System for improving diastolic dysfunction

Information

  • Patent Grant
  • 7837610
  • Patent Number
    7,837,610
  • Date Filed
    Wednesday, August 2, 2006
    17 years ago
  • Date Issued
    Tuesday, November 23, 2010
    13 years ago
Abstract
An elastic structure is introduced percutaneously into the left ventricle and attached to the walls of the ventricle. Over time the structure bonds firmly to the walls via scar tissue formation. The structure helps the ventricle expand and fill with blood during the diastolic period while having little affect on systolic performance. The structure also strengthens the ventricular walls and limits the effects of congestive heart failure, as the maximum expansion of the support structure is limited by flexible or elastic members.
Description
FIELD OF THE INVENTION

This application relates to cardiac surgery, and in particular to methods of treating heart failure such as congestive heart failure and diastolic dysfunction by percutaneous surgery.


BACKGROUND OF THE INVENTION

Diastolic dysfunction (i.e., insufficient expansion of the left ventricle during the diastolic phase) and general deterioration of the left ventricular performance are very common problems, affecting about 5 million people in the US alone. The problems can be triggered by a myocardial infraction or develop slowly over time. More background data on congestive heart failure can be found on the internet at: http://healthlink.mcw.edu/article/928348606.html and many other medical sources.


Prior art treatment can be classified generally into three methods: surgery to change the shape of the left ventricle, wrapping the heart in an elastic net, or introducing a reinforcing structures via a catheter into the left ventricle. The first two methods require extensive surgery. The prior art minimally invasive or percutaneous procedures such as disclosed by US patent applications 2005/0015109; 2004/0243170; 2004/0249408 and 2006/0025800 addressed the need of strengthening the heart wall to resist remodeling and enlargement due to systolic pressure, but do not improve diastolic expansion to allow better filling of the left ventricle with blood. In many cases prior art methods actually sacrifice diastolic function in exchange for preventing the abnormal enlargement of the left ventricle that often follows myocardial infraction. For example, wrapping the heart in an elastic net will assist systolic action and will limit left ventricle enlargement, but will interfere with diastolic function as it will require more force to expand the left ventricle and stretch the net. The same is true for any rigid internal reinforcement.


SUMMARY OF THE INVENTION

As taught herein a system may assist diastolic function, the system being able to fit through a catheter and be installed percutaneously. The system may also limit the enlargement of the left ventricle, thus solving two major problem of congestive heart failure in a single percutaneous procedure. Further advantages will become clear by studying the disclosure and the drawings.


An elastic structure is introduced percutaneously into the left ventricle and attached to the walls of the ventricle. Over time the structure bonds firmly to the walls via scar tissue formation. The structure helps the ventricle expand and fill with blood during the diastolic period while having little affect on systolic performance. The structure also strengthens the ventricular walls and limits the effects of congestive heart failure, as the maximum expansion of the support structure is limited by flexible or elastic members.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross sectional view of a heart showing an embodiment a cardiac device deployed in a left ventricle of the heart.



FIG. 2-A is a cross sectional view of the left ventricle of the heart with the device of FIG. 1 still in a catheter.



FIG. 2-B is a cross sectional view of the left ventricle of the heart after deployment of the device of FIG. 1 therein.



FIG. 3 is a perspective view of an embodiment of the invention.



FIG. 4 is a cross sectional view of a left ventricle of a heart showing a device being retrieved therefrom using a catheter.



FIGS. 5-A, 5-B, 5-C and 5-D show different embodiments of the cardiac device, according to further illustrated embodiments.





DETAILED DESCRIPTION OF THE INVENTION

Various embodiments of a cardiac device comprise an elastic structure that it introduced into a left ventricle of a heart and assists diastolic function by gently trying to expand the left ventricle. The elastic force is a small fraction of the force during systolic contraction, thus the device has little effect on the systolic pressure or ejected volume. It is well known that diastolic dysfunction is a major cause of cardiovascular failure, as it is far more common than systolic dysfunction. After some time (weeks to months) scar tissue permanently binds the elastic structure of the device to the ventricular wall. At this point the device also prevents ventricular enlargement, acting as reinforcement to the ventricular wall and limiting the maximum size of the left ventricle. Since the enlargement of the left ventricle as a result of congestive heart failure or infarct is gradual, scar tissue will have a chance to form before full bond strength is required between the elastic structure of the device and the ventricular wall.



