Airborne communications systems have been developed to enable communications between communication devices in remote locations not having a communication infrastructure. For example, in a search and rescue situation an airborne communication hub can be used to provide a communication link between communication subscriber nodes, such as search rescue radios, that are spread out over great distances and varying terrain. Another example is the use of an airborne communication hub in a battlefield environment where a communication link is needed between communication subscriber nodes that can also be located at great distances between each other and in varying terrain.
In implementing airborne communication systems, a flight path/orbit is manually generated for a flight path planning system of an aerial vehicle that houses the airborne communication hub. The flight plan includes waypoints for the aerial vehicle to pass through to position the communication hub in desired locations to enable communication links between the communication hub and communication subscriber nodes.
In creating a flight path/orbit for the aerial vehicle, a mission planner combines his experience with information that includes the location of communication subscriber nodes, knowledge of the aerial platform and the type of terrain. This approach, however, is fraught with difficulty. As the number of communication subscriber nodes, their respective mission priorities and communication requirements increase, the planner is presented with a combinatorial explosion of interacting variables that need to be considered in creating the flight path/orbit. Indeed, this problem is akin to one of the classic problems of computer science, the “traveling salesman” problem in which a path of travel between multiple cities which minimizes distance traveled is the goal. In general, only approximate solutions for this problem can be found, and then only by using sophisticated non-deterministic algorithms. Moreover, if we begin to consider other variables such as radio capabilities, weather effects, and other complicating factors it becomes clear the kind of multi-disciplinary expertise required of the mission planner is unobtainable. Furthermore, when the mission planner does enter a set of waypoints it is hard to measure or predict the effectiveness of the path/orbit and precisely when subscribers can actually expect to have connectivity.
Embodiments described herein provide for a method of generating a plan for a vehicle. The method includes receiving information indicating a location of each of a plurality of communication nodes and the vehicle during a first time period and a second time period. The vehicle is configured to send wireless signals to and receive wireless signals with the plurality of communication nodes. The method includes developing a plan that defines a path of motion for the vehicle and a configuration for an antenna on the vehicle during the first time period and the second time period based on connectivity between the vehicle and the plurality of communication nodes.
Embodiments also provide for a non-transitory processor readable medium comprising instructions stored thereon. The instructions, when executed by one or more processing devices, cause the one or more processing devices to receive information indicating a location of each of a plurality of communication nodes and the vehicle during a first time period and a second time period, the vehicle configured to send wireless signals to and receive wireless signals with the plurality of communication nodes. The instructions, when executed by one or more processing devices, also cause the one or more processing devices to include a plan that defines a path of motion for the vehicle and a configuration for an antenna on the vehicle during the first time period and the second time period based on connectivity between the vehicle and the plurality of communication nodes.
Embodiments also provide for a communication device for installing on a vehicle. The device includes one or more processing devices and a data storage medium coupled to the one or more processing devices. The data storage medium has instructions stored thereon. The instructions, when executed by the one or more processing devices, cause the one or more processing devices to receive information indicating a location of each of a plurality of communication nodes and the vehicle during a first time period and a second time period. The vehicle is configured to send wireless signals to and receive wireless signals with the plurality of communication nodes. The instructions, when executed by the one or more processing devices, also cause the one or more processing devices to develop a plan that defines a path of motion for the vehicle and a configuration for an antenna on the vehicle during the first time period and the second time period based on connectivity between the vehicle and the plurality of communication nodes.
