System for informational magnetic feedback in adjustable implants

Information

  • Patent Grant
  • 11246694
  • Patent Number
    11,246,694
  • Date Filed
    Tuesday, April 28, 2015
    9 years ago
  • Date Issued
    Tuesday, February 15, 2022
    2 years ago
Abstract
According to some embodiments, systems and methods are provided for non-invasively detecting the force generated by a non-invasively adjustable implantable medical device and/or a change in dimension of a non-invasively adjustable implantable medical device. Some of the systems include a non-invasively adjustable implant, which includes a driven magnet, and an external adjustment device, which includes one or more driving magnets and one or more Hall effect sensors. The Hall effect sensors of the external adjustment device are configured to detect changes in the magnetic field between the driven magnet of the non-invasively adjustable implant and the driving magnet(s) of the external adjustment device. Changes in the magnetic fields may be used to calculate the force generated by and/or a change in dimension of the non-invasively adjustable implantable medical device.
Description
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.


BACKGROUND

Scoliosis is a general term for the sideways (lateral) curving of the spine, usually in the thoracic or thoracolumbar region. Scoliosis is commonly broken up into different treatment groups, Adolescent Idiopathic Scoliosis, Early Onset Scoliosis and Adult Scoliosis.


Adolescent Idiopathic Scoliosis (AIS) typically affects children between ages 10 and 16, and becomes most severe during growth spurts that occur as the body is developing. One to two percent of children between ages 10 and 16 have some amount of scoliosis. Of every 1000 children, two to five develop curves that are serious enough to require treatment. The degree of scoliosis is typically described by the Cobb angle, which is determined, usually from x-ray images, by taking the most tilted vertebrae above and below the apex of the curved portion and measuring the angle between intersecting lines drawn perpendicular to the top of the top vertebra and the bottom of the bottom vertebra. The term idiopathic refers to the fact that the exact cause of this curvature is unknown. Some have speculated that scoliosis occurs during rapid growth phases when the ligamentum flavum of the spine is too tight and hinders symmetric growth of the spine. For example, as the anterior portion of the spine elongates faster than the posterior portion, the thoracic spine begins to straighten, until it curves laterally, often with an accompanying rotation. In more severe cases, this rotation actually creates a noticeable deformity, in which one shoulder is lower than the other. Currently, many school districts perform external visual assessment of spines, for example in all fifth grade students. For those students in whom an “S” shape or “C” shape is identified, instead of an “I” shape, a recommendation is given to have the spine examined by a physician, and commonly followed-up with periodic spinal x-rays.


Typically, patients with a Cobb angle of 20° or less are not treated, but are periodically monitored, often with subsequent x-rays. Patients with a Cobb angle of 40° or greater are usually recommended for fusion surgery. It should be noted that many patients do not receive this spinal assessment, for numerous reasons. Many school districts do not perform this assessment, and many children do not regularly visit a physician. So, the curve often progresses rapidly and severely. There is a large population of grown adults with untreated scoliosis, in extreme cases with a Cobb angle as high as or greater than 90°. Many of these adults, though, do not experience pain associated with this deformity, and live relatively normal lives, though oftentimes with restricted mobility and motion, In AIS, the ratio of females to males for curves under 10° is about one to one. However, at angles above 30°, females outnumber males by as much as eight to one. Fusion surgery can be performed on AIS patients or on adult scoliosis patients. In a typical posterior fusion surgery, an incision is made down the length of the back and Titanium or stainless steel straightening rods are placed along the curved portion of the spine. These rods are typically secured to the vertebral bodies, for example with hooks or bone screws (e.g., pedicle screws) in a manner that allows the spine to be straightened. Usually the intervertebral disks are removed and bone graft material is placed to create the fusion. If this is autologous material, the bone graft material is harvested from the patient's hip via a separate incision.


Alternatively, the fusion surgery may be performed anteriorly. Lateral and anterior incisions are made for access. Usually, one of the lungs is deflated in order to allow access to the spine. In a less-invasive version of the anterior procedure, instead of a single long incision, approximately five incisions, each about three to four cm long, are made in the intercostal spaces (between the ribs) on one side of the patient. In one version of this minimally invasive surgery, tethers and bone screws are placed and secured to the vertebra on the anterior convex portion of the curve. Clinical trials are being performed that use staples in place of the tether/screw combination. One advantage of this surgery, by comparison to the posterior approach is that the scars from the incisions are not as dramatic, though they are still located in a frequently visible area, (for example when a bathing suit is worn). Staples have experienced difficulty in clinical trials as they tend to pull out of the bone when a critical stress level is reached.


