of the plurality of speech segments represents responses of the neural networks to the plurality of speech segments.
  • 24. The method according to claim 11 wherein the plurality of independent computation cores comprise neural networks and the signatures of the plurality of speech segments represents responses of the neural networks to plurality of speech segments.
Priority Claims (3)
Number Date Country Kind
171577 Oct 2005 IL national
173409 Jan 2006 IL national
185414 Aug 2007 IL national
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/619,767 filed on Feb. 11, 2015, now allowed, which is a continuation of U.S. patent application Ser. No. 13/682,132 filed on Nov. 20, 2012, now U.S. Pat. No. 8,990,125, which is a continuation of U.S. patent application Ser. No. 12/195,863 filed Aug. 21, 2008, now U.S. Pat. No. 8,326,775. The Ser. No. 13/682,132 application is a continuation-in-part of U.S. patent application Ser. No. 12/084,150 having a filing date of Apr. 7, 2009, now U.S. Pat. No. 8,655,801, which is the National Stage of International Application No. PCT/IL2006/001235, filed on Oct. 26, 2006, which claims foreign priority from Israeli Application No. 171577 filed on Oct. 26, 2005, and Israeli Application No. 173409 filed on Jan. 29, 2006. The Ser. No. 12/195,863 application is also a continuation-in-part of the Ser. No. 12/084,150 application. The Ser. No. 12/195,863 application also claims priority under 35 USC 119 from Israeli Application No. 185414, filed on Aug. 21, 2007. All of the applications referenced above are herein incorporated by reference.

US Referenced Citations (397)
Number Name Date Kind
4733353 Jaswa Mar 1988 A
4932645 Schorey et al. Jun 1990 A
4972363 Nguyen et al. Nov 1990 A
5214746 Fogel et al. May 1993 A
5307451 Clark Apr 1994 A
5568181 Greenwood et al. Oct 1996 A
5638425 Meador, I et al. Jun 1997 A
5745678 Herzberg et al. Apr 1998 A
5763069 Jordan Jun 1998 A
5806061 Chaudhuri et al. Sep 1998 A
5852435 Vigneaux et al. Dec 1998 A
5870754 Dimitrova et al. Feb 1999 A
5873080 Coden et al. Feb 1999 A
5887193 Takahashi et al. Mar 1999 A
5933527 Ishikawa Aug 1999 A
5978754 Kumano Nov 1999 A
5991306 Bums et al. Nov 1999 A
6052481 Grajski et al. Apr 2000 A
6070167 Qian et al. May 2000 A
6076088 Paik et al. Jun 2000 A
6122628 Castelli et al. Sep 2000 A
6137911 Zhilyaev Oct 2000 A
6144767 Bottou et al. Nov 2000 A
6147636 Gershenson Nov 2000 A
6243375 Speicher Jun 2001 B1
6243713 Nelson et al. Jun 2001 B1
6275599 Adler et al. Aug 2001 B1
6329986 Cheng Dec 2001 B1
6381656 Shankman Apr 2002 B1
6411229 Kobayashi Jun 2002 B2
6422617 Fukumoto et al. Jul 2002 B1
6507672 Watkins et al. Jan 2003 B1
6523046 Liu et al. Feb 2003 B2
6524861 Anderson Feb 2003 B1
6539100 Amir et al. Mar 2003 B1
6550018 Abonamah et al. Apr 2003 B1
6557042 He et al. Apr 2003 B1
6594699 Sahai et al. Jul 2003 B1
6601026 Appelt et al. Jul 2003 B2
6611628 Sekiguchi et al. Aug 2003 B1
6618711 Ananth Sep 2003 B1
6643620 Contolini et al. Nov 2003 B1
6643643 Lee et al. Nov 2003 B1
6665657 Dibachi Dec 2003 B1
6704725 Lee Mar 2004 B1
6732149 Kephart May 2004 B1
6751363 Natsev et al. Jun 2004 B1
6751613 Lee et al. Jun 2004 B1
6754435 Kim Jun 2004 B2
6763069 Divakaran et al. Jul 2004 B1
6763519 McColl et al. Jul 2004 B1
6774917 Foote et al. Aug 2004 B1
6795818 Lee Sep 2004 B1
6804356 Krishnamachari Oct 2004 B1
6813395 Kinjo Nov 2004 B1
6816857 Weissman et al. Nov 2004 B1
6819797 Smith et al. Nov 2004 B1
6845374 Oliver et al. Jan 2005 B1
6901207 Watkins May 2005 B1
6938025 Lulich et al. Aug 2005 B1
6963659 Tumey et al. Nov 2005 B2
6985172 Rigney et al. Jan 2006 B1
7006689 Kasutani Feb 2006 B2
7013051 Sekiguchi et al. Mar 2006 B2
7020654 Najmi Mar 2006 B1
7043473 Rassool et al. May 2006 B1
7158681 Persiantsev Jan 2007 B2
7199798 Echigo et al. Apr 2007 B1
7215828 Luo May 2007 B2
7248300 Ono Jul 2007 B1
7260564 Lynn et al. Aug 2007 B1
7277928 Lennon Oct 2007 B2
7299261 Oliver et al. Nov 2007 B1
7302117 Sekiguchi et al. Nov 2007 B2
7313805 Rosin et al. Dec 2007 B1
7340358 Yoneyama Mar 2008 B2