Understanding that the drawings depict only exemplary embodiments and are not therefore to be considered limiting in scope, the exemplary embodiments will be described with additional specificity and detail through the use of the accompanying drawings, in which:
Although, the communication travel plan generation system can be applied to any type of communication system that implements a mobile vehicle with a communication hub it has particular applicability to aerial vehicles. One aerial vehicle application is for military use where an aerial platform with a communication hub is needed to provide communication links to subscriber communication nodes on land, air, and sea. The mission-specific information for this type of application may include the types of subscriber communication nodes to be used, the capabilities of the aerial platform itself, and a host of other potential data such as terrain, weather, relative priority of the various subscriber nodes and surveillance information. As discussed, mission-specific information needed in the communication system 40 includes the type of and capabilities of the communication subscriber nodes 60a-60h that need to communicate with the communication hub 52 of the mobile vehicle 50. Regarding military applications, despite efforts to standardize, a wide variety of military radios exist with varying capabilities and functions. Some older radios may only provide voice communications, or support legacy data communication approaches, such as Link-16. Newer radio systems typically support IP-based network communications, and may even use IP protocols to support other important functions, such as Voice over IP, file transfers, email, etc. It is desirable for an automated planning system to be able to accommodate this wide variety of radios and capabilities. Even for a particular instance of radio hardware it is quite possible that different radio waveforms with different capabilities and functions are supported. For example, Harris's PRC-152A and PRC-117G radios are capable of operating using either the ANW2 or the SRW waveform, and can even switch back and forth between these two modes of operation with the simple flip of a switch. In addition, an aerial platform typically incorporates a mix of different radio types, potentially including both legacy and IP-based radios. The capabilities of an aerial platform therefore are, at a minimum, the sum of the collection of the radios it includes. Finally, different radios and platforms may be available in different configurations. For example, different antenna configurations, the presence of external power amplifiers, or the propagation characteristics of a particular waveform can radically alter the performance characteristics of radios. Mission-specific radio planning parameters are also an issue where, for instance, a total bandwidth of 1 Mbps might be evenly divided amongst the expected number of radio elements. A 2-radio network might be set for 500 Kbps per radio, whereas a 10-radio configuration might be set for 100 Kbps per radio. An automated planning system preferably is capable of accepting a wide variety of input data about a diverse set of radios, platforms, and their configurations. Moreover, a truly advanced planning system of an embodiment incorporates planning elements which actually define the configuration of the radios themselves and even suggest, for example, desired antenna or power amplifier configurations.
Once the travel waypoints have been generated, they are output to the mission planning system of the vehicle 50 at step (95). The mission planning system then uses the waypoints to generate a mission plan at step (96). In this example embodiment, the mission plan is to implement at step (97). The vehicle 50 then traverses the travel area 45 and communicates with communication subscriber nodes 60a-60b. In this embodiment, the controller 54 of the vehicle 50 monitors for changes in the mission-specific information (98). If no changes to the mission-specific information is detected at step (98), it is then determined if the mission is complete at step (99). If the mission is complete at step (99), the process ends. If the mission is not complete at step (99), the controller 54 continues to monitor for changes in the mission-specific information at step (98). If the controller does detect changes in the information-specific information at (98), a new set of path waypoints are generated at step (93) and the process continues as shown. Hence, this embodiment illustrates a system that dynamically changes the mission plan as the mission-specific information changes.
The operation of mobile airborne and air/surface networks and radios is a highly dynamic proposition. Hence, having the ability to dynamically adjust the mission plan during a mission based on changing situations is highly desirable in some situations. While traditional “forward” flight planning can be used to direct an airborne communications platform to its intended mission area and back to its base, the flight behavior it exhibits while actually “loitering” over a battle space or following communication subscribers have a major impact on critical parameters such as network bandwidth, coverage footprint, and radio range. For many Internet Protocol (IP) and data-oriented radio networks bandwidth, for example, may vary widely depending on distance and other factors. Entry and exit of elements into and out of the battlespace are also key factors that may not always be easily predictable. To the extent that the motion of supported elements and entry/exit times are known ahead of time pre-planning may be done, but the real strength of an advanced system of embodiments is to allow for dynamic re-planning in the face of changing conditions during the actual mission. Other dynamic mission-specific information may include terrain, weather effects, antenna orientation during flight maneuvers (e.g., antenna shading due to banking of the aircraft), surveillance information and constraints based on known or suspected positions of enemy elements are also capable of changing rapidly and effecting mission performance.