In some cases, after surgery, the patient will wear a protective brace for a few months as the fusing process occurs. Once the patient reaches spinal maturity, it is difficult to remove the rods and associated hardware in a subsequent surgery as the fusion of the vertebra usually incorporates the rods themselves. Standard practice is to leave the implants in for life. With either of these two surgical methods, after fusion, the patient's spine is straight, but depending on how many vertebrae were fused, there are often limitations in the degree of spinal flexibility, both in bending and twisting. As fused patients mature, the fused section can impart large stresses on the adjacent non-fused vertebra, and often other problems, including pain, can occur in these areas, sometimes necessitating further surgery. This tends to be in the lumbar portion of the spine that is prone to problems in aging patients. Many physicians are now interested in fusionless surgery for scoliosis, which may be able to eliminate some of the drawbacks of fusion.


One group of patients in which the spine is especially dynamic is the subset known as Early Onset Scoliosis (EOS), which typically occurs in children before the age of five, and more often in boys than in girls. While this is a comparatively uncommon condition, occurring in only about one or two out of 10,000 children, it can be severe, affecting the normal development of internal organs. Because of the fact that the spines of these children will still grow a large amount after treatment, non-fusion distraction devices known as growing rods and a device known as the VEPTR—Vertical Expandable Prosthetic Titanium Rib (“Titanium Rib”) have been developed. These devices are typically adjusted approximately every six months, to match the child's growth, until the child is at least eight years old, sometimes until they are 15 years old. Each adjustment requires a surgical incision to access the adjustable portion of the device. Because the patients may receive the device at an age as young as six months, this treatment may require a large number of surgeries thereby increasing the likelihood of infection for these patients.


The treatment methodology for AIS patients with a Cobb angle between 20° and 40° is controversial. Many physicians prescribe a brace (for example, the Boston Brace), that the patient must wear on their body and under their clothes 18 to 23 hours a day until they become skeletally mature, for example until age 16. Because these patients are all passing through their socially demanding adolescent years, it may be a serious prospect to be forced with the choice of: 1) either wearing a somewhat bulky brace that covers most of the upper body; 2) having fusion surgery that may leave large scars and also limit motion; 3) or doing nothing and running the risk of becoming disfigured and and/or disabled. It is commonly known that patients have hidden their braces, (in order to escape any related embarrassment) for example, in a bush outside of school. Patient compliance with braces has been so problematic that special braces have been designed to sense the body of the patient, and monitor the amount of time per day that the brace is worn. Even so, patients have been known to place objects into unworn braces of this type in order to fool the sensor. In addition with inconsistent patient compliance, many physicians believe that, even when used properly, braces are not effective in curing scoliosis. These physicians may agree that bracing can possibly slow, or even temporarily stop, curve (Cobb angle) progression, but they have noted that the scoliosis progresses rapidly, to a Cobb angle more severe than it was at the beginning of treatment, as soon as the treatment period ends and the brace is no longer worn. Some believe braces to be ineffective because they work only on a portion of the torso, rather than on the entire spine. A prospective, randomized 500 patient clinical trial known as BrAIST (Bracing in Adolescent Idiopathic Scoliosis Trial) is currently enrolling patients. 50% of the patients will be treated using a brace and 50% will simply be monitored. The Cobb angle data will be measured continually up until skeletal maturity, or until a Cobb angle of 50° is reached. Patients who reach a Cobb angle of 50° will likely undergo corrective surgery. Many physicians believe that the BrAIST trial will establish that braces are ineffective. If this is the case, uncertainty regarding how to treat AIS patients having a Cobb angle between 20° and 40° will only become more pronounced. It should be noted that the “20° to 40° ” patient population is as much as ten times larger than the “40° and greater” patient population.


Distraction osteogenesis, also known as distraction callotasis and osteodistraction has been used successfully to lengthen long bones of the body. Typically, the bone, if not already fractured, is purposely fractured by means of a corticotomy, and the two segments of bone are gradually distracted apart, thereby allowing new bone to form in the gap. If the distraction rate is too high, there is a risk of nonunion, if the rate is too low, there is a risk that the two segments will completely fuse to each other before the distraction is complete. When the desired length of the bone is achieved using this process, the bone is allowed to consolidate. Distraction osteogenesis applications are mainly focused on the growth of the femur or tibia, but may also osteogenesis is mainly applied to growth of the femur or tibia, but may also include the humerus, the jaw bone (micrognathia), or other bones. Reasons for lengthening or growing bones are multifold and include, but are not limited to: post osteosarcoma bone cancer; cosmetic lengthening (both legs-femur and/or tibia) in short stature or dwarfism/achondroplasia; lengthening of one limb to match the other (congenital, post-trauma, post-skeletal disorder, prosthetic knee joint); and nonunions.