7353224 Chen et al. Apr 2008 B2
7376672 Weare May 2008 B2
7433895 Li et al. Oct 2008 B2
7464086 Black et al. Dec 2008 B2
7526607 Singh et al. Apr 2009 B1
7529659 Wold May 2009 B2
7574668 Nunez et al. Aug 2009 B2
7577656 Kawai et al. Aug 2009 B2
7657100 Gokturk et al. Feb 2010 B2
7660468 Gokturk et al. Feb 2010 B2
7694318 Eldering et al. Apr 2010 B2
7836054 Kawai et al. Nov 2010 B2
7920894 Wyler Apr 2011 B2
7921107 Chang et al. Apr 2011 B2
7933407 Keidar et al. Apr 2011 B2
7974994 Li et al. Jul 2011 B2
7987194 Walker et al. Jul 2011 B1
7987217 Long et al. Jul 2011 B2
7991715 Schiff et al. Aug 2011 B2
8000655 Wang et al. Aug 2011 B2
8023739 Hohimer et al. Sep 2011 B2
8036893 Reich Oct 2011 B2
8098934 Vincent et al. Jan 2012 B2
8112376 Raichelgauz et al. Feb 2012 B2
8266185 Raichelgauz et al. Sep 2012 B2
8312031 Raichelgauz et al. Nov 2012 B2
8315442 Gokturk et al. Nov 2012 B2
8316005 Moore Nov 2012 B2
8326775 Raichelgauz Dec 2012 B2
8345982 Gokturk et al. Jan 2013 B2
8457827 Ferguson et al. Jun 2013 B1
8495489 Everingham Jul 2013 B1
8548828 Longmire Oct 2013 B1
8655801 Raichelgauz Feb 2014 B2
8655878 Kulkarni et al. Feb 2014 B1
8677377 Cheyer et al. Mar 2014 B2
8682667 Haughay Mar 2014 B2
8688446 Yanagihara Apr 2014 B2
8706503 Cheyer et al. Apr 2014 B2
8775442 Moore et al. Jul 2014 B2
8799195 Raichelgauz et al. Aug 2014 B2
8799196 Raichelquaz et al. Aug 2014 B2
8818916 Raichelgauz et al. Aug 2014 B2
8856051 Song et al. Oct 2014 B1
8868619 Raichelgauz et al. Oct 2014 B2
8868861 Shimizu et al. Oct 2014 B2
8880539 Raichelgauz et al. Nov 2014 B2
8880566 Raichelgauz et al. Nov 2014 B2
8886648 Procopio et al. Nov 2014 B1
8898568 Bull et al. Nov 2014 B2
8922414 Raichelgauz et al. Dec 2014 B2
8959037 Raichelgauz et al. Feb 2015 B2
8990125 Raichelgauz Mar 2015 B2
9009086 Raichelgauz et al. Apr 2015 B2
9031999 Raichelgauz et al. May 2015 B2
9087049 Raichelgauz et al. Jul 2015 B2
9104747 Raichelgauz et al. Aug 2015 B2
9111134 Rogers et al. Aug 2015 B1
9165406 Gray et al. Oct 2015 B1
9191626 Raichelgauz et al. Nov 2015 B2
9197244 Raichelgauz et al. Nov 2015 B2
9218606 Raichelgauz et al. Dec 2015 B2
9235557 Raichelgauz et al. Jan 2016 B2
9256668 Raichelgauz et al. Feb 2016 B2
9323754 Ramanathan et al. Apr 2016 B2
9330189 Raichelgauz et al. May 2016 B2
9384196 Raichelgauz Jul 2016 B2
9438270 Raichelgauz et al. Sep 2016 B2
9466068 Raichelgauz et al. Oct 2016 B2
9606992 Geisner et al. Mar 2017 B2
9646006 Raichelgauz et al. May 2017 B2
9679062 Schillings et al. Jun 2017 B2
9798795 Raichelgauz Oct 2017 B2
9807442 Bhatia et al. Oct 2017 B2
9984369 Li et al. May 2018 B2
10193990 Raichelgauz Jan 2019 B2
20010019633 Tenze et al. Sep 2001 A1
20010038876 Anderson Nov 2001 A1
20010056427 Yoon et al. Dec 2001 A1
20020010682 Johnson Jan 2002 A1
20020010715 Chinn et al. Jan 2002 A1
20020019881 Bokhari et al. Feb 2002 A1
20020032677 Morgenthaler et al. Mar 2002 A1
20020038299 Zernik et al. Mar 2002 A1
20020059580 Kalker et al. May 2002 A1
20020072935 Rowse et al. Jun 2002 A1
20020087530 Smith et al. Jul 2002 A1
20020099870 Miller et al. Jul 2002 A1
20020107827 Benitez-Jimenez et al. Aug 2002 A1
20020123928 Eldering et al. Sep 2002 A1
20020126872 Brunk et al. Sep 2002 A1
20020129140 Peled et al. Sep 2002 A1
20020129296 Kwiat et al. Sep 2002 A1
20020143976 Barker et al. Oct 2002 A1
20020147637 Kraft et al. Oct 2002 A1
20020152267 Lennon Oct 2002 A1
20020157116 Jasinschi Oct 2002 A1
20020159640 Vaithilingam et al. Oct 2002 A1
20020161739 Oh Oct 2002 A1
20020163532 Thomas et al. Nov 2002 A1
20020174095 Lulich et al. Nov 2002 A1
20020178410 Haitsma et al. Nov 2002 A1
20030028660 Igawa et al. Feb 2003 A1
20030050815 Seigel et al. Mar 2003 A1
20030078766 Appelt et al. Apr 2003 A1
20030086627 Berriss et al. May 2003 A1
20030089216 Birmingham et al. May 2003 A1
20030105739 Essafi et al. Jun 2003 A1
20030123713 Geng Jul 2003 A1
20030126147 Essafi et al. Jul 2003 A1
20030182567 Barton et al. Sep 2003 A1
20030191764 Richards Oct 2003 A1
20030200217 Ackerman Oct 2003 A1
20030217335 Chung et al. Nov 2003 A1
20030229531 Heckerman et al. Dec 2003 A1
