System for high temperature chemical processing

Information

  • Patent Grant
  • 10370539
  • Patent Number
    10,370,539
  • Date Filed
    Wednesday, January 7, 2015
    9 years ago
  • Date Issued
    Tuesday, August 6, 2019
    5 years ago
Abstract
A method and apparatus for making carbon black. A plasma gas is flowed into a plasma forming region containing at least one, magnetically isolated, plasma torch containing at least one electrode, and forming a plasma. Collecting the plasma formed in a cooled header and flowing the plasma through at least one reaction region to heat the reaction region, and injecting carbon black forming feedstock into the reaction region, resulting in the formation of at least one grade of carbon black. An apparatus for making carbon black is also described including a plasma forming section containing at least one, magnetically isolated plasma torch containing at least one electrode, in fluid flow communication with at least one carbon black forming reactor section, the plasma section and reactor section separated by a plasma formed collection header.
Description
TECHNICAL FIELD

The field of art to which this invention generally pertains is methods and apparatus for making use of electrical energy to effect chemical changes.


BACKGROUND

There are many processes that can be used and have been used over the years to produce carbon black. The energy sources used to produce such carbon blacks over the years have, in large part, been closely connected to the raw materials used to convert hydrocarbon containing materials into carbon black. Residual refinery oils and natural gas have long been a resource for the production of carbon black. Energy sources have evolved over time in chemical processes such as carbon black production from simple flame, to oil furnace, to plasma, to name a few. Because of the high temperatures involved, the high flow rates used for both energy and feedstock, and the difficulties involved with trying to control the properties of products resulting from such complex processes, there is a constant search in the art for ways to not only produce such products in more efficient and effective ways, but to improve the properties of the products produced as well.


The systems described herein meet the challenges described above while accomplishing additional advances as well.


BRIEF SUMMARY

A method of making carbon black is described including flowing a plasma gas into a plasma forming region containing at least one magnetically isolated plasma torch containing at least one electrode, and forming a plasma, collecting the plasma formed in a cooled collection header, flowing the plasma formed through at least one reaction region to mix with and heat reactants in the reaction region, injecting carbon black forming feedstock reactants into the reaction region, resulting in the formation of at least one grade of carbon black.


Embodiments of the invention include: the method described above including the use of multiple electrodes; the method described above where the electrodes are graphite electrodes; the method described above where the electrodes comprise copper, tungsten, aluminum, steel or alloys thereof; the method described above where the electrodes possess a sintered metal or metal oxide coating; the method described above including the use of multiple plasma torches; the method described above where the plasma gas contains hydrogen; the method described above where at least one plasma torch is vertically or substantially vertically oriented; the method described above where the header is water or gas cooled; the method described above where the reaction region is horizontally oriented; the method described above including the use of multiple reaction regions; the method described above where multiple grades of carbon black can be produced.


An apparatus for making carbon black is also described containing a plasma forming section containing at least one, magnetically isolated, vertically or substantially vertically oriented, plasma torch containing at least one electrode, in fluid flow communication with at least one carbon black forming reactor section, where the plasma region is separated from the reaction region by a cooled plasma collection header.


Additional embodiments include: the apparatus described above including multiple electrodes; the apparatus described above where the electrodes are graphite electrodes; the apparatus described above including multiple plasma torches; the apparatus described above where at least one plasma torch is vertically or substantially vertically oriented; the apparatus described above where the header is water or gas cooled; the apparatus described above where the reactor section is horizontally oriented; the apparatus described above where the reactor section is vertically or substantially vertically oriented; the apparatus described above where the plasma forming section is installed at or near ground level; the apparatus described above including multiple reactor sections where multiple grades of carbon black can be produced; the apparatus described above where the plasma forming section and the reactor section are separated by water cooled knife gate valves or flange spool pieces; and the apparatus described above including an access port next to the plasma forming section and aligned with axis of the reactor section.


These, and additional embodiments, will be apparent from the following descriptions.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a schematic representation of a typical multiple torch apparatus.



FIG. 2 shows a schematic representation of a typical apparatus with magnetic coils.



FIG. 3 shows a schematic representation of a typical apparatus with magnetic coils.



FIG. 4 shows a schematic representation of a horizontal plasma reactor.



FIG. 5 shows a schematic representation of a multiple plasma torch embodiment described herein.



FIG. 6 shows a schematic representation of a multiple plasma torch embodiment described herein.





DETAILED DESCRIPTION

The particulars shown herein are by way of example and for purposes of illustrative discussion of the various embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.


The present invention will now be described by reference to more detailed embodiments. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. All publications, patent applications, patents, and other references mentioned herein are expressly incorporated by reference in their entirety.


Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches.


Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.


Additional advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.


A method of using multiple electrode plasma torches is described herein to produce a hot plasma stream for use in chemical processing. The electrodes can be made from graphite, copper, tungsten, aluminum, steel or other such materials. The electrodes can further be protected through the use of a sintered metal or metal oxide from corrosive plasma environment. The sintered metal at the surface can be comprised of aluminum, beryllium, gold, platinum, palladium, titanium or the oxides thereof as a nonlimiting example. The plasma stream can contain hydrogen in amounts typically used in carbon black production, for example, up to 50%, up to 90%, and even above 90%. In addition to allowing each torch to be installed in a vertical arrangement, this allows for ease of removal and allows for any broken pieces of graphite to fall out of the electrode area so as not to cause any shorts. This arrangement also allows for magnetic isolation of the various plasma torches so that the arc can be influenced by separately controlled magnetic fields. And of course while the reaction region can be present in a vertical or substantially vertical orientation, it can also be present in a horizontal or substantially horizontal orientation as well, and in fact any angle of orientation for the reaction region can be used although it would just cost more to build.