Finally, as deployment of airborne communication platforms grows, it is expected that multiple airborne platforms, as discussed above in regards to
In an embodiment, a mission planner simply enters the location of the communication subscriber nodes, along with the mission-specific information described above such as mission priorities and the types of subscriber communication nodes in use into an existing mission planning system. The communication travel plan generation system pulls this information from the mission planning system and uses the platform, terrain, radio, and other information available to it to automatically generate a set of travel waypoints which are inserted back into the mission planning system. With this system, mission planning personnel are no longer required to have multi-disciplinary expertise and a wealth of experience to plan the flight path. The communication travel plan generation system performs the complex tasks and shields mission planning personnel from all the inherent complexity of the problem. An important benefit of this approach is that it can more effectively utilize the resources of the dedicated aerial platform, maximizing radio connectivity for subscribers as required for the mission. Moreover, in an embodiment, the communication travel plan generation system not only analyzes the given mission information and generates the flight path, it also predicts when and how much coverage can be expected by each communication subscriber node. This can be critically important for communication subscriber nodes, allowing them to budget and extend the battery life of radios and also know when to expect connectivity during the course of their missions. As discussed above, in one embodiment, the communication travel plan generation system is configured to dynamically adjust the flight path based on changes in the mission information. This dynamic communication travel plan generation system can be referred to a Dynamic Airborne Mission Communication System (DYNAMICS).
A simplified diagram of a basic communication travel plan generation system 100 of an embodiment is illustrated in
A generalized overall illustration of a flight planning and communication system 200 of an embodiment is illustrated in
Use of the communication travel plan generation system 100 addresses three major technical challenges to achieve the capability for inverse planning of mission flight plans. First the planning solution is capable of dealing with a diverse set of military radios of the communication subscriber nodes. Some of these radios support sophisticated IP networking, while others may support only voice or older, legacy networking capabilities. Second, in embodiments, the planning software is integrated with existing and future mission-planning systems, as well as being able to operate in a stand-alone manner both for testing and as a viable use case. Thirdly, in addition to being able to “pre-plan” missions, the planning solution in an embodiment react in real time during the course of a pre-planned mission to adjust flight geometry and dynamically re-plan based on changes in the battle space.
As discussed above, the communication travel plan generation system 200 can be a standalone package or can be integrated in a mission planning system. By designing in complete input/output isolation, the innovative communication travel plan generation system approach ensures easy integration with present and future planning systems as well as stand-alone operation. An example of a communication travel plan generation system 200 integrated with a mission planning system 220, such as the Joint Mission Planning System (JMPS), is illustrated in
In the embodiment of
The geographic simulation and optimization system 242 of the communication travel plan generation system 200 uses radio and platform models, as discussed below, in generating a device independent plan 248. Output translation modules translate this device independent plan 248 back into the format(s) required by the parent planning system 220. At a minimum, this would include the flight plan data translator 250 shown in
The communication travel plan generation system 200 is able to plan missions for a wide (and growing) variety of military radios and aerial platforms, such as but not limited to, unmanned aerial vehicles platforms. In order to incorporate the behavior and characteristics of all of these elements into the system, the geographic simulation and optimization system 242, the communication travel plan generation system 200 uses a series of “wrapper” functions around models 244a, 244b and 244c of radio and airplane behavior. The basic idea is that, for a particular pair of radios of a certain type, there is a function F(x1,y1,z1,x2,y2,z2,t) which provides connectivity information about the two radios at locations (x1,y1,z1) and (x2,y2,z2) at a time t. For an IP or legacy digital radio, these characteristics would take the form of bandwidth, latency, and loss. For a legacy or analog radio the characteristics would be signal strength, gain, and/or S/N ration. So, given any two radios in the mission at a particular time communication travel plan generation system 200 can predict the quality of the link between the two radios. Similarly, for a particular aerial platform, communication travel plan generation system has a model of the vehicle's flight parameters, including such items as minimum and maximum speed, elevation, turn angles, and flight longevity. This approach has two main benefits. First, in order to add a new radio to communication travel plan generation system you just create a new version of this function for the new radio type and platform. Secondly, the wrapper modeling function can be either a constructive model 244a (i.e. purely mathematical), a virtual model 244b (simulated or emulated) or live model 244c (measurement between two actual radios). This allows for great flexibility since the communication travel plan generation system 200 in an embodiment can be used in a pure pre-planning system or in another embodiment in a dynamic, run-time re-planning system.