20040003394 Ramaswamy Jan 2004 A1
20040025180 Begeja et al. Feb 2004 A1
20040068510 Hayes et al. Apr 2004 A1
20040107181 Rodden Jun 2004 A1
20040111465 Chuang et al. Jun 2004 A1
20040117367 Smith et al. Jun 2004 A1
20040117638 Monroe Jun 2004 A1
20040128142 Whitham Jul 2004 A1
20040128511 Sun et al. Jul 2004 A1
20040133927 Sternberg et al. Jul 2004 A1
20040153426 Nugent Aug 2004 A1
20040215663 Liu et al. Oct 2004 A1
20040249779 Nauck et al. Dec 2004 A1
20040260688 Gross Dec 2004 A1
20040264744 Zhang et al. Dec 2004 A1
20040267774 Lin et al. Dec 2004 A1
20050021394 Miedema et al. Jan 2005 A1
20050114198 Koningstein et al. May 2005 A1
20050131884 Gross et al. Jun 2005 A1
20050144455 Haitsma Jun 2005 A1
20050172130 Roberts Aug 2005 A1
20050177372 Wang et al. Aug 2005 A1
20050238198 Brown et al. Oct 2005 A1
20050238238 Xu et al. Oct 2005 A1
20050245241 Durand et al. Nov 2005 A1
20050249398 Khamene et al. Nov 2005 A1
20050256820 Dugan et al. Nov 2005 A1
20050262428 Little et al. Nov 2005 A1
20050281439 Lange Dec 2005 A1
20050289163 Gordon et al. Dec 2005 A1
20050289590 Cheok et al. Dec 2005 A1
20060004745 Kuhn et al. Jan 2006 A1
20060013451 Haitsma Jan 2006 A1
20060020860 Tardif et al. Jan 2006 A1
20060020958 Allamanche et al. Jan 2006 A1
20060026203 Tan et al. Feb 2006 A1
20060031216 Semple et al. Feb 2006 A1
20060033163 Chen Feb 2006 A1
20060041596 Stirbu et al. Feb 2006 A1
20060048191 Xiong Mar 2006 A1
20060064037 Shalon et al. Mar 2006 A1
20060112035 Cecchi et al. May 2006 A1
20060129822 Snijder et al. Jun 2006 A1
20060143674 Jones et al. Jun 2006 A1
20060153296 Deng Jul 2006 A1
20060159442 Kim et al. Jul 2006 A1
20060173688 Whitham Aug 2006 A1
20060184638 Chua et al. Aug 2006 A1
20060204035 Guo et al. Sep 2006 A1
20060217818 Fujiwara Sep 2006 A1
20060217828 Hicken Sep 2006 A1
20060224529 Kermani Oct 2006 A1
20060236343 Chang Oct 2006 A1
20060242139 Butterfield et al. Oct 2006 A1
20060242554 Gerace et al. Oct 2006 A1
20060247983 Dalli Nov 2006 A1
20060248558 Barton et al. Nov 2006 A1
20060253423 McLane et al. Nov 2006 A1
20060288002 Epstein et al. Dec 2006 A1
20070019864 Koyama et al. Jan 2007 A1
20070022374 Huang et al. Jan 2007 A1
20070033163 Epstein et al. Feb 2007 A1
20070038614 Guha Feb 2007 A1
20070042757 Jung et al. Feb 2007 A1
20070061302 Ramer et al. Mar 2007 A1
20070067304 Ives Mar 2007 A1
20070067682 Fang Mar 2007 A1
20070071330 Oostveen et al. Mar 2007 A1
20070074147 Wold Mar 2007 A1
20070083611 Farago et al. Apr 2007 A1
20070091106 Moroney Apr 2007 A1
20070130159 Gulli et al. Jun 2007 A1
20070156720 Maren Jul 2007 A1
20070168413 Barletta et al. Jul 2007 A1
20070195987 Rhoads Aug 2007 A1
20070220573 Chiussi et al. Sep 2007 A1
20070244902 Seide et al. Oct 2007 A1
20070253594 Lu et al. Nov 2007 A1
20070255785 Hayashi et al. Nov 2007 A1
20070294295 Finkelstein et al. Dec 2007 A1
20070298152 Baets Dec 2007 A1
20080046406 Seide et al. Feb 2008 A1
20080049629 Morrill Feb 2008 A1
20080072256 Boicey et al. Mar 2008 A1
20080091527 Silverbrook et al. Apr 2008 A1
20080152231 Gokturk et al. Jun 2008 A1
20080163288 Ghosal et al. Jul 2008 A1
20080165861 Wen et al. Jul 2008 A1
20080201299 Lehikoinen et al. Aug 2008 A1
20080201314 Smith et al. Aug 2008 A1
20080204706 Magne et al. Aug 2008 A1
20080228995 Tan et al. Sep 2008 A1
20080237359 Silverbrook et al. Oct 2008 A1
20080253737 Kimura et al. Oct 2008 A1
20080263579 Mears et al. Oct 2008 A1
20080270373 Oostveen et al. Oct 2008 A1
20080307454 Ahanger et al. Dec 2008 A1
20080313140 Pereira et al. Dec 2008 A1
20090013414 Washington et al. Jan 2009 A1
20090022472 Bronstein et al. Jan 2009 A1
20090024641 Quigley et al. Jan 2009 A1
20090043637 Eder Feb 2009 A1
20090043818 Raichelgauz Feb 2009 A1
20090089587 Brunk et al. Apr 2009 A1
20090119157 Dulepet May 2009 A1
20090125544 Brindley May 2009 A1
20090148045 Lee et al. Jun 2009 A1
20090157575 Schobben et al. Jun 2009 A1
20090172030 Schiff et al. Jul 2009 A1
20090175538 Bronstein et al. Jul 2009 A1
20090216761 Raichelgauz et al. Aug 2009 A1
20090220138 Zhang et al. Sep 2009 A1