FIG. 1 shows a typical deployment of a cardiac device 4 according to one illustrated embodiment of the invention. Deployment is performed via a catheter 1 inserted through the aorta into a left ventricle 2 of a heart 3. Any method of accessing the left ventricle can be used, such as trans-septal or via the apex of the left ventricle. The catheter size is in the same range as other percutaneous cardiac procedures, using sizes in the range of 18 Fr to 28 Fr (about 6 to 9 mm). The cross section also shows the papillary muscles 5 and device 4.



FIG. 2-A shows the device 4 still inside catheter 1. Device 4 is held by flexible cable 7 which is used to push the device 4 through the catheter 1, typically via a hemostatic seal outside the body (not shown). Typically a guide wire 11 is used to guide the catheter 1 into the left ventricle 2.



FIG. 2-B shows the device 4 after deployment in the left ventricle 2 of a heart 3. The device 4 expands elastically to fill the left ventricle 2. Ventricular contractions help embed a number of barbs 8 into a ventricular wall 6. Over time, scar tissue 6′ forms a permanent bond between the device 4 and the ventricular wall 6. The maximum opening of the device 4 is limited not only by the ventricular wall 6 but by flexible cross-members 9 and 10. It is desired to connect members 9 across the device 4 rather than between adjacent arms (as shown by reference numeral 10) as this allows the cross member to clear the papillary muscles, allowing the device 4 to cover a larger part of the left ventricle 2. As seen in FIG. 2B, the papillary muscles 5 can fit between two elastic members of device 4.



FIG. 3 provides a more detailed view of the device of FIGS. 1, 2-A and 2-B. The cardiac device 4 has two pairs of elastic arms 4′ and 4″. The arms 4′ and 4″ are equipped with barbs 8 and cross members 9 and 10. The arms 4′ and 4″ can be made from any durable elastic material such Nitinol, spring tempered stainless steel, plated beryllium copper or polymeric material. For added elasticity small loops 12 can be added. At an apex of the device 4 a connector 14, such as a thread, is used for temporary attachment to the flexible cable 7 via a thread 13. Cross members 9 and 10 can be flexible steel cables, polymeric cables, flexible ribbons or similar flexible members. The purpose of members 9 and 10 is to limit the maximum dilation of the ventricle 2 and stop ventricular enlargement (after members 4′ and 4″ bond to ventricle wall 6 by scar tissue 6′).


The number of flexible members 4′ and 4″ of device 4 and number of cross members 9, 10 can vary, the preferred embodiment having from three to twelve elastic members 9, 10. Cross members 9, 10 can connect adjacent elastic members 4′ and 4″ as members 10 do, or connect opposing members 4′ and 4″ as members 9 do. The arrangement shown in FIG. 3 is desired in order to allow elastic members 4′ and 4″ to extend beyond the papillary muscles 5 without cross members 9 touching the papillary muscles 5 or mitral valve cords (also known as chordae tendineae). Like any spring, the force that elastic members 4′ and 4″ exert on ventricle wall 6 is F=k(x+a), “k” being the spring constant, “a” the preload (amount of spring preload beyond the fully dilated position) and “x” the ventricular wall movement. The spring constant k is selected not to interfere with systolic function while still helping diastolic filling. By the way of example, a total force the ventricular wall 6 is capable of exerting on each one of the elastic members 4′ and 4″ is about 20-30 Nt (about 2-3 Kg) and the average movement during contraction is about 1-2 cm. In order to limit the effect on systolic operation the total force is chosen to be below 10% of systolic force, or about 2 Nt. If a preload of 2 cm is chosen, the spring constant can be calculated from the equation: 2 Nt=k(0.02 m+0.02 m), k=50 Nt/m. The size (i.e., diameter) of wire forming elastic members 4′ and 4″ is determined by the spring constant k. The size is typically in the range of 0.5-1 mm.