As described herein, operating the torches in a magnetically isolated fashion from each other provides significant advantage to the process. The torches are also typically very heavy, so they are easier to handle when operated in a vertical orientation. As described herein, even though multiple torches can be employed, they are kept magnetically isolated.


As described herein, advantages are recognized in the process by bundling the output of the torches in a collection header, or bundling the torches in a header. Typically, if and when multiple torches are used, they are emptied into the top of a reactor. By separating the torches from the reactor, significant process advantages can be realized. It is also advantageous to make the header as short as possible. In one embodiment, for example, the size of the header can be controlled/limited by placing the torches in the header at different angles, but still magnetically isolating them from each other. And again, all of the output of the torches is collected in the header, which again, produces significant process advantage.


A plasma furnace with more than one plasma torch installed at the top or upstream end of a common vessel allows for many advantages, including that the system can be designed to use plasma power input that is higher than the largest plasma torch because multiples of torches can be used, and that the plant can continue to operate when one plasma torch needs to be removed for maintenance because other plasma torches can be turned up to compensate. For example, while power levels less than one megawatt can be used, this system is capable of using power levels of 3 megawatts, or 6 megawatts, or more.



FIG. 1 shows a typical arrangement of multiple plasma torches (10) atop a process vessel (11) containing a processing area (12). With a typical non-transferred arc plasma torch, a magnetic field is sometimes employed within each plasma torch to spin and control the arc. This magnetic field is typically generated by copper coils (22) that are present within the body of the torch as shown in FIG. 2, having a cathode (20) and an anode (21). The magnetic coils should be oriented such that the coil creates a magnetic field where the axial direction is orthogonal to the arc generated where the arc (23) turns and goes in the radial direction relative to the axis of the torch.


Typically non-transferred arc plasma torches use water cooled metal electrodes. It is also typical that a tungsten cathode and copper anode be used. These electrodes wear away slowly during use but typically do not break off in large chunks. As described herein, graphite electrodes are typically used to get higher thermal efficiency due to less need for water cooling. But graphite electrodes can break off in large chunks that can cause shorts between electrodes if the chunks do not fall out of the electrical path. In addition, plasmas produced with gas compositions over 90% hydrogen typically erode tungsten and copper electrodes very quickly, resulting in higher operating costs and significant downtime for electrode repair and replacement. The use of graphite electrodes as described herein are much more resistant to erosion in the hydrogen plasma and also much less costly to replace as they erode. But because the use of graphite electrodes results in the plasma torch electrodes being at much higher temperature, metallic magnetic coils are not practical to install near electrodes as shown, for example, in FIG. 2, and the coils (30) must be installed farther away from the electrodes (cathodes (32) and anodes (33)), i.e. outside or near the outer boundaries of an insulated shell (31), as shown, for example, in FIG. 3.


As shown in FIG. 1, metal electrode non-transferred plasma torches can be arranged at angles around an axially symmetrical reactor. A different configuration, however, is required for using multiple graphite electrode plasma torches because of magnetic coil temperature limitations, magnetic field interference, and graphite erosion patterns.



FIG. 4 shows a typical basic configuration for a horizontal plasma heated reaction chamber (44) and multiple vertically oriented plasma torches (41) in chambers using two electrode graphite plasma torch technology, having an access port (40) and a water or gas cooled collection header (43). The insulated gas chamber (42) contains a lining which can be water or gas cooled as well, for example. As used herein, plasma torches which are described as vertically or substantially vertically oriented include torches whose orientation is within 20 degrees of a vertical axis.


Scale up of the two electrode graphite plasma torch for heating pure hydrogen has been challenging at best. For example, scale up has been limited by the availability of commodity grade graphite required for scale up. To build a vertically oriented graphite plasma torch using concentric electrode technology would require the use of more expensive iso-molded graphite or the use of barrel stave construction, both of which would result in a significant cost increase in the electrode material, a consumable in any process that utilizes this technology. The size of the plasma torch is dictated by the production capacity of the reactor. The required vertical or substantially vertical orientation of the torch and the way the torch is oriented along the axis of the reactor would typically result in a requirement for a vertical reactor. The inability to generate plasma heating at sufficient megawatts (MW) of power would result in higher cost per ton for a reactor because it limits the size of the reactor. The vertical orientation of a torch that is integral in the reactor could result in a higher installed cost of the reactor if it is then installed vertically. Decoupling the torch from the reactor could allow the installation of the reactor horizontally, which is typically of lower cost to install and an easier-to-maintain configuration.


Developing a method to install multiple hydrogen plasma torches in parallel to feed a common reactor results in the ability to scale the reactor up almost indefinitely. This impacts overall plant cost because for each reactor, because reduction or elimination of multiple inlet lines, control valves, and heat exchangers has a significant effect on cost, not to mention the significant increase in reactor capacities, e.g., up to 5 times or more what has been able to be generated in the past, i.e., the development of a plasma reactor with full industrial scale capacity with a significant cost advantage. And while the reactors described herein can scaled to product, for example, up to 5,000 tons of carbon black per year, they can also be scaled to produce up to 20,000 tons, up to 40,000 tons, or more.