20090245573 Saptharishi et al. Oct 2009 A1
20090245603 Koruga et al. Oct 2009 A1
20090253583 Yoganathan Oct 2009 A1
20090254572 Redlich et al. Oct 2009 A1
20090259687 Mai et al. Oct 2009 A1
20090277322 Cai et al. Nov 2009 A1
20090282218 Raichelgauz et al. Nov 2009 A1
20100042646 Raichelgauz et al. Feb 2010 A1
20100082684 Churchill et al. Apr 2010 A1
20100104184 Bronstein et al. Apr 2010 A1
20100125569 Nair et al. May 2010 A1
20100162405 Cook et al. Jun 2010 A1
20100173269 Puri et al. Jul 2010 A1
20100198626 Cho et al. Aug 2010 A1
20100268524 Nath et al. Oct 2010 A1
20100306193 Pereira et al. Dec 2010 A1
20100318493 Wessling Dec 2010 A1
20100322522 Wang et al. Dec 2010 A1
20100325138 Lee et al. Dec 2010 A1
20100325581 Finkelstein et al. Dec 2010 A1
20110052063 McAuley et al. Mar 2011 A1
20110055585 Lee Mar 2011 A1
20110145068 King et al. Jun 2011 A1
20110164180 Lee Jul 2011 A1
20110164810 Zang et al. Jul 2011 A1
20110202848 Ismalon Aug 2011 A1
20110246566 Kashef et al. Oct 2011 A1
20110251896 Impollonia et al. Oct 2011 A1
20110276680 Rimon Nov 2011 A1
20110296315 Lin et al. Dec 2011 A1
20110313856 Cohen et al. Dec 2011 A1
20120082362 Diem et al. Apr 2012 A1
20120131454 Shah May 2012 A1
20120150890 Jeong et al. Jun 2012 A1
20120167133 Carroll et al. Jun 2012 A1
20120179642 Sweeney et al. Jul 2012 A1
20120185445 Borden et al. Jul 2012 A1
20120197857 Huang et al. Aug 2012 A1
20120227074 Hill et al. Sep 2012 A1
20120239690 Asikainen et al. Sep 2012 A1
20120239694 Avner et al. Sep 2012 A1
20120299961 Ramkumar et al. Nov 2012 A1
20120301105 Rehg et al. Nov 2012 A1
20120330869 Durham Dec 2012 A1
20120331011 Raichelgauz et al. Dec 2012 A1
20130031489 Gubin et al. Jan 2013 A1
20130066856 Ong et al. Mar 2013 A1
20130067035 Amanat et al. Mar 2013 A1
20130067364 Bemtson et al. Mar 2013 A1
20130080433 Raichelgauz Mar 2013 A1
20130086499 Dyor et al. Apr 2013 A1
20130089248 Remiszewski et al. Apr 2013 A1
20130104251 Moore et al. Apr 2013 A1
20130159298 Mason et al. Jun 2013 A1
20130173635 Sanjeev Jul 2013 A1
20130226930 Arngren et al. Aug 2013 A1
20130283401 Pabla et al. Oct 2013 A1
20130311924 Denker et al. Nov 2013 A1
20130325550 Varghese et al. Dec 2013 A1
20130332951 Gharaat et al. Dec 2013 A1
20140019264 Wachman et al. Jan 2014 A1
20140025692 Pappas Jan 2014 A1
20140147829 Jerauld May 2014 A1
20140152698 Kim et al. Jun 2014 A1
20140156901 Raichelgauz Jun 2014 A1
20140169681 Drake Jun 2014 A1
20140176604 Venkitaraman et al. Jun 2014 A1
20140188786 Raichelgauz et al. Jul 2014 A1
20140193077 Shiiyama et al. Jul 2014 A1
20140250032 Huang et al. Sep 2014 A1
20140282655 Roberts Sep 2014 A1
20140300722 Garcia Oct 2014 A1
20140310825 Raichelgauz et al. Oct 2014 A1
20140330830 Raichelgauz et al. Nov 2014 A1
20140341476 Kulick et al. Nov 2014 A1
20150100562 Kohlmeier et al. Apr 2015 A1
20150154189 Raichelgauz Jun 2015 A1
20150254344 Kulkarni et al. Sep 2015 A1
20150286742 Zhang et al. Oct 2015 A1
20150289022 Gross Oct 2015 A1
20150324356 Gutierrez et al. Nov 2015 A1
20160007083 Gurha Jan 2016 A1
20160026707 Ong et al. Jan 2016 A1
20160239566 Raichelgauz Aug 2016 A1
20160321253 Raichelgauz Nov 2016 A1
20160321256 Raichelgauz Nov 2016 A1
20160342593 Raichelgauz Nov 2016 A1
20160378755 Raichelgauz Dec 2016 A1
20170017638 Satyavarta et al. Jan 2017 A1
20170154241 Shambik et al. Jun 2017 A1
20170262437 Raichelgauz Sep 2017 A1
20180018337 Raichelgauz Jan 2018 A1
20180039626 Raichelgauz Feb 2018 A1
20180150467 Raichelgauz May 2018 A1
Foreign Referenced Citations (12)
Number Date Country
0231764 Apr 2002 WO
0231764 Apr 2002 WO
2003005242 Jan 2003 WO
2003067467 Aug 2003 WO
2004019527 Mar 2004 WO
2005027457 Mar 2005 WO
2007049282 May 2007 WO
WO2007049282 May 2007 WO
2014076002 May 2014 WO
2014137337 Sep 2014 WO
2016040376 Mar 2016 WO
2016070193 May 2016 WO
Non-Patent Literature Citations (119)
Entry
Brecheisen, et al., “Hierarchical Genre Classification for Large Music Collections”, ICME 2006, pp. 1385-1388.
Chuan-Yu Cho, et al., “Efficient Motion-Vector-Based Video Search Using Query by Clip”, 2004, IEEE, Taiwan, pp. 1-4.