In order to assess the suitability of particular flight paths and waypoints for a mobile relay platform to the requirements of a particular mission, the communication travel plan generation system 200 systematically determines the characteristics of the airborne and surface-based radios at any point in time throughout the entire battle space volume. In order to perform this function, a controller 256 in a processing system 254, illustrated in
In general, the controller 256 (processor) may include any one or more of a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field program gate array (FPGA), or equivalent discrete or integrated logic circuitry. In some example embodiments, controller 256 may include multiple components, such as any combination of one or more microprocessors, one or more controllers, one or more DSPs, one or more ASICs, one or more FPGAs, as well as other discrete or integrated logic circuitry. The functions attributed to controller 256 herein may be embodied as software, firmware, hardware or any combination thereof. Memory 258 may include computer-readable instructions that, when executed by controller 256 provide functions of the processing system 254. Such functions include the functions of the communication travel plan generation system 200. The computer readable instructions may be encoded within the memory 258. Memory 258 may comprise computer readable storage media including any volatile, nonvolatile, magnetic, optical, or electrical media, such as, but not limited to, a random-access memory (RAM), read-only memory (ROM), non-volatile RAM (NVRAM), electrically-erasable programmable ROM (EEPROM), flash memory, or any other storage media.
In order to determine the suitability of a particular candidate flight path, the geographical simulation and optimization system 242 of the communication travel plan generation system 200 defines the concept of “coverage” (which is also sometimes referred to as “duty-cycle”). In its simplest form, coverage is expressed as a percentage. It is the percentage of the flight time for a given flight path that each communication subscriber has connectivity with the radio on the aerial platform. So, for each subscriber, a given flight path of the aerial platform and the radio(s) it supports yields a coverage value between 100% (always covered/connected) and 0% (never covered/connected). Various factors influence coverage, including radio parameters, the position and orientation of the aerial platform in space, and other physical factors such as ground terrain, weather, and the curvature of the earth. The more of these factors that are considered in computing coverage the higher the fidelity of the coverage model and, of course, the higher the computational cost to determine coverage.
The geographical simulation and optimization system 242 of the communication travel plan generation system 200 compartmentalizes the volume above the battle space where mission elements are deployed using a 3-dimensional (3D) volumetric grid 260, as shown in
Other definitions of coverage are possible of course, and the mathematics of the optimizations employed by communication travel plan generation system 200 remains the same. For example, in an IP-radio-based data network, coverage might be defined as the total bandwidth available for the course of the mission on each digital link. Given that we can compute coverage for a particular flight path, as described above, the communication travel plan generation system approach for finding good flight paths is to optimize for coverage of all subscriber nodes. For a set of n communication subscriber nodes S1 . . . Sn we can compute the “coverage” function:
Coverage(Si) [range 0.0-1.0] and assign a priority value:
Weight(Si) [range 0.0-1.0]
communication travel plan generation system seeks to maximize the objective function:
Σi=1n Coverage(Si)*Weight(Si)
Using this objective function, communication travel plan generation system 200 can iterate over a series of candidate flight paths to find the one with the greatest value for the objective function. That is, communication travel plan generation system 200 is trying to find the greatest value of all coverages for all communication subscriber nodes, with a weight factor allowing for nodes to be prioritized if desired. So, for example, if a simple circular flight path is used, communication travel plan generation system 200 can search through various combinations of centers and radii trying to find the circle with the highest objective function value. Of course, blindly iterating is a very naïve approach to this kind of optimization problem and better approaches are possible.