In addition to the above, the ability to separate the plasma chamber from the reactor chamber with a water or gas cooled collection header in between allows for multiple advantages over what has been done in the past, some of which are, for example: the ability to control plasma flow to multiple reactors using a central plasma production unit. For example, carbon black reactors take on various dimensions for making different grades. A reactor for making N-234 carbon black is typically much smaller than a reactor for making N-550 carbon black. By separating the plasma chamber and plasma torch from the reactors allows for the installation of multiple reactors, of relatively low cost, on a single hydrogen collection header. This can allow for switching between the reactors, e.g., with conventional water cooled knife gate valves or flange spool pieces.


As described herein, this system can produce multiple grades, one grade at a time. The process and system described herein have the capability to make different grades with different reactor conditions, one grade at a time, rather than making multiple grades at the same time. Or multiple grades can be made in the respective multiple reactors with different reactor conditions present in the multiple reactors, i.e., capability to make a range of grades of carbon black with the individual grades being made depending on the respective reactor conditions. The particles making up a grade will span a wide range of grades, with the bulk properties needing to meet a set of specific bulk properties. For example, carbon black has a surface chemistry particularly suited to plastic applications such as wire and cable and utility plastics. This comes from the black having a more hydrophobic surface chemistry, sometimes referred to a dead or pure surface.


By increasing the number of plasma torches feeding a system, much higher reliability could be achieved for running the reactors almost continually. See, for example, FIG. 6 which shows schematically vertically oriented plasma torches (61) in gas cooled plasma chambers (62) connected to multiple reactors (63, 64, 65) designed to produce different grades, and a single heat exchanger (66); ability to remove individual plasma torches one at a time for inspection, maintenance, and/or replacement while other plasma torches are running and continuing to produce heat into the process. This could be achieved by means of a water cooled knife gate valves (67) and a nitrogen purge, one example of which is also shown schematically in FIG. 6; in the case where vertical orientation of a reactor is desired (see, for example, FIG. 5), or required, plasma torches could still be installed at or near ground level to help reduce installation costs and maintenance costs.


It is also typical in this field to install and align plasma torches axially with a production vessel. However, with the system as described herein, there is the possibility of the use of an access port (40) aligned with the axis of the production vessel, e.g, as shown schematically in FIG. 4. See also FIG. 5, which similarly shows a system with plasma torches (51), water or gas cooled collection header (52), reaction chamber (53), and access port (50). Such access ports allow for maintenance access, visibility with a camera or borescope, the use of a central axis injector, and other clear advantages as well.


EXAMPLE

Hydrogen gas is run in parallel past three sets of vertically oriented conventional plasma electrodes to generate a temperature of about 3000° C. in the plasma forming zone. Each set of plasma electrodes generates about 3 MW of thermal power into each parallel stream of approximately 1380 nanometers3 per hour (Nm3/hr) of hydrogen. The plasma formed then flows into a gas cooled collection heater with a combined flow rate of about 4140 Nm3/hr prior to flowing into the reaction chamber. It is at this point as the plasma flows into the reaction chamber that methane gas is injected into the plasma at a mass flow rate between about 1600 and about 2200 kilogram (kg)/hr. The plasma-methane gas mixture then flows rapidly into a horizontally oriented reaction zone resulting in the production of a carbon black.


Thus, the scope of the invention shall include all modifications and variations that may fall within the scope of the attached claims. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

Claims
  • 1. A method of making carbon black, comprising: flowing a plasma gas into a plasma forming region containing multiple plasma torches, each of the multiple plasma torches including a magnetic coil and containing at least one electrode;forming a plasma from each plasma torch and combining plasmas formed from the multiple plasma torches in a collection region upstream of a reaction region;flowing the combined plasmas through the reaction region; andinjecting, at a single injection stage downstream of the plasma forming region, carbon black forming feedstock reactants into the reaction region, resulting in the formation of at least one grade of carbon black.
  • 2. The method of claim 1, including multiple electrodes.
  • 3. The method of claim 1, wherein the at least one electrode is a graphite electrode.
  • 4. The method of claim 3, wherein the plasma gas contains hydrogen.
  • 5. The method of claim 1, wherein the at least one electrode comprises a sintered metal or metal oxide coating.
  • 6. The method of claim 1, wherein the at least one electrode comprises copper, tungsten, aluminum, steel or an alloy thereof.
  • 7. The method of claim 1, wherein the plasma forming region is separated from the reaction region by the collection region.
  • 8. The method of claim 1, wherein at least one of the multiple plasma torches is vertically or substantially vertically oriented.
  • 9. The method of claim 8, wherein the multiple plasma torches are vertically or substantially vertically oriented.
  • 10. The method of claim 1, wherein the reaction region is horizontally oriented.
  • 11. The method of claim 1, including multiple reaction regions.
  • 12. The method of claim 1, wherein the at least one grade of carbon black is selected from a plurality of grades of carbon black, wherein a given grade of carbon black meets a set of specific bulk properties.
  • 13. The method of claim 1, wherein a plasma torch of the multiple plasma torches is magnetically isolated one from another plasma torch of the multiple plasma torches.
  • 14. The method of claim 1, further comprising flowing the combined plasmas through the reaction region to mix with and heat the carbon black forming feedstock reactants in the reaction region.
  • 15. The method of claim 1, including a single reaction region.
  • 16. The method of claim 1, wherein the collection region is cooled.
  • 17. The method of claim 16, wherein the collection region is water or gas cooled.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 61/933,497 filed Jan. 30, 2014, the disclosure of which is expressly incorporated by reference herein in its entirety.