Ihab Al Kabary, et al., “SportSense: Using Motion Queries to Find Scenes in Sports Videos”, Oct. 2013, ACM, Switzerland, pp. 1-3.
Jianping Fan et al., “Concept-Oriented Indexing of Video Databases: Towards Semantic Sensitive Retrieval and Browsing”, IEEE, vol. 13, No. 7, Jul. 2004, pp. 1-19.
Shih-Fu Chang, et al., “VideoQ: A Fully Automated Video Retrieval System Using Motion Sketches”, 1998, IEEE, , New York, pp. 1-2.
Wei-Te Li et al., “Exploring Visual and Motion Saliency for Automatic Video Object Extraction”, IEEE, vol. 22, No. 7, Jul. 2013, pp. 1-11.
Lau, et al., “Semantic Web Service Adaptation Model for a Pervasive Learning Scenario”, 2008 IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications Year: 2008, pp. 98-103, DOI: 10.1109/CITISIA.2008.4607342 IEEE Conference Publications.
McNamara, et al., “Diversity Decay in Opportunistic Content Sharing Systems”, 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks Year: 2011, pp. 1-3, DOI: 10.1109/WoWMoM.2011.5986211 IEEE Conference Publications.
Santos, et al., “SCORM-MPEG: an Ontology of Interoperable Metadata for Multimedia and e-Learning”, 2015 23rd International Conference on Software, Telecommunications and Computer Networks (SoftCOM) Year: 2015, pp. 224-228, DOI: 10.1109/SOFTCOM.2015.7314122 IEEE Conference Publications.
Wilk, et al., “The Potential of Social-Aware Multimedia Prefetching on Mobile Devices”, 2015 International Conference and Workshops on Networked Systems (NetSys) Year: 2015, pp. 1-5, DOI: 10.1109/NetSys.2015.7089081 IEEE Conference Publications.
Odinaev, et al., “Cliques in Neural Ensembles as Perception Carriers”, Technion—Israel Institute of Technology, 2006 International Joint Conference on Neural Networks, Canada, 2006, pp. 285-292.
The International Search Report and the Written Opinion for PCT/US2016/054634 dated Mar. 16, 2017, ISA/RU, Moscow, RU.
Johnson, John L., “Pulse-Coupled Neural Nets: Translation, Rotation, Scale, Distortion, and Intensity Signal Invariance for Images.” Applied Optics, vol. 33, No. 26, 1994, pp. 6239-6253.
The International Search Report and the Written Opinion for PCT/US2016/050471, ISA/RU, Moscow, RU, dated May 4, 2017.
The International Search Report and the Written Opinion for PCT/US2017/015831, ISA/RU, Moscow, Russia, dated Apr. 20, 2017.
Gomes et al., “Audio Watermaking and Fingerprinting: For Which Applications?” University of Rene Descartes, Paris, France, 2003.
Li, et al., “Matching Commercial Clips from TV Streams Using a Unique, Robust and Compact Signature,” Proceedings of the Digital Imaging Computing: Techniques and Applications, Feb. 2005, vol. 0-7695-2467, Australia.
May et al., “The Transputer”, Springer-Verlag, Berlin Heidelberg, 1989, teaches multiprocessing system.
Nam, et al., “Audio Visual Content-Based Violent Scene Characterization”, Department of Electrical and Computer Engineering, Minneapolis, MN, 1998, pp. 353-357.
Vailaya, et al., “Content-Based Hierarchical Classification of Vacation Images,” I.E.E.E.: Multimedia Computing and Systems, vol. 1, 1999, East Lansing, MI, pp. 518-523.
Vallet, et al., “Personalized Content Retrieval in Context Using Ontological Knowledge,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, No. 3, Mar. 2007, pp. 336-346.
Whitby-Strevens, “The Transputer”, 1985 IEEE, Bristol, UK.
Yanai, “Generic Image Classification Using Visual Knowledge on the Web,” MM'03, Nov. 2-8, 2003, Tokyo, Japan, pp. 167-176.
Zhu et al., Technology-Assisted Dietary Assessment. Computational Imaging VI, edited by Charles A. Bouman, Eric L. Miller, Ilya Pollak, Proc. of SPIE-IS&T Electronic Imaging, SPIE vol. 6814, 681411, Copyright 2008 SPIE-IS&T. pp. 1-10.
Boari et al, “Adaptive Routing for Dynamic Applications in Massively Parallel Architectures”, 1995 IEEE, Spring 1995.
Cernansky et al., “Feed-forward Echo State Networks”; Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, Jul. 31-Aug. 4, 2005; Entire Document.
Clement, et al. “Speaker Diarization of Heterogeneous Web Video Files: A Preliminary Study”, Acoustics, Speech and Signal Processing (ICASSP), 2011, IEEE International Conference on Year: 2011, pp. 4432-4435, DOI: 10.1109/ICASSP.2011.5947337 IEEE Conference Publications, France.
Cococcioni, et al, “Automatic Diagnosis of Defects of Rolling Element Bearings Based on Computational Intelligence Techniques”, University of Pisa, Pisa, Italy, 2009.
Emami, et al, “Role of Spatiotemporal Oriented Energy Features for Robust Visual Tracking in Video Surveillance, University of Queensland”, St. Lucia, Australia, 2012.
Fathy et al., “A Parallel Design and Implementation for Backpropagation Neural Network Using NIMD Architecture”, 8th Mediterranean Electrotechnical Corsfe rersce, 19'96. MELECON '96, Date of Conference: May 13-16, 1996, vol. 3, pp. 1472-1475.
Foote, Jonathan et al., “Content-Based Retrieval of Music and Audio”; 1997, Institute of Systems Science, National University of Singapore, Singapore (ABSTRACT).