Distraction osteogenesis using external fixators has been done for many years, but the external fixator can be unwieldy for the patient. It can also be painful, and the patient is subject to the risk of pin track infections, joint stiffness, loss of appetite, depression, cartilage damage and other side effects. Haying the external fixator in place also delays the beginning of rehabilitation.


In response to the shortcomings of external fixator distraction, intramedullary distraction nails have been surgically implanted which are contained entirely within the bone. Some are automatically lengthened via repeated rotation of the patient's limb, which can sometimes be painful to the patient and can often proceed in an uncontrolled fashion. This therefore makes it difficult to follow a strict daily or weekly lengthening regime that avoids nonunion (if too fast) or early consolidation (if too slow). Lower limb distraction may be about one mm per day. Other intramedullary nails have been developed which have an implanted motor that is remotely controlled by an antenna. These devices are designed to be lengthened in a controlled manner, but due to their complexity may not be manufacturable as an affordable commercial product. Others have proposed intramedullary distractors containing an implanted magnet that allows the distraction to be driven electromagnetically by an external stator. Because of the complexity and size of the external stator, this technology has not been reduced to a simple, cost-effective device that can be taken home, to allow patients to do daily lengthenings. Non-invasively (magnetically) adjustable implantable distraction devices have been developed and use clinically in both scoliosis patients and in limb lengthening patients.


Knee osteoarthritis is a degenerative disease of the knee joint that affects a large number of patients, particularly over the age of 40. The prevalence of this disease has increased significantly over the last several decades, attributed partially, but not completely, to the rising age of the population and the increase in obesity. The increase may also be due partially to an increasing number of highly active people within the population. Knee osteoarthritis is caused mainly by long term stresses on the knee that degrade the cartilage covering the articulating surfaces of the bones in the knee joint. Oftentimes, the problem becomes worse after a particular trauma event, but it can also be a hereditary process. Symptoms may include pain, stiffness, reduced range of motion, swelling, deformity, muscle weakness, and several others. Osteoarthritis may include one or more of the three compartments of the knee: the medial compartment of the tibiofemoral joint, the lateral compartment of the tibiofemoral joint, and the patellofemoral joint. In severe cases, partial or total replacement of the knee is performed in order to replace the degraded/diseased portions with new weight bearing surfaces for the knee. These implants are typically made from implant grade plastics, metals, or ceramics. Replacement operations may involve significant post-operative pain and require substantial physical therapy. The recovery period may last weeks or months. Several potential complications of this surgery exist, including deep venous thrombosis, loss of motion, infection and bone fracture. After recovery, surgical patients who have received uni-compartmental or total knee replacement must significantly reduce their activity, removing running and high energy sports completely from their lifestyle.


For these reasons, surgeons may attempt to intervene early in order to delay or even preclude knee replacement surgery. Osteotomy surgeries may be performed on the femur or tibia to change the angle between the femur and tibia, thereby adjusting the stresses on the different portions of the knee joint. In closed wedge and closing wedge osteotomy, an angled wedge of bone is removed and the remaining surfaces are fused together to create a new, improved bone angle. In open wedge osteotomy, a cut is made in the bone and the edges of the cut are opened, creating a new angle. Bone graft is often used to fill in the new opened wedge-shaped space, and, often, a plate is attached to the bone with bone screws. Obtaining the correct angle during either of these types of osteotomy is almost always difficult, and even if the result is close to what was desired, there can be a subsequent loss of the correction angle. Other complications experienced with this technique may include nonunion and material failure.


In addition to the many different types of implantable distraction devices that are configured to be non-invasively adjusted, implantable non-invasively adjustable non-distraction devices have also been envisioned, for example, adjustable restriction devices for gastrointestinal disorders such as GERD, obesity, or sphincter laxity (such as in fecal incontinence), or other disorders such as sphincter laxity in urinary incontinence. These devices too may incorporate magnets to enable the non-invasive adjustment.


SUMMARY

In some embodiments, a remote control for adjusting a medical implant includes a driver, at least one sensor, and an output. The driver is configured to transmit a wireless drive signal to adjust an implanted medical implant. Adjustment of the medical implant includes one or more of generating a force with the medical implant and changing a dimension of the medical implant. The at least one sensor is configured to sense a response of the implant to the drive signal. The output is configured to report one or more of a force generated by the medical implant and a change in dimension of the medical implant, in response to the drive signal. In some embodiments, the output is a visual output (e.g., a display), an audio output (e.g., a speaker, alarm), a USB output, a Bluetooth output, a solid state memory output (e.g., any removable or readable solid state memory), etc,


In some embodiments, a medical implant for wireless adjustment of a dimension within a body includes a first portion that is configured for coupling to a first location in the body, a second portion that is configured for coupling to a second location in the body, and a magnetic drive that is configured to adjust a relative distance between the first portion and the second portion. The magnetic drive includes at least one driven magnet and is configured to revolve about an axis in response to a magnetic field imposed by a rotatable driver magnet outside of the body. The implant is configured to transmit a signal indicative of the responsiveness of the driven magnet to movement of the driver magnet, wherein a change in the responsiveness is indicative of a change in a force applied by the body to the first and second connectors.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates one embodiment of an external adjustment device.