US Referenced Citations (220)
Number Name Date Kind
1339225 Rose May 1920 A
1536612 Lewis May 1925 A
1597277 Jakowsky Aug 1926 A
2062358 Frolich Sep 1932 A
2002003 Eisenhut et al. May 1935 A
2393106 Johnson et al. Jan 1946 A
2557143 Royster Jun 1951 A
2572851 Gardner et al. Oct 1951 A
2603669 Chappell Jul 1952 A
2616842 Sheer et al. Nov 1952 A
2785964 Pollock Mar 1957 A
2850403 Day Sep 1958 A
2951143 Anderson et al. Aug 1960 A
3009783 Sheer et al. Nov 1961 A
3073769 Doukas Jan 1963 A
3288696 Orbach Nov 1966 A
3307923 Ruble Mar 1967 A
3308164 Shepard Mar 1967 A
3309780 Goins Mar 1967 A
3331664 Jordan Jul 1967 A
3344051 Latham, Jr. Sep 1967 A
3408164 Johnson Oct 1968 A
3409403 Bjornson et al. Nov 1968 A
3420632 Ryan Jan 1969 A
3431074 Jordan Mar 1969 A
3464793 Jordan et al. Sep 1969 A
3619140 Morgan et al. Nov 1971 A
3637974 Tajbl et al. Jan 1972 A
3673375 Camacho Jun 1972 A
3725103 Jordan et al. Apr 1973 A
3922335 Jordan et al. Nov 1975 A
3981654 Rood et al. Sep 1976 A
3981659 Myers Sep 1976 A
3984743 Horie Oct 1976 A
4028072 Braun et al. Jun 1977 A
4035336 Jordan et al. Jul 1977 A
4057396 Matovich Nov 1977 A
4075160 Mills et al. Feb 1978 A
4101639 Surovikin et al. Jul 1978 A
4199545 Matovich Apr 1980 A
4282199 Lamond et al. Aug 1981 A
4289949 Raaness et al. Sep 1981 A
4317001 Silver et al. Feb 1982 A
4372937 Johnson Feb 1983 A
4404178 Johnson et al. Sep 1983 A
4452771 Hunt Jun 1984 A
4431624 Casperson Aug 1984 A
4472172 Sheer et al. Sep 1984 A
4553981 Fuderer Nov 1985 A
4601887 Dorn et al. Jul 1986 A
4678888 Camacho et al. Jul 1987 A
4689199 Eckert et al. Aug 1987 A
4765964 Gravley et al. Aug 1988 A
4787320 Raaness et al. Nov 1988 A
4864096 Wolf et al. Sep 1989 A
4977305 Severance, Jr. Dec 1990 A
5039312 Hollis, Jr. et al. Aug 1991 A
5045667 Iceland et al. Sep 1991 A
5046145 Drouet Sep 1991 A
5105123 Ballou Apr 1992 A
5147998 Tsantrizos et al. Sep 1992 A
5206880 Olsson Apr 1993 A
5352289 Weaver et al. Oct 1994 A
5399957 Vierboom et al. Mar 1995 A
5476826 Greenwald et al. Dec 1995 A
5481080 Lynum et al. Jan 1996 A
5486674 Lynum et al. Jan 1996 A
5500501 Lynum et al. Mar 1996 A
5527518 Lynum et al. Jun 1996 A
5593644 Norman et al. Jan 1997 A
5604424 Shuttleworth Feb 1997 A
5611947 Vavruska Mar 1997 A
5717293 Sellers Feb 1998 A
5725616 Lynum et al. Mar 1998 A
5749937 Detering et al. May 1998 A
5935293 Detering et al. Aug 1999 A
5951960 Lynum et al. Sep 1999 A
5989512 Lynum et al. Nov 1999 A
5997837 Lynum et al. Dec 1999 A
6068827 Lynum et al. May 2000 A
6099696 Schwob et al. Aug 2000 A
6188187 Harlan Feb 2001 B1
6197274 Mahmud et al. Mar 2001 B1
6358375 Schwob Mar 2002 B1
6380507 Childs Apr 2002 B1
6395197 Detering et al. May 2002 B1
6403697 Mitsunaga et al. Jun 2002 B1
6441084 Lee et al. Aug 2002 B1
6442950 Tung Sep 2002 B1
6444727 Yamada et al. Sep 2002 B1
6602920 Hall et al. Aug 2003 B2
6703580 Brunet et al. Mar 2004 B2
6773689 Lynum et al. Aug 2004 B1
7167240 Stagg Jan 2007 B2
7431909 Rumpf et al. Oct 2008 B1
7452514 Fabry et al. Nov 2008 B2
7462343 Lynum et al. Dec 2008 B2
7563525 Ennis Jul 2009 B2
7655209 Rumpf et al. Feb 2010 B2
8147765 Muradov et al. Apr 2012 B2
8221689 Boutot et al. Jul 2012 B2
8257452 Menzel Sep 2012 B2
8277739 Monsen et al. Oct 2012 B2
8323793 Hamby et al. Dec 2012 B2
8443741 Chapman et al. May 2013 B2
8471170 Li et al. Jun 2013 B2
8486364 Vanier et al. Jul 2013 B2
8501148 Belmont et al. Aug 2013 B2
8581147 Kooken et al. Nov 2013 B2
8710136 Yurovskaya et al. Apr 2014 B2
8771386 Licht et al. Jul 2014 B2
8784617 Novoselov et al. Jul 2014 B2
8850826 Ennis Oct 2014 B2
8871173 Nester et al. Oct 2014 B2
8911596 Vancina Dec 2014 B2
9095835 Skoptsov et al. Aug 2015 B2
9445488 Foret Sep 2016 B2
9574086 Johnson et al. Feb 2017 B2
10138378 Hoermman et al. Nov 2018 B2
20010029888 Sindarrajan et al. Oct 2001 A1
20010039797 Cheng Nov 2001 A1
20020000085 Hall Jan 2002 A1
20020050323 Moisan et al. May 2002 A1
20020051903 Masuko et al. May 2002 A1
20020157559 Brunet et al. Oct 2002 A1
20030103858 Baran et al. Jun 2003 A1
20030152184 Shehanee et al. Aug 2003 A1