Gong, et al., “A Knowledge-based Mediator for Dynamic Integration of Heterogeneous Multimedia Information Sources”, Video and Speech Processing, 2004, Proceedings of 2004 International Symposium on Year: 2004, pp. 467-470, DOI: 10.1109/ISIMP.2004.1434102 IEEE Conference Publications, Hong Kong.
Guo et al, “AdOn: An Intelligent Overlay Video Advertising System”, SIGIR, Boston, Massachusetts, Jul. 19-23, 2009.
Howlett et al., “A Multi-Computer Neural Network Architecture in a Virtual Sensor System Application”, International Journal of Knowledge-based Intelligent Engineering Systems, 4 (2). pp. 86-93, 133N 1327-2314; first submitted Nov. 30, 1999; revised version submitted Mar. 10, 2000.
International Search Authority: International Preliminary Report on Patentability (Chapter I of the Patent Cooperation Treaty) including “Written Opinion of the International Searching Authority” (PCT Rule 43bis. 1) for the corresponding International Patent Application No. PCT/IL2006/001235; dated Jul. 28, 2009.
International Search Report for the corresponding International Patent Application PCT/IL2006/001235; dated Nov. 2, 2008.
IPO Examination Report under Section 18(3) for corresponding UK application No. GB1001219.3, dated May 30, 2012.
IPO Examination Report under Section 18(3) for corresponding UK application No. GB1001219.3, dated Sep. 12, 2011.
Iwamoto, K.; Kasutani, E.; Yamada, A.: “Image Signature Robust to Caption Superimposition for Video Sequence Identification”; 2006 IEEE International Conference on Image Processing; pp. 3185-3188, Oct. 8-11, 2006; doi: 10.1109/ICIP.2006.313046.
Jaeger, H.: “The “echo state” approach to analysing and training recurrent neural networks”, GMD Report, No. 148, 2001, pp. 1-43, XP002466251 German National Research Center for Information Technology.
Lin, C.; Chang, S.;, “Generating Robust Digital Signature for Image/Video Authentication, ”Multimedia and Security Workshop at ACM Multimedia '98. Bristol, U.K. Sep. 1998, pp. 49-54.
Lin, et al., “Robust Digital Signature for Multimedia Authentication: A Summary”, IEEE Circuits and Systems Magazine, 4th Quarter 2003, pp. 23-26.
Lin, et al., “Summarization of Large Scale Social Network Activity”, Acoustics, Speech and Signal Processing, 2009, ICASSP 2009, IEEE International Conference on Year 2009, pp. 3481-3484, DOI: 10.1109/ICASSP.2009.4960375, IEEE Conference Publications, Arizona.
Liu, et al., “Instant Mobile Video Search With Layered Audio-Video Indexing and Progressive Transmission”, Multimedia, IEEE Transactions on Year: 2014, vol. 16, Issue: 8, pp. 2242-2255, DOI: 10.1109/TMM.2014.2359332 IEEE Journals & Magazines.
Lyon, Richard F.; “Computational Models of Neural Auditory Processing”; IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '84, Date of Conference: Mar. 1984, vol. 9, pp. 41-44.
Maass, W. et al.: “Computational Models for Generic Cortical Microcircuits”, Institute for Theoretical Computer Science, Technische Universitaet Graz, Graz, Austria, published Jun. 10, 2003.
Mandhaoui, et al, “Emotional Speech Characterization Based on Multi-Features Fusion for Face-to-Face Interaction”, Universite Pierre et Marie Curie, Paris, France, 2009.
Marti, et al, “Real Time Speaker Localization and Detection System for Camera Steering in Multiparticipant Videoconferencing Environments”, Universidad Politecnica de Valencia, Spain, 2011.
Mei, et al., “Contextual In-Image Advertising”, Microsoft Research Asia, pp. 439-448, 2008.
Mei, et al., “VideoSense—Towards Effective Online Video Advertising”, Microsoft Research Asia, pp. 1075-1084, 2007.
Mladenovic, et al., “Electronic Tour Guide for Android Mobile Platform with Multimedia Travel Book”, Telecommunications Forum (TELFOR), 2012 20th Year: 2012, pp. 1460-1463, DOI: 10.1109/TELFOR.2012.6419494 IEEE Conference Publications.
Morad, T.Y. et al.: “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multiprocessors”, Computer Architecture Letters, vol. 4, Jul. 4, 2005 (Jul. 4, 2005), pp. 1-4, XP002466254.
Nagy et al, “A Transputer, Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International Conference on CONTROL '96, Sep. 2-5, 1996, Conference 1996, Conference Publication No. 427, IEE 1996.
Natsclager, T. et al.: “The “liquid computer”: A novel strategy for real-time computing on time series”, Special Issue on Foundations of Information Processing of Telematik, vol. 8, No. 1, 2002, pp. 39-43, XP002466253.
Nouza, et al., “Large-scale Processing, Indexing and Search System for Czech Audio-Visual Heritage Archives”, Multimedia Signal Processing (MMSP), 2012, pp. 337-342, IEEE 14th Intl. Workshop, DOI: 10.1109/MMSP.2012.6343465, Czech Republic.
Ortiz-Boyer et al., “CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of Artificial Intelligence Research 24 (2005), pp. 1-48 Submitted Nov. 2004; published Jul. 2005.
Park, et al., “Compact Video Signatures for Near-Duplicate Detection on Mobile Devices”, Consumer Electronics (ISCE 2014), The 18th IEEE International Symposium on Year: 2014, pp. 1-2, DOI: 10.1109/ISCE.2014.6884293 IEEE Conference Publications.
Raichelgauz, I. et al.: “Co-evolutionary Learning in Liquid Architectures”, Lecture Notes in Computer Science, [Online] vol. 3512, Jun. 21, 2005 (Jun. 21, 2005), pp. 241-248, XP019010280 Springer Berlin / Heidelberg ISSN: 1611-3349 ISBN: 978-3-540-26208-4.