The communication travel plan generation system 200 works by optimizing the parameters of a flight plan/orbit “template” which is selected by the user. Various versions of the template are evaluated for coverage provided to the communication subscribers until a solution is found which the communication travel plan generation system 200 deems acceptable. For example, the simplest template is a circular orbit. The user can select a minimum and a maximum radius for the orbit. The communication travel plan generation system 200 then starts evaluating circular orbits with their centers at various positions and using radii of various sizes until it decides it has found an acceptable solution. In addition to a circular orbit 270 other simple orbit templates that could be used include: a racetrack 272, a 6-waypoint orbit 274 and a figure-eight 276 as illustrated in
As discussed, the circular orbit 270 is optimized based on varying the latitude and longitude of the center of the circle as well as the radius of the circular orbit 270. A total of three values are needed to describe a candidate orbit. In the case of the racetrack 272 and the figure-eight orbit 276, the latitude, longitude and potentially the altitude of the center of the orbit is varied along with the length and the width of the orbit. In addition, the orbit can be tilted at an arbitrary angle. For these two templates, a total of five values describe the orbit: latitude, longitude, length, width, and tilt. In the final and most complex orbit template, the six-waypoint orbit 274, a total of 14 different values describe the orbit 274: the latitude and longitude of the six waypoints, the radius of the two arcs, and the tilt.
The figure-eight orbit 276 consists of an equal number of left and right turns for the platform, and one of the impacts of the current orbits typically used is that they always turn the platform in a single direction. This preponderance of turns in only one direction is leading to increased maintenance of the platforms deployed, since normal usage scenarios on which maintenance schedules are based assume a more balanced use of left and right turns. Hence, besides communication connections factors the selection of the orbit can be based on many other factors including the orbits impact on the design and maintenance of the vehicle platform.
An example of another embodiment of a communication travel plan generation system 300 that integrates with a “parent” unit-level or force-level mission planning system 320, such as JMPS 322 or Theater Battle Management Care System (TBMCS) 322, as illustrated in
The main controller 302 then uses this scenario information to program a model of all communication subscriber nodes into a model-based objective function evaluator module 304. Each communication subscriber node is described to the model-based objective function evaluator module 304 in terms of its position and altitude, and terrain maps for the area where the nodes are positioned are loaded into the model-based objective function evaluator module 304. At the same time, the main controller 302 creates an aerial platform with a default orbit in the model-based objective function evaluator module 304.
The main controller 302 includes menus and dialogs (using the conventions of the parent planning system where possible) which allow the user to select the aerial platform's flight level, its airspeed, and to select various options controlling how the orbit to be planned is constructed. The primary option is selecting the basic flight template to be used and selecting the parameter ranges to be used for this planning run. As discussed above, for example, if a circular orbit is chosen the user can set minimum and maximum values for the radius of the orbit. The main controller 302 uses these settings to construct a default orbit in the model-based objective function evaluator module 304 and also to initialize the optimization controller module 306 that is in communication with the main controller 302. Using the simple circular orbit case example, the optimization controller module 306 is configured to vary the four components of a circular orbit: the latitude, longitude an altitude of the center of the orbit and the radius (4-tuple: latitude longitude, altitude and radius).
When the user selects the menu item to begin optimizing a flight plan, the communication travel plan generation system 300 begins mediating between the optimization controller module 306 and the model-based objective function evaluator module 304. The optimization controller module 306 supplies a candidate orbit (a (latitude, longitude, radius) value in this example) and the main controller 302 programs this orbit into the model-based objective function evaluator module 304. It then uses the model-based objective function evaluator module 304 to compute the coverage for each communication subscriber node given that orbit. The main controller 302 then sums up all of the coverage values to compute the value of the objective function for that particular candidate orbit and returns the value of the objective function to the optimization controller module 306. The optimization controller module 306 examines this result and either decides the optimization is complete or supplies a new candidate orbit for evaluation. This process is repeated until the optimization controller module 306 signals completion of the optimization. At completion, the final candidate orbit tested is the optimized orbit.