20040047779 Denison Mar 2004 A1
20040071626 Smith et al. Apr 2004 A1
20040081862 Herman Apr 2004 A1
20040148860 Fletcher Aug 2004 A1
20040168904 Anazawa et al. Sep 2004 A1
20040211760 Delzenne et al. Oct 2004 A1
20040216559 Kim et al. Nov 2004 A1
20040247509 Newby Dec 2004 A1
20050063892 Tandon et al. Mar 2005 A1
20050079119 Kawakami et al. Apr 2005 A1
20050230240 Dubrovsky et al. Oct 2005 A1
20060034748 Lewis et al. Feb 2006 A1
20060037244 Clawson Feb 2006 A1
20060068987 Bollepalli et al. Mar 2006 A1
20060107789 Deegan et al. May 2006 A1
20060226538 Kawata Oct 2006 A1
20060239890 Chang et al. Oct 2006 A1
20070140004 Marotta et al. Jun 2007 A1
20070183959 Charlier et al. Aug 2007 A1
20070270511 Melnichuk et al. Nov 2007 A1
20070293405 Zhang et al. Dec 2007 A1
20080041829 Blutke et al. Feb 2008 A1
20080121624 Belashchenko et al. May 2008 A1
20080169183 Hertel et al. Jul 2008 A1
20080182298 Day Jul 2008 A1
20080226538 Rumpf et al. Sep 2008 A1
20080279749 Probst et al. Nov 2008 A1
20080292533 Belmont et al. Nov 2008 A1
20090090282 Gold et al. Apr 2009 A1
20090142250 Fabry et al. Jun 2009 A1
20090155157 Stenger et al. Jun 2009 A1
20090173252 Nakata et al. Jul 2009 A1
20090208751 Green et al. Aug 2009 A1
20090230098 Salsich et al. Sep 2009 A1
20100147188 Mamak et al. Jun 2010 A1
20100249353 Macintosh et al. Sep 2010 A1
20110036014 Tsangaris et al. Feb 2011 A1
20110071692 D'Amato et al. Mar 2011 A1
20110071962 Lim Mar 2011 A1
20110076608 Bergemann et al. Mar 2011 A1
20110138766 Elkady et al. Jun 2011 A1
20110155703 Winn Jun 2011 A1
20110180513 Luhrs et al. Jul 2011 A1
20110239542 Liu et al. Oct 2011 A1
20120018402 Carducci et al. Jan 2012 A1
20120025693 Wang et al. Feb 2012 A1
20120201266 Boulos et al. Aug 2012 A1
20120232173 Juranitch et al. Sep 2012 A1
20120292794 Prabhu et al. Nov 2012 A1
20130039841 Nester et al. Feb 2013 A1
20130062195 Samaranayake et al. Mar 2013 A1
20130062196 Sin Mar 2013 A1
20130092525 Li et al. Apr 2013 A1
20130194840 Huselstein et al. Aug 2013 A1
20130292363 Hwang et al. Nov 2013 A1
20130323614 Chapman et al. Dec 2013 A1
20130340651 Wampler et al. Dec 2013 A1
20140000488 Sekiyama et al. Jan 2014 A1
20140057166 Yokoyama et al. Feb 2014 A1
20140131324 Shipulski et al. May 2014 A1
20140190179 Barker et al. Jul 2014 A1
20140224706 Do et al. Aug 2014 A1
20140227165 Hung et al. Aug 2014 A1
20140248442 Luizi et al. Sep 2014 A1
20140290532 Rodriguez et al. Oct 2014 A1
20140294716 Susekov et al. Oct 2014 A1
20140339478 Probst et al. Nov 2014 A1
20140357092 Singh Dec 2014 A1
20140373752 Hassinen et al. Dec 2014 A2
20150044516 Kyrlidis et al. Feb 2015 A1
20150056516 Hellring et al. Feb 2015 A1
20150064099 Nester et al. Mar 2015 A1
20150180346 Yuzurihara et al. Jun 2015 A1
20150210856 Johnson Jul 2015 A1
20150210857 Johnson et al. Jul 2015 A1
20150210858 Hoermann et al. Jul 2015 A1
20150211378 Johnson et al. Jul 2015 A1
20150217940 Si et al. Aug 2015 A1
20150218383 Johnson et al. Aug 2015 A1
20150223314 Hoermann et al. Aug 2015 A1
20150252168 Schuck et al. Sep 2015 A1
20160030856 Kaplan et al. Feb 2016 A1
20160293959 Blizanac et al. Oct 2016 A1
20170034898 Moss et al. Feb 2017 A1
20170037253 Hardman et al. Feb 2017 A1
20170058128 Johnson et al. Mar 2017 A1
20170066923 Hardman et al. Mar 2017 A1
20170073522 Hardman et al. Mar 2017 A1
20170349758 Johnson Dec 2017 A1
20180015438 Taylor et al. Jan 2018 A1
20180016441 Taylor et al. Jan 2018 A1
20180022925 Hardman et al. Jan 2018 A1
20190100658 Taylor et al. Apr 2019 A1
Foreign Referenced Citations (78)
Number Date Country
2897071 Nov 1972 AU
830378 Dec 1969 CA
964 405 Mar 1975 CA
2 353 752 Jan 2003 CA
2 621 749 Aug 2009 CA
1644650 Jul 2005 CN
102108216 Jun 2011 CN
102993788 Mar 2013 CN
103160149 Jun 2013 CN
203269847 Nov 2013 CN
211457 Jul 1984 DE
198 07 224 Aug 1999 DE
200300389 Dec 2003 EA
0 325 689 Aug 1989 EP
0 616 600 Sep 1994 EP
0 635 044 Feb 1996 EP
0 635 043 Jun 1996 EP
0 861 300 Sep 1998 EP
1017622 Jul 2000 EP
1 188 801 Mar 2002 EP
1 088 854 Apr 2010 EP
2 891 434 Mar 2007 FR
2 937 029 Apr 2010 FR