In order to place the device 4 correctly relative to the papillary muscles 5 the orientation of the device 4 inside the left ventricle 6 needs to be known. This can be done by fluoroscopy, ultrasound or by other location methods such as magnetizing elastic members 4′ but not 4″. This creates a north and south pole 15 which can be detected from outside the body by a magnetometer (or even a very sensitive magnetic compass).


The design of the device 4 allows aborting the deployment at any stage and retrieving the device 4. This is illustrated in FIG. 4. A flexible cable 7 terminating in a hook 16 is introduced via a catheter 1.


Cross members 9 are snagged by the hook 16 and the device 4 is pulled back into the catheter 1. If retrieval is desirable the two cross members 9 should be permanently joined at a cross-over point 18. This allows the hook 16 to self-center regardless of the point at which the hook 16 snagged cross members 9 and regardless whether the hook 16 has snagged one or both cross members 9. Obviously the retrieval is much more difficult once scar tissue 6′ has developed.



FIGS. 5-A through 5-D offer a more detailed close-up view of the construction of the device 4. FIG. 5-A shows the elastic elements 4′ and 4″ of the device 4 made of spring wire, cross members 10 made of thin stainless steel cable and barb 8 made of steel wire spot welded to the remainder of the device 4. If needed, a load spreading structure 17 can be added. The load spreading structure 17 can be made of bent wire, spot welded to remainder of the device 4 as shown, or can take the form of a polymeric strip. The complete device 4 can be coated with an anti-coagulant coating, drug eluting coating or any beneficial coating well known from the art of stents.



FIG. 5-B shows an alternate illustrated embodiment, cut out from a single sheet of elastic material and bent to shape. This mode of construction particularly advantageous when device 4 is made of Nitinol, as Nitinol is difficult to join. As before, an optional load spreading structure 17 can be added.



FIG. 5-C shows an embodiment of a device 4 that does not use discrete barbs but providing elastic members 4 with a special surface finish to promote rapid bonding with ventricular wall 6. Some examples of such finishes are: porous surfaces, surfaces coated with biological adhesives, surfaces coated with miniature barbs similar to the well known Velcro® fastener (generically termed hook and loop fastener), growth-promoting drug coating etc. It is known in the art that velour-like finishes promote tissue infiltration and greatly increase bonding strength. Test results are listed in U.S. Pat. No. 4,164,046 hereby incorporated by reference.



FIG. 5-D shows an embodiment in which the cross members are replaced with a continuous layer of a flexible mesh or flexible hemostatic material 18, such as Dacron fabric. When the layer 18 is hemostatic the device 4 can also seal an aneurysm or puncture in the ventricular wall 6, while still providing the other stated benefits. This is particularly desirable when the ventricular wall 6 is already significantly thinned by enlargement.


While the examples shown use a catheter 1 to enter the left ventricle 6 via the mitral valve, it is obvious that various other techniques may be employed to deploy the device 4. The device 4 can be installed in the left ventricle 6 also via the aortic valve, by piercing an apex of the left ventricle 6 or by an incision at any convenient point. It can be used percutaneously or during conventional cardiac surgery.

