System for homogeneously mixing plural incoming product streams of different composition

Abstract
A continuous mixer (32) is disclosed which can be used for mixing of incoming product streams (22, 24) of different characteristics respectively to yield a final product stream (26) of predetermined, consistent characteristics. The mixer (32) includes an elongated housing (42) having a pair of product input ports (50,52) and an output (64), with a pair of elongated, axially rotatable, mixing screws (44,46) located within the housing (42). The screws (44, 46) include a series of outwardly projecting mixing elements (114) preferably of pyramidal design and arrayed in a helical pattern along the length ofthe screws (44,46). The mixer (32) may be used in a processing system (10) having individual product lines (28, 30) coupled to the mixer (32), and is especially useful for processing of incoming meat streams (22,24) of different fat/lean ratios, to give a final comminuted output stream (26) of an intermediate and essentially constant fat/lean ratio.
Description


BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention


[0002] The present invention is broadly concerned with continuous mixing apparatus for the gentle yet thorough mixing of incoming product streams to yield a final product stream of predetermined desired characteristics. More particularly, the invention is concerned with such mixers, rotatable screws used therein, and methods of operation thereof, permitting the mixers to be used in overall systems preferably designed for the mixing of dissimilar characteristic incoming meat streams to produce a final product output stream of substantially constant characteristics. In addition, the mixer may also be used in the processing of substantially homogeneous products, such as in the mixing and stretching of cheese curd and the blending of fruits.


[0003] 2. Description of the Prior Art


[0004] The meat industry is increasingly concerned with “case ready” meats which are prepared and packaged at a central processing facility, ready for display and sale at supermarkets. This marketing approach minimizes costly on-site labor at the supermarkets, leading to lower consumer prices. For example, comminuted meat products (e.g., hamburger) can be produced at a central facility and packaged in convenient sized consumer packages. One difficulty in this approach, however, lies in providing a consistent comminuted product having, e.g.,the same fat/lean ratio. This is particularly difficult owing to the fact that starting meat sources may have very different fat/lean ratios, on a day-to-day or even hour-to-hour basis. Hence, a plant may be provided with meats having two widely divergent meat sources in terms of fat/lean ratios or other characteristics, and must be capable of accommodating such staring materials while still producing a comminuted product of substantially constant final properties.


[0005] Meat comminuting and mixing devices are in general well known, ranging from simple household sausage grinders to large industrial equipment. However, such prior devices cannot properly handle diverse starting products while still yielding consistent final products. In addition, it is important in the mixing and handling of meat products that the meat not be comminuted and mixed to the point that it exhibits “smearing” or the loss of particulate appearance.


[0006] There is accordingly a need in the art for improved mixing apparatus and systems which can accept starting products of divergent and changing characteristics while nevertheless producing final products having predetermined, consistent properties; in the context of meat processing, such mixing apparatus must also accomplish these ends without significantly altering the desired meat appearance.



SUMMARY OF THE INVENTION

[0007] The present invention overcomes the problems outlined above, and provides a continuous mixer for mixing incoming product streams to yield a final product stream of desired characteristics. Broadly speaking, the mixer includes an elongated housing having a plurality of inputs for receiving incoming product streams, as well as an output for the final product. A plurality (usually two) of elongated, side-by-side, axially rotatable mixing screws are located within the housing and extend along the length thereof in order to convey and mix the incoming streams and to move the final product out the housing output. Each of these mixing screws includes a series of outwardly projecting mixing elements each having a base and a plurality of converging sidewall surfaces, the latter cooperatively defining an outer end having a surface area less than the base surface area. These mixing elements are oriented along the length of the mixing screws, preferably in a helical pattern.


