1. Field of the Invention
This invention relates to electric heaters used in microsystems, systems, and more particularly to chip-scale heaters used for vapor cell interrogation systems.
2. Description of the Related Art
Advances in microelectromechanical systems (MEMS) have enabled a variety of miniaturized and chip-scale atomic devices used in, for example, gyroscopes, magnetometers and chip-scale atomic clocks (CSAC). With reduced system dimensions come many advantages, including lower operating power and reduced manufacturing cost for the finished device. Of primary importance in many of these MEMS applications, is an atomic vapor cell for use as a frequency-defining element, rather than traditional quartz-crystal resonators, for improved frequency stability.
As is typical for atomic vapor cells during their manufacture, the vapor cell is charged with a sample material that later produces an interrogation gas during heating and subsequent operation. Common sample material examples for atomic vapor cells include rubidium (Rb) and cesium (Cs). The vapor cell is permanently sealed after charging, often using anodic bonding between a silicon substrate containing an interrogation cell enclosing the sample material and a transparent window through which the gas is interrogated after heating. Heaters are typically used to maintain suitable vapor pressure of the sample material in the vapor cell and can be positioned adjacent the gas interrogation cavity of the vapor cell to heat the enclosed sample material. Because the solid form of sample materials such as rubidium and cesium tend to migrate and condense at the coldest portions of the vapor cell, window heaters may be placed directly on the entrance and/or exit windows of the vapor cell to create a suitable thermal profile for reduction of solid sample material buildup over the aperture portion of such windows. Typical window heaters may consist of wire heaters spaced adjacent the aperture portion of the windows or transparent window heaters that may or may not cover the aperture, itself.
In one embodiment, a vapor cell system is disclosed that includes an interrogation cell in a substrate, the interrogation cell having an entrance window and an exit window and a first multi-layer transparent thin-film heater in thermal communication with the entrance window. To facilitate description of the system, the transparent thin-film heater is described as having proximal and distal ends. A first layer of the heater is in communication with a first pole contact at the proximal end, and a layer coupler contact at the distal end. A second layer of the heater is in communication with a second pole contact at the proximal end, the second layer electrically coupled to the layer coupler contact at the distal end, and an insulating layer is sandwiched between the first and second layers. The insulating layer has an opening at the distal end to admit the layer coupler contact and to insulate the remainder of the second layer from the first layer. The first and second pole contacts are available to complete an electric circuit at the proximal end, with electric currents (and hence magnetic fields) for each of the first and second layers oriented in opposing directions when a current is applied through the circuit.
A heater method is also disclosed that includes driving a current through folded and directionally-opposite current paths in the transparent thin-film heater and heating an entrance window of a vapor cell with heat generated from the multi-layer thin-film heater so that the folded and opposing current paths reduce the magnetic field from what would otherwise exist in a vapor cell heater without the folded and stacked configuration of the multi-layer thin-film heater.
The components in the figures are not necessarily to scale, emphasis instead being placed instead upon illustrating the principals of the invention. Like reference numerals designate corresponding parts throughout the different views.
In many vapor cell applications, such as CSAC, the device operation requires a stable magnetic field. Field perturbations caused by the time-varying currents in resistive heaters can degrade device performance. A stacked, multi-layer thin-film heater is disclosed for use in combination with a vapor cell to reduce unwanted magnetic fields associated with prior art thin-film heaters and to facilitate migration of sample material condensation away from the optical aperture. In one embodiment, the heater has a plurality of stacked thin-film layers in serial communication to wrap respective current flows during operation to reduce its external magnetic field.
In addition to the issues with thermal profiles, magnetic fields created by the heaters are another concern.
An exit window, preferably a transparent window 112, is coupled to the substrate 102 on a side opposite from the reservoir cell 106. The transparent window 112 is preferably formed from borosilicate glass, although other materials may be used to both seal the interrogation chamber 104 and to provide suitable transparency for later electromagnetic (EM) interrogation of the vapor cell 101. If formed of borosilicate glass, such coupling is preferably accomplished by anodic bonding, with the transparent window 112 covering the interrogation chamber 104 on one side of the substrate. Other bonding techniques may be used to bond the window to the substrate 102, however, such as through the use of glass frit, metal to metal thermal compression, solder or other bonding materials. A transparent entrance window 116, preferably borosilicate glass, is coupled to the substrate 102 on a side opposite from the transparent exit window 112, such as by anodic bonding, to vapor seal the reservoir cell 106 and interrogation cell 104 from the external environment.
A stacked, multi-layer thin-film heater 114 is in thermal communication with the transparent entrance window 116 at the optical aperture 110 of the interrogation cell 114 through a transparent heater substrate 118. Preferably, the heater 114 heats the entrance window 116 uniformly. In an alternative embodiment, the heater 114 is configured to heat the optical aperture 110 annularly, such as if the heater was formed with annular, rather than, solid rectangular, stacked thin-film layers. Similarly, a second multi-layer, thin-film heater 120 is in thermal communication with the transparent exit window 112 at an exit optical aperture (not illustrated) of the interrogation cell 114 through a second transparent heater substrate 122. Each of the transparent heater substrates (116, 122) are preferably composed of borosilicate glass, although other suitably transparent and heat-resistant materials may be used. The thin-film heater 114 does not cover the reservoir cell 116 to facilitate migration of sample material condensation away from the optical aperture 110.
In one vapor cell designed for use in a chip-scale atomic clock (CSAC) device and using a 2 mm silicon wafer thickness, the interrogation cell diameter is preferably 2 mm and the various other elements of the vapor cell have the approximate thicknesses and widths listed in Table 1.
In one heater designed for operation at 1-10 V. for use with a rubidium-charged vapor cell as illustrated in
The vapor cell illustrated in
While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible within the scope of this invention.
This invention was made with Government support under Contract No. N66001-02-C-8025 awarded by the Space and Naval Warfare Systems Center. The Government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
20030116559 | Park | Jun 2003 | A1 |
20080078759 | Wnek et al. | Apr 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20110147367 A1 | Jun 2011 | US |