Claims
  • 1. A method of treating diastolic dysfunction as well as ventricular enlargement, comprising: inserting a structure having a plurality of elastic arms physically coupled together proximate one end of the elastic arms and at least one flexible cross-member expansion limiter structure coupled to a respective pair of non-successively adjacent ones of the elastic arms across the structure to limit an expansion of the elastic arms into a left ventricle of a heart; andpositioning the structure such that portions of the elastic arms of the structure when expanded contact respective portions of a wall that forms the left ventricle at locations spaced relatively above a point at which a set of papillary muscles extend from the wall which is spaced relatively above an apex of the left ventricle and a portion of the structure is spaced relatively below the point at which the set of papillary muscles extend from the wall that forms the left ventricle without either the elastic arms or the at least one flexible cross-member expansion limiter structure interfering with the papillary muscles or with a number of chordae tendineae that extend from the papillary muscles, wherein the elastic arms assist an expansion of the left ventricle during a diastolic phase of a cardiac cycle and the expansion limiter structure prevents a ventricular enlargement.
  • 2. The method of claim 1, further comprising: causing portions of the elastic arms to attach to respective portions of the wall that forms the left ventricle at the locations spaced relatively above the point at which the set of papillary muscles extend from the wall.
  • 3. The method of claim 1, further comprising: permanently bond the structure to ventricular walls by tissue formation having a bond strength sufficient to resist ventricular enlargement over time.
  • 4. The method of claim 1 wherein inserting the structure includes delivering the structure via a catheter.
  • 5. The method of claim 1, further comprising: retrieving the structure from the left ventricle via a catheter.
  • 6. The method of claim 1 wherein inserting a structure includes inserting the structure having at least some parts of the structure made of a flexible metal wire.
  • 7. The method of claim 1 wherein inserting a structure includes inserting a structure having at least some parts made of a polymeric material.
  • 8. The method of claim 1 wherein inserting a structure includes inserting a structure which bears a biologically beneficial coating.
  • 9. The method of claim 1, further comprising: orienting the structure to clear the papillary muscles.
  • 10. The method of claim 1 wherein the structure initially attaches itself to the walls of the left ventricle with sharp barbs.
  • 11. The method of claim 1 wherein the structure initially attaches itself to the walls of the left ventricle by elastic pressure.
  • 12. The method of claim 1 wherein inserting a structure includes inserting the structure having the expansion limiter structure spaced relatively inwardly from a distal end of the elastic arms.