Ribert et al. “An Incremental Hierarchical Clustering”, Visicon Interface 1999, pp. 586-591.
Scheper et al, “Nonlinear dynamics in neural computation”, ESANN'2006 proceedings—European Symposium on Artificial Neural Networks, Bruges (Belgium), Apr. 26-28, 2006, d-side publi, ISBN 2-930307-06-4.
Semizarov et al. “Specificity of Short Interfering RNA Determined through Gene Expression Signatures”, PNAS, 2003, pp. 6347-6352.
Theodoropoulos et al, “Simulating Asynchronous Architectures on Transputer Networks”, Proceedings of the Fourth Euromicro Workshop on Parallel and Distributed Processing, 1996. PDP '96.
Verstraeten et al., “Isolated word recognition with the Liquid State Machine: a case study”; Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium, Available online Jul. 14, 2005; Entire Document.
Verstraeten et al.: “Isolated word recognition with the Liquid State Machine: a case study”, Information Processing Letters, Amsterdam, NL, vol. 95, No. 6, Sep. 30, 2005 (Sep. 30, 2005), pp. 521-528, XP005028093 ISSN: 0020-0190.
Wang et al. “A Signature for Content-based Image Retrieval Using a Geometrical Transform”, ACM 1998, pp. 229-234.
Zang, et al., “A New Multimedia Message Customizing Framework for Mobile Devices”, Multimedia and Expo, 2007 IEEE International Conference on Year: 2007, pp. 1043-1046, DOI: 10.1109/ICME.2007.4284832 IEEE Conference Publications.
Zeevi, Y. et al.: “Natural Signal Classification by Neural Cliques and Phase-Locked Attractors”, IEEE World Congress on Computational Intelligence, IJCNN2006, Vancouver, Canada, Jul. 2006 (Jul. 2006), XP002466252.
Zhou et al., “Ensembling neural networks: Many could be better than all”; National Laboratory for Novel Software Technology, Nanjing Unviersirty, Hankou Road 22, Nanjing 210093, PR China; Received Nov. 16, 2001, Available online Mar. 12, 2002; Entire Document.
Zhou et al., “Medical Diagnosis With C4.5 Rule Preceded by Artificial Neural Network Ensemble”; IEEE Transactions on Information Technology in Biomedicine, vol. 7, Issue: 1, pp. 37-42, Date of Publication: Mar. 2003.
Queluz, “Content-Based Integrity Protection of Digital Images”, SPIE Conf. on Security and Watermarking of Multimedia Contents, San Jose, Jan. 1999, pp. 85-93, downloaded from http://proceedings.spiedigitallibrary.org/ on Aug. 2, 2017.
Schneider, et. al., “A Robust Content Based Digital Signature for Image Authentication”, Proc. ICIP 1996, Laussane, Switzerland, Oct. 1996, pp. 227-230.
Yanagawa, et al., “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts.” Columbia University ADVENT technical report, 2007, pp. 222-2006-8.
Stewart, et al., “Independent Component Representations for Face Recognition”, Proceedings of the SPIE Symposium on Electronic Imaging III, San Jose, California, Jan. 1998, pp. 1-12.
Big Bang Theory Series 04 Episode 12, aired Jan. 6, 2011; [retrieved from Internet: ].
Boari et al, “Adaptive Routing for Dynamic Applications in Massively Parallel Architectures”, 1995 IEEE, Spring 1995, pp. 1-14.
Burgsteiner et al., “Movement Prediction from Real-World Images Using a Liquid State machine”, Innovations in Applied Artificial Intelligence Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence, LNCS, Springer-Verlag, BE, vol. 3533, Jun. 2005, pp. 121-130.
Cernansky et al, “Feed-forward Echo State Networks”, Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, Jul. 31-Aug. 4, 2005, pp. 1-4.
Fathy et al, “A Parallel Design and Implementation for Backpropagation Neural Network Using MIMD Architecture”, 8th Mediterranean Electrotechnical Conference, 19'96. MELECON '96, Date of Conference: May 13-16, 1996, vol. 3 pp. 1472-1475, vol. 3.
Freisleben et al, “Recognition of Fractal Images Using a Neural Network”, Lecture Notes in Computer Science, 1993, vol. 6861, 1993, pp. 631-637.
Garcia, “Solving the Weighted Region Least Cost Path Problem Using Transputers”, Naval Postgraduate School, Monterey, California, Dec. 1989.
Hogue, “Tree Pattern Inference and Matching for Wrapper Induction on the World Wide Web”, Master's Thesis, Massachusetts Institute of Technology, Jun. 2004, pp. 1-106.
Hogue, “Tree Pattern Inference and Matching for Wrapper Induction on the World Wide Web”, Master's Thesis, Massachusetts Institute of Technology, 2004, pp. 1-106.
Howlett et al, “A Multi-Computer Neural Network Architecture in a Virtual Sensor System Application”, International Journal of knowledge-based intelligent engineering systems, 4 (2). pp. 86-93, 133N 1327-2314.
Hua et al., “Robust Video Signature Based on Ordinal Measure”, Image Processing, 2004, 2004 International Conference on Image Processing (ICIP), vol. 1, IEEE, pp. 685-688, 2004.
International Search Report and Written Opinion for PCT/US2016/050471, ISA/RU, Moscow, RU, dated May 4, 2017.
International Search Report and Written Opinion for PCT/US2016/054634, ISA/RU, Moscow, RU, dated Mar. 16, 2017.
International Search Report and Written Opinion for PCT/US2017/015831, ISA/RU, Moscow, RU, dated Apr. 20, 2017.
Johnson et al, “Pulse-Coupled Neural Nets: Translation, Rotation, Scale, Distortion, and Intensity Signal Invariance for Images”, Applied Optics, vol. 33, No. 26, 1994, pp. 6239-6253.