At the completion of an optimization run, the mission planner can review the final coverage values for each communication subscriber node and examine the details of the final orbit values. In an embodiment, the mission planner may choose to accept the orbit or change parameters and initiate another optimization run as described above, perhaps changing the minimum/maximum radius or choosing another orbit template. The mission planer can also generate coverage reports, in embodiments, for any or all communication subscriber nodes, which describe in detail when and for how long each communication subscriber node should expect connectivity through the aerial platform. When mission planner is satisfied with the optimized orbit created by communication travel plan generation system 300, the mission planner signals an acceptance and the main controller 302 invokes the output injector module 310 which converts the resulting orbit into the format expected by the parent planning system 320 and inserts the result back into that system. The main controller 302 then exits and the communication travel plan generation system 300 run is complete.
The communication travel plan generation system 300 in an embodiment is platform independent when it comes to input and output. This allows communication travel plan generation system to run on different platforms/frameworks such as JMPS, JMPS-E, or any other/future system. It also allows the communication travel plan generation system 300 to run standalone if needed. The input and output of the communication travel plan generation system 300 are handled by two modules: the Input Extractor (IE) module 308 and the Output Injector (OI) module 310 respectively. These modules 308 and 310 provide a common Application Programming Interface (API) at the application level hiding the implementation details of the data exchange protocol of the underlying platform. In a standalone embodiment, these modules 308 and 310 provide a user interface to directly communicate with the mission planner to extract input and generate output. In standalone mode or plugin-mode (such as a JMPS plugin), a set of import and export functions are used to import and export data from standard formats on the targeted platform. On systems like JMPS, the framework also defines a programming API to directly exchange data at runtime. This API is used by the communication travel plan generation system 300 to get direct access to JMPS's data to allow for a more efficient and dynamic data exchange mechanism which in-turns allow better integration of the communication travel plan generation system 300 with existing planning tools.
The data model inside JMPS can be accessed as a Common Object Module (COM), in that the applications can programmatically communicate with the data model independent of the display. When running inside JMPS, the communication travel plan generation system 300 utilizes JMPS APIs available through IJmpsApplication interface to access data and state information. When exchanging data 354 with JMPS, the client application (communication travel plan generation system 300) uses JMPS Data Objects (DO) 352 and Data Access Agent (DAA) 354 as shown in
The communication travel plan generation system 300 uses a modeling module for evaluating the coverage values for a particular candidate orbit. An example of a suitable tool for performing this function is the COTS software package Systems Tool Kit (STK) from Analytical Graphics, Inc. The modeling module provides 3D graphical modeling capabilities, along with add-on modules for functions such as terrain and radio models. It provides the modeling engine to determine whether any 2 radios (communication subscriber nodes) are able to be in contact at any given time and compute the coverage function for each pair of radios for a given orbit. The modeling module is capable of taking into account (if desired) radio, antenna, attitude, terrain, and even weather parameters. It makes all of these functions available via a series of APIs used by communication travel plan generation system 300.
Referring to
As discussed above, communication travel plan generation system 300 uses an optimization controller module 306 to iterate over potential candidate orbits in search of the best orbit. This is inherently a non-deterministic search, and the problem of finding a truly optimal path for the general case is computationally infeasible. The key is to have an optimization approach to this intractable problem which operates efficiently and generates reasonable results as quickly as possible and for minimal computational cost.
An example of an optimization module which is a good fit for the type of optimizations which the communication travel plan generation system performs is called HOPSPACK (Hybrid Optimization Parallel Search Package) developed at Sandia Labs. HOPSPACK is an open-source C++ framework for finding solutions to derivative-free optimization problems. It is particularly well suited to problems where the computation of the objective function (the function to be optimized) is complex and costly. This is exactly the scenario faced in communication travel plan generation system 300. HOPSPACK also supports a range of parallelization options. Rather than performing an exhaustive search of all possible orbits, HOPSPACK uses a “generating set search” or “adaptive surrogate” approach. The optimization process begins by statistically sampling a variety of possible solutions, then using the best of these as starting points in a reduced search space. This approach greatly reduces the computational power that is required for an exhaustive search, while still yielding good results in most cases.