  • 13. A cardiac medical device, comprising: a plurality of elastic arms physically coupled together, the elastic arms movable between a first configuration in which the medical device is sized to be inserted into a left ventricle of a heart and a second configuration in which the plurality of elastic arms physically engage portions of a wall that forms the left ventricle to assist an expansion of the left ventricle during a diastolic phase of a cardiac cycle; andat least one flexible cross-member expansion limiter structure coupled to a respective pair of the elastic arms across the structure to limit an expansion of the elastic arms to prevent a ventricular enlargement, wherein the elastic arms of the pair of elastic arms that are coupled by the flexible cross-member are not successively adjacent to one another,wherein the elastic arms are sized to contact respective portions of the wall at locations spaced relatively above a point at which a set of papillary muscles extend from the wall without either the elastic arms or the at least one expansion limiter structure interfering with the papillary muscles or with a number of chordae tendineae that extend from the papillary muscles and with a portion of the device positioned relatively below the point at which the set of papillary muscles extend from the wall.
  • 14. The cardiac medical device of claim 13 wherein the plurality of elastic arms and the at least one flexible cross-member are configurable to be delivered a catheter.
  • 15. The cardiac medical device of claim 13, further comprising: a coupling structure that allows the cardiac medical device to be retrieving the structure from the left ventricle via a catheter.
  • 16. The cardiac medical device of claim 13 wherein at least one of the plurality of elastic arms and the at least one flexible cross-member are made of a flexible metal wire.
  • 17. The cardiac medical device of claim 13 wherein at least one of the plurality of elastic arms or the at least one flexible cross-member are made of a polymeric material.
  • 18. The cardiac medical device of claim 13 wherein at least one of the plurality of elastic arms or the at least one flexible cross-member bear a biologically beneficial coating.
  • 19. The cardiac medical device of claim 13 wherein at least one of the plurality of elastic arms includes a sharp barb receivable in the wall.
  • 20. The cardiac medical device of claim 13 wherein the flexible cross-member expansion limiter structure is spaced relatively inwardly from a distal end of the elastic arms.
US Referenced Citations (225)
Number Name Date Kind
4041955 Kelly et al. Aug 1977 A
4114202 Roy et al. Sep 1978 A
4164046 Cooley Aug 1979 A
4240441 Khalil Dec 1980 A
4263680 Reul et al. Apr 1981 A
4490859 Black et al. Jan 1985 A
4543090 McCoy Sep 1985 A
4794912 Lia Jan 1989 A
4850957 Summers Jul 1989 A
4890602 Hake Jan 1990 A
4890612 Kensey Jan 1990 A
4893613 Hake Jan 1990 A
4921499 Hoffman et al. May 1990 A
5021059 Kensey et al. Jun 1991 A
5047047 Yoon Sep 1991 A
5100418 Yoon et al. Mar 1992 A
5104399 Lazarus Apr 1992 A
5122137 Lennox Jun 1992 A
5192314 Daskalakis Mar 1993 A
5258000 Gianturco Nov 1993 A
5312435 Nash et al. May 1994 A
5312439 Loeb May 1994 A
5320632 Heidmueller Jun 1994 A
5364408 Gordon Nov 1994 A
5366443 Eggers et al. Nov 1994 A
5366459 Yoon Nov 1994 A
5368601 Sauer et al. Nov 1994 A
5450860 O'Connor Sep 1995 A
5478353 Yoon Dec 1995 A
5531760 Alwafaie Jul 1996 A
5593424 Northrup III Jan 1997 A
5713896 Nardella Feb 1998 A
5716397 Myers Feb 1998 A
5720726 Marcadis et al. Feb 1998 A
5728114 Evans et al. Mar 1998 A
5782861 Cragg et al. Jul 1998 A
5800495 Machek et al. Sep 1998 A
5824066 Gross Oct 1998 A
5836990 Li Nov 1998 A
5865791 Whayne et al. Feb 1999 A
5871505 Adams et al. Feb 1999 A
5919207 Taheri Jul 1999 A
5961440 Schweich et al. Oct 1999 A
5964782 Lafontaine et al. Oct 1999 A