395 893 Jul 1933 GB
987498 Mar 1965 GB
1 400 266 Jul 1975 GB
1 492 346 Nov 1977 GB
2419883 May 2006 GB
4-228270 Aug 1992 JP
6-322615 Nov 1994 JP
9-316645 Dec 1997 JP
11-123562 May 1999 JP
2004-300334 Oct 2004 JP
2005-235709 Sep 2005 JP
2005-243410 Sep 2005 JP
10-2008-105344 Dec 2008 KR
2014-0075261 Jun 2014 KR
2425795 Aug 2011 RU
2488984 Jul 2013 RU
9312031 Jun 1993 WO
9318094 Sep 1993 WO
9320153 Oct 1993 WO
9323331 Nov 1993 WO
1994008747 Apr 1994 WO
9703133 Jan 1997 WO
9813428 Apr 1998 WO
03014018 Feb 2003 WO
2012015313 Feb 2012 WO
2012067546 May 2012 WO
2012094743 Jul 2012 WO
2012149170 Nov 2012 WO
2013134093 Sep 2013 WO
2013184074 Dec 2013 WO
2013185219 Dec 2013 WO
2014000108 Jan 2014 WO
2014012169 Jan 2014 WO
2015049008 Apr 2015 WO
2015093947 Jun 2015 WO
2015116797 Aug 2015 WO
2015116798 Aug 2015 WO
2015116800 Aug 2015 WO
2015116807 Aug 2015 WO
2015116811 Aug 2015 WO
2015116943 Aug 2015 WO
2016012367 Jan 2016 WO
2016014641 Aug 2016 WO
2016126598 Aug 2016 WO
2016126599 Aug 2016 WO
2016126600 Aug 2016 WO
2017019683 Feb 2017 WO
2017027385 Feb 2017 WO
2017034980 Mar 2017 WO
2017044594 Mar 2017 WO
2017048621 Mar 2017 WO
2017190015 Nov 2017 WO
2017190045 Nov 2017 WO
2018165483 Sep 2018 WO
2018195460 Oct 2018 WO
Non-Patent Literature Citations (110)
Entry
Search report from P.C.T., dated May 11, 2015.
ISR and Written Opinion from PCT/US2015/013482, dated Jun. 17, 2015.
ISR and Written Opinion from PCT/US2015/013505, dated May 11, 2015.
ISR and Written Opinion from PCT/US2015/013794, dated Jun. 19, 2015.
Donnet, Basal and Wang, “Carbon Black”, New York: Marcel Dekker, 1993 pp. 46, 47 and 54.
Boehm, HP, “Some Aspects of Surface Chemistry of Carbon Blacks and Other Carbons”, Carbon 1994, p. 759.
“The Science and Technology of Rubber” (Mark, Erman, and Roland, Fourth Edition, Academic Press, 2013).
“Carbon Black Elastomer Interaction” Rubber Chemistry and Technology, 1991, pp. 19-39.
“The Impact of a Fullerene-Like Concept in Carbon Black Science”, Carbon, 2002, pp. 157-162.
ISR and Written Opinion from PCT/US2015/013510, dated Apr. 22, 2015.
ISR and Written Opinion from PCT/US2016/015939, dated Jun. 3, 2016.
ISR and Written Opinion from PCT/US2016/015941, dated Apr. 21, 2016.
ISR and Written Opinion from PCT/US2016/015942, dated Apr. 11, 2016.
ISR and Written Opinion from PCT/US2016/044039, dated Oct. 6, 2016.
ISR and Written Opinion from PCT/US2016/045793, dated Oct. 18, 2016.
ISR and Written Opinion from PCT/US2016/050728, dated Nov. 18, 2016.
ISR and Written Opinion from PCT/US2016/051261, dated Nov. 18, 2016.
ISR and Written Opinion from PCT/US2015/013484, dated Apr. 22, 2015.
Ap 42, Fifth Edition, vol. I, Chapter 6: Organic Chemical Process Industry, Section 6.1: Carbon Black.
Fulcheri, et al. “Plasma processing: a step towards the production of new grades of carbon black.” Carbon 40.2 (2002): 169-176.
Grivei, et al. “A clean process for carbon nanoparticles and hydrogen production from plasma hydrocarbon cracking” Publishable Report, European Commission JOULE III Programme, Project No. JOE3-CT97-0057, circa 2000.
Fabry, et al. “Carbon black processing by thermal plasma. Analysis of the particle formation mechanism.” Chemical Engineering Science 56.6 (2001): 2123-2132.
Pristavita, et al. “Carbon nanoparticle production by inductively coupled thermal plasmas: controlling the thermal history of particle nucleation.” Plasma Chemistry and Plasma Processing 31.6 (2011): 851-866.
Cho, et al. “Conversion of natural gas to hydrogen and carbon black by plasma and application of plasma black.” Symposia—American Chemical Society, Div. Fuel Chem. vol. 49. 2004.
Pristavita, et al. “Carbon blacks produced by thermal plasma: the influence of the reactor geometry on the product morphology.” Plasma Chemistry and Plasma Processing 30.2 (2010): 267-279.
Pristavita, et al. “Volatile Compounds Present in Carbon Blacks Produced by Thermal Plasmas.” Plasma Chemistry and Plasma Processing 31.6 (2011): 839-850.
Garberg, et al. “A transmission electron microscope and electron diffraction study of carbon nanodisks.” Carbon 46.12 (2008): 1535-1543.