[0008] In preferred forms, the mixing screws are in intermeshing relationship and are designed to co-rotate, i.e., to rotate in the same direction; however, the screws can also be counter-rotating if desired. The screws preferably include input sections adjacent the housing product stream inputs and present helical flighting along the lengths thereof, the screws also have output sections extending from the ends of the input sections toward the housing output, with the outwardly projecting mixing elements being located on the output sections. The individual mixing elements are generally pyramidal in shape, presenting a base of generally diamond-shaped plan configuration with four outwardly extending, arcuate converging wall surfaces terminating in an apex-like outer end.


[0009] The housing is equipped with a plurality of injection ports spaced along the length thereof to permit injection of materials such as CO2 into the housing during operation. In addition, the housing also a series of sensor ports along the length thereof to permit installation of temperature, pressure or other parameter sensors. In order to provide better temperature control, the housing has an outer shell and inner screw-receiving walls to define therebetween a passageway; cold water or other cooling media may be circulated through the passageway during operation of the mixer.


[0010] A particular (although not exclusive) utility of the mixer of the invention is for producing a comminuted meat product having a predetermined and substantially constant fat/lean ratio, using input meat streams of different fat/lean ratios respectively. To this end, the mixer is preferably used in an overall mixing system including a plurality of incoming product lines operably coupled with the mixer, where each of the product lines has a product source, a product pump and a product analyzer. In such a system, the pumps are operated to generate the incoming product streams, which are analyzed to determine a desired input characteristic thereof (such as fat/lean ratio). The operational speed of the individual product line pumps is then adjusted in response to analysis of the incoming product streams, thereby generating product streams having a desired input characteristic at a substantially constant magnitude for each incoming product stream. Once such constant characteristic streams are achieved the incoming product streams are directed to the mixer which is operated to create the final product stream. Preferably, this final product stream was again analyzed to determine a desired output characteristic thereof, followed by altering the operational speed of one or more of the product line pumps as necessary to maintain the desired output characteristic in the final product stream.


[0011] The preferred mixer is designed so as to mix incoming product streams and create a homogeneous output of substantially constant characteristics, without undue meat comminution or smear. In practice, the mixers of the invention are operated so as to limit meat temperature to no greater than about 50° F., more preferably from about 20-40° F. Residence time in the mixers of the invention should range up to about 3 minutes, more preferably from about 1-2 minutes; pressure conditions within the mixer are essentially atmospheric, but the mixer may be operated at a slight positive pressure if desired.


[0012] While the system and continuous mixer of the invention are especially adapted for use in the meat industry, a number of variations are possible. For example, spices or liquid smoke may be injected into the continuous mixer to produce sausage-like products. Alternately, textured vegetable protein may be added to one or more of the meat streams, or the system can be used to mix a meat stream and a TVP stream, respectively. Finally, the mixer of the invention, owing to its unique screw configuration, may be used for the processing of non-meat products such as cheeses, fruits and vegetables.







BRIEF DESCRIPTION OF THE DRAWINGS

[0013]
FIG. 1 is a schematic flow diagram illustrating the preferred system of the invention for homogeneously nixing a plurality of incoming product streams to yield a final product stream of desired characteristics;


[0014]
FIG. 2 is a flow diagram ofthe preferred software algorithm used in the control of the system illustrated in FIG. 1;


[0015]
FIG. 3 is an isometric view of the preferred continuous mixer forming a part of the system of FIG. 1;


[0016]
FIG. 4 is an isometric view similar to that of FIG. 3, but with certain parts broken away to reveal the internal construction of the mixer;


[0017]
FIG. 5 is a plan view of the mixer depicted in FIG. 3;


[0018]
FIG. 6 is an end view of the mixer shown in FIG. 5, illustrating the output end of the mixer;


[0019]
FIG. 7 is a sectional view taken along line 7-7 of FIG. 6;


[0020]
FIG. 8 is a sectional view taken along line 8-8 of FIG. 5;


[0021]
FIG. 9 is a plan view of a mixer screw section, depicting the generally pyramidal mixing elements forming a part of the preferred internal mixing screws of the continuous mixer; and


[0022]
FIG. 10 is an isometric view of the mixing screw section illustrated in FIG. 9.







DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0023] Turning now to the drawings, and particularly FIG. 1, a preferred system 20 is schematically illustrated for homogeneously mixing plural incoming product streams 22 and 24 to yield a desired final product stream 26. Broadly speaking, the system 20 includes a pair of incoming product lines 28,30 which are operatively coupled with a continuous mixer 32. The system 20 as shown is designed for processing first and second meat sources M1 and M2 having different fat/lean ratios in order to generate the final product stream 26 having a desired and predetermined fat/lean ratio.


[0024] In more detail, each of the product lines 28,30 includes a grinder 33 and a preblender 34, a product pump 36, and a fat content analyzer 38. The grinder/preblend equipment 33, 34 is essentially conventional and is designed to take an incoming meat source and generate a uniform ground meat output. Similarly, the pump 36 and analyzer 38 are conventional.


[0025] As also illustrated in FIG. 1, a fat content analyzer 40 is used to determine the fat content of the final product stream 26; to this end, the analyzer 40 is downstream of mixer 32 and upstream of packaging equipment (not shown) used to package the final product. The output from analyzer 38 includes a three-way valve 39 with a recycle line 39a and a mixer conduit 39b.


[0026] Attention is next directed to FIGS. 3-10 which illustrate in detail the preferred mixer 32. Broadly, the mixer 32 includes an elongated housing 42 with a pair of elongated, side-by-side, axially rotatable, intermeshed mixing screws 44,46 located within the housing and extending along the length thereof; the screws 44,46 are rotated by means of a conventional gear reduction drive 48 coupled to a motor (not shown).


[0027] The housing 42 includes an inlet head 49 having a pair of opposed, tubular inlet ports 50, 52 and end walls 54, 56, as well as an outlet head of 60 presenting an end wall 62 and an elongated slot-like mixer output 64. As shown, the housing 42 also has two aligned head sections 66 and 68 between the inlet and outlet heads 49 and 60. The section 66 has a pair of circular end walls 70, 72; an outermost, elongated circular in cross-section shell wall 74 as well as an elongated, inner, screw-receiving wall 76 of somewhat “figure 8” configuration extend between and are supported by the walls 70, 72. Similarly, the section 68 has end walls 78, 80 supporting shell wall 82 and inner screw-receiving “figure 8” wall 84. As illustrated in FIG. 3 for example, the circular walls 72 and 78 are bolted together, with end wall 80 connected to reducer 48 and with end wall 70 coupled with wall 62 through an intermediate annular spacer 86; in this way, a housing 42 is provided with continuous inner screw-receiving walls.


[0028] The housing head sections 66 and 68 are each equipped with a series of injection ports 88 along the length thereof which permit attachment of injectors (not shown) for the selective injection of additives and/or coolants such as carbon dioxide. As best illustrated in FIG. 7, the ports 88 extend through the outer and inner housing walls to communicate with the interior of the housing. Also, the sections 66 and 68 have sensor mounts 90 along the length thereof for selective mounting and attachment of temperature or other type of sensors. In the use of mixer 32 as more fully described below, a liquid coolant may be passed through respective coolant passageways 92 and 94 provided between the outer and inner housing walls 74, 76 and 82, 84; to this end, the head sections 66 and 68 have appropriately sized and configured coolant entry ports 96 and corresponding outlet ports (not shown).


[0029] The screws 44, 46 are housed within and extend along the length of the housing 42. As shown in FIG. 8, the screws are positioned within the “figure 8” housing walls 76 and 84, and are operatively coupled to the drive 48 for rotation thereof. The screws include a respective elongated splined shafts 98, 100, which support corresponding inlet screws 102, 104 and downstream mixing screws 106, 108. The inlet screws each include continuous helical double flighting 110, 112 which serves to move material entering the mixer through the inlets 50, 52 toward outlet head 60.