5984950 Cragg et al. Nov 1999 A
6001069 Tachibana et al. Dec 1999 A
6024096 Buckberg Feb 2000 A
6104944 Martinelli Aug 2000 A
6113610 Poncet Sep 2000 A
6132438 Fleischman et al. Oct 2000 A
6203554 Roberts Mar 2001 B1
6210432 Solem et al. Apr 2001 B1
6214032 Loeb et al. Apr 2001 B1
6221103 Melvin Apr 2001 B1
6221104 Buckberg et al. Apr 2001 B1
6241747 Ruff Jun 2001 B1
6248124 Pedros et al. Jun 2001 B1
6258258 Sartori et al. Jul 2001 B1
6287321 Jang Sep 2001 B1
6304769 Arenson et al. Oct 2001 B1
6306135 Ellman et al. Oct 2001 B1
6332864 Schweich, Jr. et al. Dec 2001 B1
6346105 Tu et al. Feb 2002 B1
6358258 Arcia et al. Mar 2002 B1
6360749 Jayaraman Mar 2002 B1
6379366 Fleischman et al. Apr 2002 B1
6391048 Ginn et al. May 2002 B1
6391054 Carpentier et al. May 2002 B2
6402680 Mortier et al. Jun 2002 B2
6402781 Langberg et al. Jun 2002 B1
6406420 McCarthy et al. Jun 2002 B1
6409760 Melvin Jun 2002 B1
6416459 Haindl Jul 2002 B1
6436052 Nikolic et al. Aug 2002 B1
6450171 Buckberg et al. Sep 2002 B1
6475223 Werp et al. Nov 2002 B1
6485489 Teirstein et al. Nov 2002 B2
6506210 Kanner Jan 2003 B1
6537198 Vidlund et al. Mar 2003 B1
6537314 Langberg et al. Mar 2003 B2
6540670 Hirata et al. Apr 2003 B1
6551312 Zhang et al. Apr 2003 B2
6569160 Goldin et al. May 2003 B1
6569198 Wilson et al. May 2003 B1
6575971 Hauck et al. Jun 2003 B2
6589208 Ewers et al. Jul 2003 B2
6626930 Allen et al. Sep 2003 B1
6632238 Ginn et al. Oct 2003 B2
6662034 Segner et al. Dec 2003 B2
6723038 Schroeder et al. Apr 2004 B1
6726704 Loshakove et al. Apr 2004 B1
6726716 Marquez Apr 2004 B2
6743241 Kerr Jun 2004 B2
6749622 McGuckin, Jr. et al. Jun 2004 B2
6760616 Hoey et al. Jul 2004 B2
6780197 Roe et al. Aug 2004 B2
6797001 Mathis et al. Sep 2004 B2
6800090 Alferness et al. Oct 2004 B2
6852076 Nikolic et al. Feb 2005 B2
6855143 Davison et al. Feb 2005 B2
6890353 Cohn et al. May 2005 B2
6899674 Viebach et al. May 2005 B2
6908478 Alferness et al. Jun 2005 B2
6949122 Adams et al. Sep 2005 B2
6960229 Mathis et al. Nov 2005 B2
6986775 Morales et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6994093 Murphy Feb 2006 B2
6997951 Solem et al. Feb 2006 B2
7025776 Houser et al. Apr 2006 B1
7050848 Hoey et al. May 2006 B2
7052487 Cohn et al. May 2006 B2
7144363 Pai et al. Dec 2006 B2
7177677 Kaula et al. Feb 2007 B2
7186210 Feld et al. Mar 2007 B2
7189202 Lau et al. Mar 2007 B2
7279007 Nikolic et al. Oct 2007 B2
7300435 Wham et al. Nov 2007 B2
7303526 Sharkey et al. Dec 2007 B2
7507252 Lashinski et al. Mar 2009 B2
7513867 Lichtenstein Apr 2009 B2
20010003158 Kensey et al. Jun 2001 A1
20010005787 Oz et al. Jun 2001 A1
20010018611 Solem et al. Aug 2001 A1
20010020126 Swanson et al. Sep 2001 A1
20010044568 Langberg et al. Nov 2001 A1
20020016628 Langberg et al. Feb 2002 A1
20020026092 Buckberg et al. Feb 2002 A1
20020055775 Carpentier et al. May 2002 A1
20020087173 Alferness et al. Jul 2002 A1
20020115944 Mendes et al. Aug 2002 A1
20020161394 Macoviak et al. Oct 2002 A1
20020161406 Silvian Oct 2002 A1
20020169359 McCarthy et al. Nov 2002 A1
20020169360 Taylor et al. Nov 2002 A1
20020169504 Alferness et al. Nov 2002 A1
20020183836 Liddicoat et al. Dec 2002 A1
20020183841 Cohn et al. Dec 2002 A1
20020188170 Santamore et al. Dec 2002 A1
20020198603 Buckberg et al. Dec 2002 A1
20030045896 Murphy et al. Mar 2003 A1
20030050682 Sharkey et al. Mar 2003 A1
20030050685 Nikolic et al. Mar 2003 A1
20030069570 Witzel et al. Apr 2003 A1
20030069636 Solem et al. Apr 2003 A1