An example of a main communication travel plan generation system window 400 is shown in
An example of a general options tab of an optimization configuration manager is shown in
A uniform coverage checkbox 434 enables a feature which adds a standard deviation component to the objective function discussed above. Because communication travel plan generation system 300 is trying to find the maximum value of the objective function it is possible that one of more communication subscriber nodes may be left out completely, that is, receiving zero coverage even though the overall objective function is maximized. When the uniform coverage feature is enabled communication travel plan generation system 300 tries to maximize the objective function while simultaneously minimizing the weighted sum of all the standard deviations in coverage. This effectively smooths coverage over all the communication subscriber nodes to the extent possible, ensuring that no communication subscriber nodes are left out if at all possible.
Access constraint radio buttons 436 and 438 enable the use of actual terrain data within the modeling module. When terrain mode 438 is enabled the actual terrain between each communication subscriber node and the platform is used to compute coverage. The deeper the communication subscriber node is in a valley or the closer to a mountain the more likely that the platform access is periodically blocked by the intervening terrain. When this mode is enabled the elevation angle value is typically set to 0. The final two values set the altitude 440 and airspeed 442 of the platform.
An example of the optimization configuration manager option screen 450 for one of the communication travel plan generation system orbit templates is shown in
As described above, the “preview” function in an embodiment is used to set a “naïve” orbit and computed the coverage values for that orbit. Then the communication travel plan generation system optimizer is run and measured improvements made over the initial orbit are shown. The optimizer consistently improves the orbit/flight plan by providing better overall coverage values and/or providing smoother coverage for more subscriber nodes in the scenario. In cases where overall coverage went down the standard deviation of all coverages was also reduced, thus trading overall coverage for fairer coverage spread across all nodes. The sampling of results discussed here are for simulation runs using a line of sight coverage model based on the actual terrain on the ground, with the standard deviation “smoothing” option enabled. For example,
Another example implementing a figure-eight optimization is illustrated in
In an example, the communication travel plan generation systems described herein are generally an inverse mission planning system. Embodiments support both fully automatic and human assisted mission planning. The communication travel plan generation systems compute travel waypoints automatically based on mission-specific information. The inverse mission flight planning system computes flight plans and waypoints automatically based on mission-specific information. This inverse mission flight planning system has many applications. One application is for military situations where an aerial communication platform mission is needed to provide communication links to radio subscribers (generally described as subscriber communication nodes) on land, in the air, and at sea. The mission-specific information includes the types of subscriber communication nodes to be used, the capabilities of the aerial platform itself, and a host of other potential data such as terrain, weather and the relative priority of the various subscriber nodes.
As discussed above, in an example, the communication travel plan generation system generates a plan that defines the antenna configuration to be used on the aircraft. Defining the antenna configuration can include defining the one or more directions to which one or more steerable antennas are to be set during a flight. The one or more directions can include a single fixed direction for the entire flight, or a series of directions to which a given antenna is to be set and the periods during which the antenna is to be set to that direction. A series of directions can be defined, for example, by defining a first direction for the antenna during a first period of the flight, a second direction during a second period, and so on. The flight periods can be defined in any appropriate manner including by time (e.g., first period equals the first hour of flight, second period equals time 1 hr. to 1 hr.+1.5 hrs., etc.), by location (first period ends when aircraft reaches location X, whereupon second period starts, second period ends when aircraft reaches location Y, etc.), or by maneuver (first period is while aircraft is heading NW, second period is after first period while aircraft is banking to the south, etc.). If there are multiple steerable antennas on an aircraft, the plan can define one or more directions for each steerable antenna. The one or more steerable antennas can include one or more antennas that steer via physical movement (e.g., rotation, tilt) and/or one or more antennas that steer via a phased-array technology. In the case of a phased-array antenna, the travel plan generation system can define the direct for one or more beams formed form the phased-array antenna.