Knaapila, et al. “Directed assembly of carbon nanocones into wires with an epoxy coating in thin films by a combination of electric field alignment and subsequent pyrolysis.” Carbon 49.10 (2011): 3171-3178.
Krishnan, et al. “Graphitic cones and the nucleation of curved carbon surfaces.” Nature 388.6641 (1997): 451-454.
Høyer, et al. “Microelectromechanical strain and pressure sensors based on electric field aligned carbon cone and carbon black particles in a silicone elastomer matrix.” Journal of Applied Physics 112.9 (2012): 094324.
Naess, Stine Nalum, et al. “Carbon nanocones: wall structure and morphology.” Science and Technology of advanced materials (2009), 7 pages.
Fulcheri, et al. “From methane to hydrogen, carbon black and water.” International journal of hydrogen energy 20.3 (1995): 197-202.
ISR and Written Opinion from PCT/US2016/047769, dated Dec. 30, 2016.
D.L. Sun, F. Wang, R.Y. Hong, C.R. Xie, Preparation of carbon black via arc discharge plasma enhanced by thermal pyrolysis, Diamond & Related Materials (2015), doi: 10.1016/j.diamond.2015.11.004, 47 pages.
Non-Final Office Action dated Feb. 22, 2017 in U.S. Appl. No. 14/591,541.
Non-Final Office Action dated May 2, 2017 in U.S. Appl. No. 14/610,299.
Ex Parte Quayke Action mailed May 19, 2017 in U.S. Appl. No. 14/601,761.
Extended European Search Report from EP Application No. 15 742 910.1 dated Jul. 18, 2017.
Search report in counterpart European Application No. 15 74 3214 dated Sep. 12, 2017.
ISR and Written Opinion from PCT/US2017/030139, dated Jul. 19, 2017.
ISR and Written Opinion from PCT/US2017/030179, dated Jul. 27, 2017.
A.I. Media et al., “Tinting Strength of Carbon Black,” Journal of Colloid and Interface Science, vol. 40, No. 2, Aug. 1972.
Reese, J. (2017). “Resurgence in American manufacturing will be led by the rubber and tire industry.” Rubber World. 255. 18-21 and 23.
Non-Final Office Action dated Feb. 27, 2017 in U.S. Appl. No. 14/591,476.
Extended European Search Report from EP Application No. 15743214.7 dated Jan. 16, 2018.
Chiesa P, Lozza G, Mazzocchi L. Using Hydrogen as Gas Turbine Fuel. ASME. J. Eng. Gas Turbines Power. 2005;127(1):73-80. doi:10.1115/1.1787513.
Tsujikawa, Y., and T. Sawada. “Analysis of a gas turbine and steam turbine combined cycle with liquefied hydrogen as fuel.” International Journal of Hydrogen Energy 7.6 (1982): 499-505.
Search report from RU2016135213, dated Feb. 12, 2018.
Non-Final Office Action dated Jan. 16, 2018 in U.S. Appl. No. 14/591,528.
Bakken, Jon Arne, et al. “Thermal plasma process development in Norway.” Pure and applied Chemistry 70.6 (1998): 1223-1228.
Polman, E. A., J. C. De Laat, and M. Crowther. “Reduction of CO2 emissions by adding hydrogen to natural gas.” IEA Green House Gas R&D programme (2003).
Verfondern, K., “Nuclear Energy for Hydrogen Production”, Schriften des Forschungzentrum Julich, vol. 58, 2007.
U.S. Environmental Protection Agency, “Guide to Industrial Assessments for Pollution Prevention and Energy Efficiency,” EPA 625/R-99/003, 1999.
Breeze, P. “Raising steam plant efficiency-Pushing the steam cycle boundaries.” PEI Magazine 20.4 (2012).
Final Office Action dated Oct. 13, 2017 in U.S. Appl. No. 14/591,476.
Final Office Action dated Oct. 13, 2017 in U.S. Appl. No. 14/591,541.
Notice of Allowance dated Jan. 18, 2018 in U.S. Appl. No. 14/601,761.
Correced Notice of Allowance dated Feb. 9, 2018 in U.S. Appl. No. 14/601,761.
Final Office Action dated Sep. 19, 2017 in U.S. Appl. No. 15/221,088.
Non-Final Office Action dated Jan. 9, 2018 in U.S. Appl. No. 15/259,884.
Russian Official Notification of application No. 2016135213 from Russia dated Feb. 12, 2018.
Non-Final Office Action dated Mar. 16, 2016 in U.S. Appl. No. 14/591,476.
Final Office Action dated Jul. 11, 2016 in in U.S. Appl. No. 14/591,476.
Non-Final Office Action dated Mar. 16, 2016 in U.S. Appl. No. 14/591,541.
Final Office Action dated Jul. 14, 2016 in U.S. Appl. No. 14/591,541.