20030078465 Pai et al. Apr 2003 A1
20030078671 Lesniak et al. Apr 2003 A1
20030105384 Sharkey et al. Jun 2003 A1
20030105520 Alferness et al. Jun 2003 A1
20030109770 Sharkey et al. Jun 2003 A1
20030149333 Alferness Aug 2003 A1
20030163191 Nikolic et al. Aug 2003 A1
20030220667 van der Burg et al. Nov 2003 A1
20030229395 Cox Dec 2003 A1
20040002626 Feld et al. Jan 2004 A1
20040054279 Hanley Mar 2004 A1
20040133273 Cox Jul 2004 A1
20040138744 Lashinski et al. Jul 2004 A1
20040153146 Lashinski et al. Aug 2004 A1
20040158321 Reuter et al. Aug 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040215232 Belhe et al. Oct 2004 A1
20040243170 Suresh et al. Dec 2004 A1
20040249408 Murphy et al. Dec 2004 A1
20040249453 Cartledge et al. Dec 2004 A1
20040267358 Reitan Dec 2004 A1
20050004668 Aklog et al. Jan 2005 A1
20050015109 Lichtenstein Jan 2005 A1
20050054938 Wehman et al. Mar 2005 A1
20050055089 Macoviak et al. Mar 2005 A1
20050060030 Lashinski et al. Mar 2005 A1
20050064665 Han Mar 2005 A1
20050080402 Santamore et al. Apr 2005 A1
20050096047 Haberman et al. May 2005 A1
20050107723 Wehman et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050125030 Forsberg et al. Jun 2005 A1
20050137700 Spence et al. Jun 2005 A1
20050149014 Hauck et al. Jul 2005 A1
20050149114 Cartledge et al. Jul 2005 A1
20050154252 Sharkey et al. Jul 2005 A1
20050182365 Hennemann et al. Aug 2005 A1
20050187620 Pai et al. Aug 2005 A1
20050197692 Pai et al. Sep 2005 A1
20050197693 Pai et al. Sep 2005 A1
20050197694 Pai et al. Sep 2005 A1
20050197716 Sharkey et al. Sep 2005 A1
20050209636 Widomski et al. Sep 2005 A1
20050216052 Mazzocchi et al. Sep 2005 A1
20050216054 Widomski et al. Sep 2005 A1
20050240249 Tu et al. Oct 2005 A1
20050251116 Steinke et al. Nov 2005 A1
20050267574 Cohn et al. Dec 2005 A1
20060004424 Loeb et al. Jan 2006 A1
20060014998 Sharkey et al. Jan 2006 A1
20060015002 Moaddeb et al. Jan 2006 A1
20060015003 Moaddes et al. Jan 2006 A1
20060015038 Weymarn-Scharli Jan 2006 A1
20060025800 Suresh Feb 2006 A1
20060030881 Sharkey et al. Feb 2006 A1
20060135968 Schaller Jun 2006 A1
20060135970 Schaller Jun 2006 A1
20060184242 Lichtenstein Aug 2006 A1
20060199995 Vijay Sep 2006 A1
20060229491 Sharkey et al. Oct 2006 A1
20060235286 Stone et al. Oct 2006 A1
20060241334 Dubi et al. Oct 2006 A1
20060264980 Khairkhahan et al. Nov 2006 A1
20060276683 Feld et al. Dec 2006 A1
20060281965 Khairkhahan et al. Dec 2006 A1
20060293698 Douk Dec 2006 A1
20070016068 Grunwald et al. Jan 2007 A1
20070118215 Moaddeb May 2007 A1
20070161846 Nikolic et al. Jul 2007 A1
20070198058 Gelbart et al. Aug 2007 A1
20070213578 Khairkhahan et al. Sep 2007 A1
20070213815 Khairkhahan et al. Sep 2007 A1
20070250160 Rafiee Oct 2007 A1
20070270688 Gelbart et al. Nov 2007 A1
20080004643 To et al. Jan 2008 A1
20080004697 Lichtenstein et al. Jan 2008 A1
20080045778 Lichtenstein et al. Feb 2008 A1
20080071298 Khairkhahan et al. Mar 2008 A1
20080086164 Rowe Apr 2008 A1
20090192539 Lichtenstein Jul 2009 A1
Foreign Referenced Citations (17)
Number Date Country
2082690 Jul 2009 EP
9015582 Dec 1990 WO
0178625 Oct 2001 WO
03015611 Feb 2003 WO
03077800 Sep 2003 WO
2004012629 Feb 2004 WO
2004047679 Jun 2004 WO
2004084746 Oct 2004 WO
2004100803 Nov 2004 WO
2005046520 May 2005 WO
2005070330 Aug 2005 WO
2005102181 Nov 2005 WO
2006017809 Feb 2006 WO
2006135747 Dec 2006 WO
2006135749 Dec 2006 WO
2007021647 Feb 2007 WO
2007115390 Oct 2007 WO
Related Publications (1)
Number Date Country
20080045778 A1 Feb 2008 US