[0030] The mixing screws 106, 108 are secured to the shafts 98, 100 and are of specialized configuration to mix the incoming products and produce a uniform output, without creation of undue shear conditions. Attention is directed to FIGS. 9 and 10 which depict in detail the preferred configuration of the mixing screws. Specifically, each of the mixing screws has a series of outwardly projecting, abutting mixing elements 114, each presenting a base 116 and a plurality of converging sidewall surfaces 118, 120, 122, and 124 which terminate in an outer surface 126 having a surface area less than that of the base 116. The elements 114 are oriented in a dual helix pattern along the length of the screw section, leaving corresponding helical base surfaces 128 and 129 between the convolutions of the elements 114.


[0031] In more detail, each of the elements 114 is generally pyramidal in shape, with the corresponding base 116 generally diamond-shaped in plan configuration and presenting four arcuate surfaces 118-124 and the apex-like surface 126. Each diamond-shaped base 116 is defined by two pairs of substantially parallel marginal base surfaces, namely long surfaces 130, 132 and short surfaces 134, 136. As best seen in FIG. 9, the long base surfaces 130 of the elements 114 lie along a first helical line 138 whereas the opposed long base surfaces 132 lie along a second helical line 140, with the helical lines 138, 140 being of substantially equal pitch. In addition, the short base surfaces 134 cooperatively define a third helical line 142, with the opposed short base surfaces 136 defining a fourth helical line 144. Again, the helical lines 142, 144 are parallel to each other, and have substantially the same pitch. However, the pitch of the long base surface helical lines 138, 140 is greater than the pitch of the short base surface helical lines 142 and 144. It will also be seen that the outwardly extending surfaces of the elements 114 lie in and cooperatively define respective helical surfaces.


[0032] The mixing screws 106, 108 are preferably manufactured by first creating a screw with conventional double helix lighting having the larger pitch referred to previously. Thereafter, this screw is cut to present double helix reverse fighting having the smaller pitch mentioned above. This manufacturing procedure creates the series of mixing elements 114.


[0033] In the operation of mixer 32, incoming products are directed through the ports 50, 52 into the interior of the housing 42. At the same time, the screws 44, 46 are rotated so as to move the products towards outlet opening 64. During traversal of the inlet sections 102 and 104, only a minor amount of mixing occurs. However, as the products enter and pass along the length of the mixing screws 106, 108, the product is very intensely mixed so as to yield a final product stream 26 of uniform characteristics. A significant advantage of the mixer 32 is that such product stream mixing is obtained without substantial heating of the products or generation of shear. This effect is achieved by the geometry of the helically arranged mixing elements 114 which serve to not only move the product toward the outlet 64, but also impart a significant amount of flow reversal to the products. Of course, the net movement of the products within the housing is from the inlet ports to the outlet; nevertheless, during such movement there is significant flow reversal so as to obtain the desired homogeneous final product stream.


[0034] During the course of mixing, it may be desirable to pass thermal fluid (e.g., cold water or a heating media to inhibit fat buildup) through the passageways 92 and 94 so as to indirectly cool the products. Also, carbon dioxide may be injected through some or all of the ports 88 for this purpose. Process control is facilitated by means of the mounts 90, allowing temperature probes or the like to be mounted along the length of the mixer.


[0035] In preferred forms, the system 20 is designed for creating an output stream 26 of predetermined and substantially constant fat/lean ratio, using two individual meat sources M1 and M2 of different fat/lean ratios. Moreover, the system 20 is advantageously configured for computer control. That is, the components of the system 20, including the grind/preblend devices 33, 34, pumps 36, mixer 32 and fat content analyzers 38 and 40 are appropriately connected to a microprocessor (not shown). Additionally, all of the components of the system 20 are usually provided with CO2 injection apparatus so as to maintain, to the extent feasible, the meat being processed under oxygen-free or at least oxygen-minimized conditions.