Non-Final Office Action dated Apr. 14, 2016 in U.S. Appl. No. 14/601,761.
Final Office Action dated Oct. 19, 2016 in U.S. Appl. No. 14/601,761.
Non-Final Office Action dated Apr. 13, 2016 in U.S. Appl. No. 14/601,793.
Final Office Action dated Aug. 3, 2016 in U.S. Appl. No. 14/601,793.
Notice of Allowance dated Oct. 7, 2016 in U.S. Appl. No. 14/601,793.
Non-Final Office Action dated Dec. 23, 2016 in U.S. Appl. No. 15/221,088.
Non-Final Office Action dated Apr. 20, 2018 in U.S. Appl. No. 15/221,088.
Donnet et al. “Observation of Plasma-Treated Carbon Black Surfaces by Scanning Tunnelling Microscopy,” Carbon (1994) 32(2):199-206.
Larouche et al. “Nitrogen Functionalization of Carbon Black in a Thermo-Convective Plasma Reactor,” Plasma Chem Plasma Process (2011) 31:635-647.
Reynolds, “Electrode Resistance: How Important is Surface Area” Oct. 10, 2016. p. 3 para[0001]; Figure 3; Retrieved from http://electrofishing.net/2016/10/10/electrode-resistance-how-important-is-surface-area/ on May 8, 2018.
Wikipedia “Heating Element” Oct. 14, 2016. p. 1 para[0001]. Retrieved from https://en.wikipedia.org/w/index.php?title=Heating_element&oldid=744277540 on May 9, 2018.
Wikipedia “Joule Heating” Jan. 15, 2017. p. 1 para[0002]. Retrieved from https://en.wikipedia.org/w/index.php?title=Joule_heating&oldid=760136650 on May 9, 2018.
Extended European Search Report from EP Application No. 16747055.8 dated Jun. 27, 2018.
Extended European Search Report from EP Application No. 16747056.6 dated Jun. 27, 2018.
Extended European Search Report from EP Application No. 16747057.4 dated Oct. 9, 2018.
Extended European Search Report from EP Application No. 16835697.0 dated Nov. 28, 2018.
Final Office Action from U.S. Appl. No. 15/259,884, dated Oct. 11, 2018.
Invitation to Pay Additional Fees dated Jun. 18, 2018 in PCT/US2018/028619.
Invitation to Pay Additional Fees in PCT/US2018/048378 dated Oct. 26, 2018.
Invitation to Pay Additional Fees in PCT/US2018/048381 dated Oct. 9, 2018.
IPRP from PCT/US2015/013482, dated Aug. 2, 2016.
IPRP from PCT/US2015/013487, dated Aug. 2, 2016.
IPRP from PCT/US2017/030139 dated Oct. 30, 2018.
IPRP from PCT/US2017/030179 dated Oct. 30, 2018.
ISR and Written Opinion for PCT/US2018/048374 dated Nov. 26, 2018.
ISR and Written Opinion for PCT/US2018/048378 dated Dec. 20, 2018.
ISR and Written Opinion for PCT/US2018/048381 dated Dec. 14, 2018.
ISR and Written Opinion from PCT/US2018/021627, dated May 31, 2018.
ISR and Written Opinion from PCT/US2018/028619, dated Aug. 9, 2018.
Non-Final Office Action dated Jul. 6, 2018 in U.S. Appl. No. 15/241,771.
Non-Final Office Action dated Jun. 1, 2018 in U.S. Appl. No. 15/262,539.
Non-Final Office Action dated Jun. 7, 2018 in U.S. Appl. No. 15/410,283.
Non-Final Office Action from U.S. Appl. No. 15/548,352 dated Oct. 10, 2018.
Notice of Allowance dated Jun. 19, 2018 in U.S. Appl. No. 14/601,761.
Notice of Allowance dated Jun. 7, 2018 in U.S. Appl. No. 14/591,541.
Invitation to Pay Additional Fees in PCT/US2018/057401 dated Dec. 19, 2018.
Final Office Action for U.S. Appl. No. 15/262,539 dated Jan. 4, 2019.
Gago et al., “Growth mechanisms and structure of fullerene-like carbon-based thin films: superelastic materials for tribological applications,” Trends in Fullerene Research, Published by Nova Science Publishers, Inc. (2007), pp. 1-46.
EP16845031.0 Extended European Search Report dated Mar. 18, 2019.
Garberg, et al., A transmission electron microscope and electron diffraction study of carbon nanodisks. Carbon 46 (2008) 1535-1543.
Hernandez, et al. Comparison of carbon nanotubes and nanodisks as percolative fillers in electrically conductive composites. Scripta Materialia 58 (2008) 69-72.
U.S. Appl. No. 15/548,348 Office Action dated Apr. 25, 2019.
U.S. Appl. No. 15/229,608 Office Action dated Apr. 8, 2019.
U.S. Appl. No. 15/259,884 Office Action dated May 31, 2019.
U.S. Appl. No. 15/548,352 Office Action dated May 9, 2019.
Related Publications (1)
Number Date Country
20150210856 A1 Jul 2015 US
Provisional Applications (1)
Number Date Country
61933497 Jan 2014 US