The present invention relates to the field of shipping of cargo and, in particular, to a system for handling cargo on board and to/from a vessel.
The invention of containers by Malcolm McLean in 1956 led to the ISO 40 Ft and 20 Ft containers to make loading of ships more efficient and to reduce pilferage. Containers have since become the backbone of international non bulk ocean borne cargo flows and have made the ocean portion of the global logistics chain very cost efficient. Special purpose container vessels have been developed carrying up to 18,000 TEU (Twenty ft Equivalent Units). In the container vessels, the containers are stacked on top of each other making multiport operation difficult due to limited access to the containers.
On the land side, container terminals have had to be built with significant investments where large cranes are used to unload the container vessels, whereafter the containers are stored for retrieval and transfer to inland means of transportation or to transfer them to feeder vessels for transport to secondary regional ports. The concentration of traffic to populated areas with a hinterland of industrial/economical activity has resulted in concentration of container traffic to very large container ports and to congestion in unloading large container vessels and congestion when transporting containers inland.
Due to the design of the containers they cannot be transported by mechanized conveyors, thereby limiting the options in respect of mechanization onboard the vessel and in the terminals.
The use of containers as a cargo carrier creates a ripple down effect of activities and cost, investments in the containers, the transport of full and empty containers, the cost of repositioning the containers due to unbalanced trade, and the distribution of the cargo that is in the container to the consignees. The cost of using the container as the cargo carrier can represent a significant part of the total cost.
The fact that the container vessels with exception of feeder vessels equipped with cranes, require shore based cranes for unloading, limiting the ports that they can use to dedicated ports and are unable to serve less populated areas and, in particular, the developing world which lacks container ports.
When looking at the total logistic line from shipper to consignee, using available modes of transportation, there are significant time and cost elements caused by the use of containers which are not in harmony with JIT (Just In Time) modem logistic and industrial development.
The other type of vessel that carries non bulk ocean cargo is Ro-Ro vessels where the cargo is on wheels, such as cars, trucks or buses, and can be driven to the respective decks or is placed on trailers moved by a tractor to the designated deck position. The Ro-Ro vessels require a dedicated ramp in port which connects to the stem of the vessel to provide access for the Ro-Ro cargo. Alternatively the vessel can carry its own ramp, typical for car carriers. This type of vessel serves a market niche for cargo on wheels and special project cargo of outsize dimensions and weight.
The object of the invention is to create a means of shipping cargo without necessitating the use of containers, to remove the bottleneck between vessel and pier and to eliminate the need for shore side cranes for loading and unloading the vessel and to expand the capabilities to carry, load and unload efficiently a great variety of different cargos.
This is achieved in a system for handling of a great variety of cargo as defined in the appended claim 1.
The system includes a vessel according to claim 2 with multiple decks to accommodate a handling technology where the cargo is stored on special load platforms (also called skids), as defined in claim 10, and is handled with a trolley defined in claim 7.
One of benefits of the invention is that the load platform, which has the footprint of a 40 ft ISO container, can carry any type of cargo that can be fitted within the footprint of the load platform including the ISO containers, greatly expanding the market potential of the vessel.
A vessel having three high speed elevators can unload/load 180 load platforms per hour, dramatically reducing in port time and, since the design of the onboard handling system provides flexible access to all cargo, making the vessel and its technology exceptionally well-suited to multiport liner service.
Since no shore equipment is required for the loading/unloading of the vessel, it can serve any port that can accommodate the length and draft of the vessel and is therefore also suitable for ports in the developing world.
The invention will now be described in detail with reference to the appended drawings, in which:
The invention relates to a system for handling cargo on a cargo vessel and between vessel and quay. The system includes three elements: the cargo vessel, a load platform for storing goods, and a special trolley for transporting the load platforms.
On the side of the vessel there are three side doors 2. At each side door there is a buffer station 9 preceding the cargo elevator 10. The buffer station includes a first conveyor means, such as a roller track 11. The trolley 8 can place a load platform 12 on said first conveyor means 11 in the buffer station 9 for transfer to the elevator 10. The cargo elevator 10 includes an elevator platform 13 with a second conveyor means 14 for receiving the load platforms. Next to the elevator, just inside the door, is located a third conveyor means 15 and a crane device 16.
When unloading the vessel, the trolley 8 is adapted to deliver load platforms 12 to the first conveyor means 11 and unload the load platform. The load platform may then pass the buffer station 9 and proceed onto the elevator platform 13. The elevator 10 will adjust its height until the second conveyor means 14 are level with the third conveyor means 15, and the load platform may then roll further onto the third conveyor means 15. At this point, the load platform is lifted by the crane device 16 and delivered onto the quay 17. From there, the load platform may be collected by any suitable portside truck/trolley/translifter and transported onward. Cargo may also be transported the other way around, i.e. collected from the quay and taken into the ship.