[0036]
FIG. 2 depicts a suitable control program useful in the context of the invention. In particular, in the first steps 146 and 148, an initial speed for the pumps 36 is calculated. This involves inputting into the control program fat/lean ratio estimates for the respective meat streams, the desired fat/lean ratio of the output stream 26, and the desired final output rate. Also, fat and lean meat densities values, as well as pump volumes per cycle of the pumps 36 is retrieved from the computer memory. This information is used step 148 to calculate the initial pump speed for each of the pumps 36.


[0037] In the next step 150, the program initiates operation of the grinders and preblenders 33, 34., and also begins the operation of the pumps 36 at the initially calculated speed (step 151). After an appropriate data acquisition delay (e.g., 10 seconds), the fat content in the respective streams is measured in step 152. Such measurements are taken repeatedly, and the measured fat data obtained during each measurement cycle are stored in computer memory.


[0038] The program next determines in step 154 whether the fat/lean ratios of the respective streams are within predetermined limits, such as ±2%. If this stability has not been achieved, then the program proceeds to step 156 wherein the valves 39 are diverted to recycle the respective meat streams back to the preblenders 34 via lines 39a, and the process of steps 152-156 is repeated, using the newly calculated pump speeds. Once the stability requirement of step 154 is met, the program proceeds to step 158 where the operation of the mixer 32 is commenced at a preset speed correlated with the desired final output rate. Mixer operation may also involve circulation of a thermal fluid through the ports 96 and the corresponding outlets, and/or injection of coolant or other additives through the injection ports 88. Also, in step 160, both meat streams are diverted to mixer 32 by appropriate operation of the valves 39.


[0039] In step 162, the previously measured and stored fat content data for the meat products at and about to enter the continuous mixer inlets is retrieved, and the pump speeds are recalculated; as necessary, these pump speeds are changed in step 164.


[0040] As mixed product emerges from mixer outlet 64, the fat content thereof is measured in analyzer 40, as set forth in step 164. This permits a calculation (step 166) of which line 22 or 24 would benefit most from correction of pump speed. That is, it is desirable to operate the pumps 136 as close as possible to the middle of the operating range of the pumps. Accordingly, in step 168, appropriate correction factors are used to adjust the speed of the pumps 36. In this way, stable running conditions can be achieved and maintained throughout the course of a given run. By the same token, if the characteristics of either or both of the meat sources M1 and M2 change, this change can be accommodated within practical limits to maintain consistency in the final product.