Lau et al., “Semantic Web Service Adaptation Model for a Pervasive Learning Scenario”, 2008 IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications, 2008, pp. 98-103.
Lin et al., “Generating robust digital signature for image/video authentication”, Multimedia and Security Workshop at ACM Multimedia '98, Bristol, U.K., Sep. 1998, pp. 245-251.
Lu et al, “Structural Digital Signature for Image Authentication: An Incidental Distortion Resistant Scheme”, IEEE Transactions on Multimedia, vol. 5, No. 2, Jun. 2003, pp. 161-173.
Lyon, “Computational Models of Neural Auditory Processing”, IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '84, Date of Conference: Mar. 1984, vol. 9, pp. 41-44.
May et al, “The Transputer”, Springer-Verlag Berlin Heidelberg 1989, vol. 41.
McNamara et al., “Diversity Decay in opportunistic Content Sharing Systems”, 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp. 1-3.
Morad et al., “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multiprocessors”, Computer Architecture Letters, vol. 4, Jul. 4, 2005, pp. 1-4, XP002466254.
Nagy et al, “A Transputer, Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International Conference on CONTROL '96, Sep. 2-5, 1996, Conference Publication No. 427, IEE 1996.
Natschlager et al., “The “Liquid Computer”: A novel strategy for real-time computing on time series”, Special Issue on Foundations of Information Processing of telematik, vol. 8, No. 1, 2002, pp. 39-43, XP002466253.
Odinaev et al, “Cliques in Neural Ensembles as Perception Carriers”, Technion—Institute of Technology, 2006 International Joint Conference on neural Networks, Canada, 2006, pp. 285-292.
Ortiz-Boyer et al, “CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of Artificial Intelligence Research 24 (2005) Submitted Nov. 2004; published Jul. 2005, pp. 1-48.
Queluz, “Content-Based Integrity Protection of Digital Images”, SPIE Conf. on Security and Watermarking of Multimedia Contents, San Jose, Jan. 1999, pp. 85-93.
Rui, Yong et al. “Relevance feedback: a power tool for interactive content-based image retrieval.” IEEE Transactions on circuits and systems for video technology 8.5 (1998): 644-655.
Santos et al., “SCORM-MPEG: an Ontology of Interoperable Metadata for multimediaand E-Learning”, 23rd International Conference on Software, Telecommunications and Computer Networks (SoftCom), 2015, pp. 224-228.
Scheper et al, “Nonlinear dynamics in neural computation”, ESANN'2006 proceedings—European Symposium on Artificial Neural Networks, Bruges (Belgium), Apr. 26-28, 2006, d-side publication, ISBN 2-930307-06-4, pp. 1-12.
Schneider et al, “A Robust Content based Digital Signature for Image Authentication”, Proc. ICIP 1996, Lausane, Switzerland, Oct. 1996, pp. 227-230.
Srihari et al., “Intelligent Indexing and Semantic Retrieval of Multimodal Documents”, Kluwer Academic Publishers, May 2000, vol. 2, Issue 2-3, pp. 245-275.
Srihari, Rohini K. “Automatic indexing and content-based retrieval of captioned images” Computer 0 (1995): 49-56.
Stolberg et al, “HIBRID-SOC: A Mul ti-Core SOC Architecture for Mul timedia Signal Processing”, 2003 IEEE, pp. 189-194.
Theodoropoulos et al, “Simulating Asynchronous Architectures on Transputer Networks”, Proceedings of the Fourth Euromicro Workshop on Parallel and Distributed Processing, 1996. PDP '96, pp. 274-281.
Verstraeten et al, “Isolated word recognition with the Liquid State Machine: a case study”, Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium, Available onlline Jul. 14, 2005, pp. 521-528.
Wang et al., “Classifying Objectionable Websites Based onImage Content”, Stanford University, pp. 1-12.
Ware et al, “Locating and Identifying Components in a Robot's Workspace using a Hybrid Computer Architecture” Proceedings of the 1995 IEEE International Symposium on Intelligent Control, Aug. 27-29, 1995, pp. 139-144.
Whitby-Strevens, “The transputer”, 1985 IEEE, pp. 292-300.
Wilk et al., “The Potential of Social-Aware Multimedia Prefetching on Mobile Devices”, International Conference and Workshops on networked Systems (NetSys), 2015, pp. 1-5.
Yanagawa et al, “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts”, Columbia University ADVENT Technical Report # 222-2006-8, Mar. 20, 2007, pp. 1-17.
Yanagawa et al., “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts”, Columbia University ADVENT Technical Report #222, 2007, pp. 2006-2008.
Zhou et al, “Ensembling neural networks: Many could be better than all”, National Laboratory for Novel Software Technology, Nanjing University, Hankou Road 22, Nanjing 210093, PR China Received Nov. 16, 2001, Available online Mar. 12, 2002, pp. 239-263.
Zhou et al, “Medical Diagnosis With C4.5 Rule Preceded by Artificial Neural Network Ensemble”, IEEE Transactions on Information Technology in Biomedicine, vol. 7, Issue: 1, Mar. 2003, pp. 37-42.
Zhu et al., “Technology-Assisted Dietary Assesment”, Proc SPIE. Mar. 20, 2008, pp. 1-15.
Zou et al., “A Content-Based Image Authentication System with Lossless Data Hiding”, ICME 2003, pp. 213-216.
Related Publications (1)
Number Date Country
20160239566 A1 Aug 2016 US
Continuations (3)
Number Date Country
Parent 14619767 Feb 2015 US
Child 15140977 US
Parent 13682132 Nov 2012 US
Child 14619767 US
Parent 12195863 Aug 2008 US
Child 13682132 US
Continuation in Parts (2)
Number Date Country
Parent 12084150 US
Child 12195863 US
Parent 12084150 Apr 2009 US
Child 13682132 US