The one or more directions for the one or more antennas as well as other parameters defined by the system can be defined based on inputs to achieve including throughput, network diameter, resiliency (e.g., elimination of single points of failure), noise rejection, or satellite communication (SATCOM) avoidance. These inputs can be fixed for an entire flight or different inputs (e.g., levels of performance) can correspond to different periods of the flight, such that a first network diameter is input to be achieved for a first period and a second network diameter is input to be achieved for a second period.
In this example, the plurality of aircraft 1702-1708 include a first subset of aircraft 1702, 1703, 1704 which are unmanned aerial vehicles (UAVs) forming a first network 1701 and a second subset of aircraft 1706, 1707, 1708 which are UAVs forming a second UAV network 1705. The aircraft 1702, 1703, 1704 in the first UAV network 1701 are communicatively coupled together via short-range wireless radios with omnidirectional antennas. The aircraft 1706, 1707, 1708 in the second UAV network 1705 are also communicatively coupled together via short-range wireless radios with omnidirectional antennas. The two UAV networks 1701, 1705 have high data throughput rates and short maximum transmission ranges due to low-power amplifiers and omnidirectional antennas. The first UAV network 1701 is out of direct communication range of the second UAV network 1705.
In addition to its short range radio, the first aircraft 1702 in the first network 1701 includes an additional single-channel wireless radio (e.g., a communication data link (CDL) radio) with an omnidirectional antenna for communication with radios outside the first network 1701. Similarly, a second aircraft 1706 in the second UAV network 1705 includes a single-channel radio (e.g., CDL radio) with an omnidirectional antenna for communication with radios outside the second network 1705. The second aircraft 1706 also has a low-bandwidth SATCOM radio for beyond-line-of-sight (BLOS) communications. A third aircraft 1710 that is not in either UAV network 1701, 1705 has a short range wireless radio with an omnidirectional antenna, a low-bandwidth SATCOM radio, and a single-channel radio (e.g., CDL radio) coupled to a steerable antenna. In an example, the steerable antenna is a parabolic dish.
The communication travel plan generation system can generate a plan that defines the direction of the steerable antenna on the third aircraft 1710 over time to maximize data throughput between the first UAV network 1701 and the second UAV network 1705. At a first time period shown in
At a second time period shown in
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement, which is calculated to achieve the same purpose, may be substituted for the specific embodiment shown. This application is intended to cover any adaptations or variations of the present invention. Therefore, it is manifestly intended that this invention be limited only by the claims and the equivalents thereof.
This application is a continuation-in-part of U.S. patent application Ser. No. 17/933,273, filed Sep. 19, 2022, entitled “FLIGHT PATH GENERATION BASED ON MODEL OF CONNECTIVITY”, which is a continuation of U.S. Pat. No. 11,450,214 filed on Nov. 12, 2019, entitled “FLIGHT PATH GENERATION BASED ON MODEL OF CONNECTIVITY”, which is a continuation of U.S. Pat. No. 10,482,773 filed on Jun. 14, 2017, entitled “VEHICLE PATH BASED ON COVERAGE OF NODES”, which is a continuation of U.S. Pat. No. 9,685,088 filed on Apr. 8, 2016, entitled “COMMUNICATION TRAVEL PLAN GENERATION SYSTEM”, which claims the benefit of U.S. Provisional Application No. 62/145,595 filed on Apr. 10, 2015, entitled “DYNAMICS”, each of which are hereby incorporated herein by reference.
This invention was made with government support under contract FA8750-14-C-0162 and FA8750-15-C-0156 awarded by the Air Force Research Laboratory (AFRL). The government may have certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
62145595 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16681242 | Nov 2019 | US |
Child | 17933273 | US | |
Parent | 15622142 | Jun 2017 | US |
Child | 16681242 | US | |
Parent | 15093826 | Apr 2016 | US |
Child | 15622142 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17933273 | Sep 2022 | US |
Child | 18171434 | US |