Claims
  • 1. A continuous mixer for mixing incoming product streams to yield a final product stream of desired characteristics, said mixer comprising: an elongated housing having a plurality of inputs for receiving said incoming product streams, and an output for said final product; and a plurality of elongated, side-by-side, axially rotatable mixing screws located within said housing and extending along the length thereof for conveying and mixing said incoming product streams and for moving said final product out said output, at least a pair of said mixing screws having a central section and a series of mixing elements projecting outwardly from said central section, said mixing elements each having a base and a plurality of converging sidewall surfaces extending outwardly from said base to present an outer end having a surface area less than the surface area of the base, at least certain of said elements being located along at least a portion of said central section.
  • 2. The mixer of claim 1, said mixing elements being oriented in a helical pattern.
  • 3. The mixer of claim 2, each of said screws having an input section adjacent said inputs and presenting helical flighting along the length thereof, and an output section extending from the end of said input section toward said housing output, said mixing elements being located on said output section.
  • 4. The mixer of claim 3, the flighting of said input sections being intermeshed, and the mixing elements of the output sections of said screws also being intermeshed.
  • 5. The mixer of claim 2, each of said mixing elements being generally pyramidal in shape, presenting a base which is generally diamond-shaped in plan configuration with four outwardly extending and converging sidewall surfaces terminating in a apex-like outer end.
  • 6. The mixer of claim 5, the diamond-shaped base having two pairs of substantially parallel base surfaces, one of said base surface pairs having a length greater than the other of said base surface pairs.
  • 7. The mixer of claim 6, the base surfaces of said one surface pairs lying along respective, parallel first helices of a first, substantially equal pitch, and the base surfaces of said other surface pairs lying along respective, parallel, second helices of a second, substantially equal pitch, said second pitch being smaller than said first pitch.
  • 8. The mixer of claim 1, said housing including a plurality of injection ports spaced along the length thereof to permit injection of materials into the housing during operation of the mixer.
  • 9. The mixer of claim 1, said housing having a series of sensor ports spaced along the length thereof to permit installation of one or more sensors.
  • 10. The mixer of claim 1, said housing including an outer shell and an inner housing wall to cooperatively define a passageway therebetween, there being an inlet and an outlet in communication with said passageway.
  • 11. The mixer of claim 1, there being a pair of said inputs located in opposed relationship adjacent one end of said housing.
  • 12. A screw set for a mixer, comprising: a pair of elongated, side-by-side, axially rotatable mixing screws each having a central section and a series of mixing elements projecting outwardly from said central section, said mixing elements each having a base and a plurality of converging sidewall surfaces extending outwardly from said base to present an outer end having a surface area less than the surface area of the base, at least certain of said elements being oriented in a helical pattern along at least a portion of said central section.
  • 13. The screw set of claim 12, each of said screws having an input section adjacent said inputs and presenting helical flighting along the length thereof, and an output section extending from the end of said input section, said mixing elements being located on said output section.
  • 14. The screw set of claim 13, the flighting of said input sections, of said screws being intermeshed, and the mixing elements of the output sections of said screws also being intermeshed.
  • 15. The screw set of claim 12, each of said mixing elements being generally pyramidal in shape, presenting a base which is generally diamond-shaped in plan configuration with four outwardly extending and converging sidewall surfaces terminating in a apex-like outer end.
  • 16. The screw set of claim 13, the diamond-shaped base having two pairs of substantially parallel base surfaces, one of said base surface pairs having a length greater than the other of said base surface pairs.
  • 17. The screw set of claim 16, the base surfaces of said one surface pairs lying along respective, parallel first helices of a first, substantially equal pitch, and the base surfaces of said other surface pairs lying along respective, parallel, second helices of a second, substantially equal pitch, said second pitch being smaller than said first pitch.
  • 18. A method of mixing incoming product streams to yield a final product stream, said method comprising the steps of: providing a mixer in accordance with claim 1;passing a plurality of incoming product streams into said housing through said inputs; rotating said mixing screws in order to convey and mix said incoming product streams along the length of said housing, and for moving final product out said housing output.
  • 19. The method of claim 18, said incoming product streams comprising meat products of different fat/lean ratios.
  • 20. The method of claim 18, including the step of injecting a coolant into said housing during rotation of said mixing screws.
  • 21. The method of claim 18, including the step of measuring the temperature within said housing during passage of said incoming product streams therethrough.
  • 22. The method of claim 18, including the step of passing an external coolant around said housing for indirectly cooling the product therein.
  • 23. A method of controlling a mixing system designed to receive incoming product streams of different characteristics to yield a final product stream, said system including a plurality of incoming product lines each operably coupled with a continuous mixer, each of said incoming product lines including an incoming product source, a product pump and an incoming product analyzer, said method comprising the steps of: operating said product line pumps to generate said incoming product streams; analyzing each of said incoming product streams to determine a desired input characteristic thereof; adjusting the operational speed of said pumps in response to said analyzing steps to create respective incoming product streams having said desired input characteristic at a substantially constant magnitude for each incoming product stream; after said adjusting step, directing said incoming product streams to said mixer, and operating the mixer to create a final product stream; analyzing said final product stream to determine a desired output characteristic thereof; and altering the operational speed of one or more of said pumps as necessary to achieve and maintain said desired output characteristic in said final product stream, in response to said final product analysis step.
  • 24. The method of claim 23, each of said incoming product streams comprising meat.
  • 25. The method of claim 24, said desired input characteristic of said incoming product streams being the fat/lean ratio thereof.
  • 26. The method of claim 23, the desired output characteristic of said final product stream being the fat/lean ratio thereof.