In
In
The crane arrangement and the third conveyor include means for compensating for movements between the vessel and the quay. Such movements may be due to tidal variations, re-ballasting of the vessel, currents in the harbour, etc. To compensate for such changes, in both the vertical and the longitudinal planes, an optical target may be located on the quay. Sensors on board the vessel, such as cameras can then observe the position of the target and compensate for any movements of the vessel with the telescopic arms and the portal crane.
To allow the vessel to sail in high seas, the load platform will be locked to the deck with sea fastenings. The sea fastenings could be of any type suited for the purpose, but will normally be activated automatically or remotely, i.e. without human personnel present on the deck. The fastenings will not involve a major structural change to the vessel, i.e. they can be removed easily if the vessel is to be converted for another use. There are known several prior art fastening systems that may be modified for use in cargo vessels according to the present invention. Examples of such systems may be found in U.S. Pat. Nos. 6,435,796 and 6,709,208.
Further, the trolley includes a drive mechanism with a connector 37 on the upper side of the chassis for mating with a corresponding connector on the underside of the load platform, for folding or un-folding the legs. The connector is connected to a drive unit for providing a rotational force to the legs of the external load platform through the connector. The connectors s on the load platform and trolley may be realized in several ways, e.g. as a pinion on the trolley connecting with a rack on the load platform, which when activated provides a rotational force to turn the legs of the load platform into the up or down position via a gear driving through a common axle for each pair of legs.
The trolley may be powered by a conventional diesel-electric engine arrangement. However, as it may be used within a confined compartment, it is preferred to use a less pollutant drive solution. This may be a large battery inside the chassis, or a large bank of capacitors. Any drive solution known in the art may be used for the purpose.
The trolley is adapted for fully automatic, semi-automatic or manual control. For automatic control, the trolley includes a controller unit as well as a communication unit adapted to receive instructions from a remote control centre onboard the vessel through wireless means. That is, the controller in the trolley receives orders to perform specific tasks from the control centre, and performs the tasks on its own. To allow the control centre to determine the position of the trolley and/or the trolley to know its position, the trolley includes a number of sensors adapted to read markings on the deck. The markings may be mechanical, optical or magnetic, e.g. as labels put on the deck. The trolley may then navigate its way through the vessel using these markings. Such markings may also be active, e.g. light sources.
In another embodiment, the trolley may also be remote controlled from the control centre, by the control centre determining the position of the trolley in real time from sensors located on the deck (or by receiving position readings from the trolley). Sensors located on the deck may read markings put on the trolley. Thus, the control centre may issue wireless steering signals to the trolley. The trolley may also be remote controlled by an operator observing the trolley with a camera. A system with markings and sensors may then assist the operator for accurate navigation of the trolley.
Lastly, the trolley includes at least one connector 38 allowing a detachable cabin 39 to be connected to the trolley for fully manual control. The cabin is releasably connected to the chassis through a revolving and telescopic shaft or arm 40. This may be beneficial as a back-up solution in case there is a break-down in any part of the automated control systems. With a cabin, the trolley may also be used off the vessel, e.g. on a quay without any control system. Manual control may also be used on vessels that are not equipped with an elaborate control centre. This embodiment is illustrated as in
In
The trolley also includes a drive unit 53 with a liftable spline shaft 54. The spline shaft is adapted to be lifted into and engage a corresponding friction coupling 55 on the load platform. The friction coupling 55 is connected to a worm gear screw jack 56 with self locking gear ratio, which on the other hand is connected to a push/pull link bar 57 suspended in a guided sliding bracket 58. The link bar 57 transfers linear movements from the screw jack to a pin 59 on a rotating shaft 60 connecting the legs 30a, b. The shaft 60 is suspended in the chassis in bearings 62 at each end thereof. A tilt stop bracket 61 is included to prevent the legs from spreading too far. Corresponding mechanisms are located at the aft ends of the trolley and load platform, as illustrated in
When operating the trolley to raise or lower the legs 30a, b, the spline shaft 54 is lifted to engage the friction coupling 55 on the load platform. The drive unit 54 is operated to rotate the shaft. This rotating movement is translated into a linear movement in the screw jack 56, and further transferred to the pin 59 via the link bar 57. The pin 59 will then rotate the shaft 60 causing the legs to be raised from or lowered to the ground, respectively.
In
A stack of load platforms may be removed by a trolley by lifting another load platform from below until it engages and lifts the stack. The keys are forced outward and the upward movement must be terminated before the keys enter below the lowermost load platform. In this position the trolley may go forward and remove the stack.
The invention is illustrated using roller tracks as conveyors for storing and transporting load platforms over small distances. However, any other conveyor suited for the purpose may be used, such as band conveyors.
Number | Date | Country | Kind |
---|---|---|---|
20100998 | Jul 2010 | NO | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NO11/00195 | 7/7/2011 | WO | 00 | 4/4/2013 |