FIG. 2 illustrates a detailed view of the display and control panel of the external adjustment device of FIG. 1.



FIG. 3 illustrates the lower or underside surfaces of the external adjustment device of FIG. 1.



FIG. 4 illustrates a sectional view of the external adjustment device of FIG. 3 taken along line 4-4 of FIG. 3.



FIG. 5 illustrates a sectional view of the external adjustment device of FIG. 3 taken along line 5-5 of FIG. 3.



FIG. 6 illustrates an orientation of magnets of one embodiment of an external adjustment device in relation to a magnet of a distraction device.



FIG. 7 illustrates various sensors on a circuit board of one embodiment of the external adjustment device.



FIG. 8 illustrates various Hall effect sensors on a circuit board of one embodiment of the external adjustment device.



FIG. 9A illustrates a particular configuration of Hall effect sensors relating to the magnets of one embodiment of an external adjustment device.



FIG. 9B illustrates output voltage of the Hall effect sensors of FIG. 9A.



FIG. 9C illustrates the Hall effect sensors of FIG. 9A, with the magnets in a nonsynchronous condition.



FIG. 9D illustrates the output voltage of the Hall effect sensors of FIG. 9C.



FIG. 10A illustrates a configuration of Hall effect sensors relating to the magnets of one embodiment.



FIG. 10B illustrates the output voltage of the Hall effect sensors of FIG. 10A.



FIG. 11 illustrates a magnetic flux density plot of external magnets of one embodiment of an external adjustment device and the internal permanent magnet.



FIG. 12A illustrates a section view of external magnets of one embodiment of an external adjustment device and the internal permanent magnet during positioning of the external adjustment device.



FIG. 12B illustrates a side view of external magnets of one embodiment of an external adjustment device and the internal permanent magnet during positioning of the external adjustment device.



FIG. 12C illustrates a top view of external magnets of one embodiment of an external adjustment device and the internal permanent magnet during positioning of the external adjustment device.



FIG. 13A illustrates a zero torque condition between external magnets of one embodiment of an external adjustment device and the internal permanent magnet.



FIG. 13B illustrates magnetic coupling between external magnets of one embodiment an external adjustment device and the internal permanent magnet.



FIG. 13C illustrates continued rotation with increasing coupling torque between external magnets of one embodiment of an external adjustment device and the internal permanent magnet.



FIG. 13D illustrates slippage between external magnets of one embodiment of an external adjustment device and the internal permanent magnet.



FIG. 14 is an internal view of one embodiment of an external adjustment device having an array of magnetic sensors.



FIG. 15 is a circuit board containing magnetic sensors.



FIG. 16 is a front view of one embodiment of an external adjustment device having an array of magnetic sensors.



FIG. 17 is a front view of an arrangement of magnetic sensors in relation to external magnets of one embodiment of an external adjustment device and an internal permanent magnet.



FIG. 18 is a sectional view of the arrangement of magnetic sensors of FIG. 17 taken along line 18.



FIG. 19 is a diagram of one embodiment of an external adjustment device of a system for adjusting an adjustable implant



FIG. 20 is a diagram of the logic sequence for one embodiment of an external adjustment device of a system for adjusting an adjustable implant.



FIG. 21 is a user interface for one embodiment of an external adjustment device of a system for adjusting an adjustable implant.



FIG. 22 is a graph of voltage over a series of gap distances.



FIG. 23 is a graph of maximum possible distraction force over a series of gap distances.



FIG. 24 is a graph of actual force for several voltage differentials.



FIG. 25 is a graph of differential voltages of pairs of magnetic sensors.



FIG. 26 illustrates an embodiment of an adjustable implant for adjusting length of or force on a spine.



FIG. 27 is an embodiment of an adjustable implant for adjusting the distance or force between sections of bone.



FIG. 28 is an embodiment of an adjustable implant for adjusting a rotational angle or torque between sections of bone.



FIG. 29 is an embodiment of an adjustable implant for adjusting an angle or force between sections of bone.



FIG. 30 is an embodiment of an adjustable implant for adjusting an angle or force between sections of bone.



FIG. 31 is an embodiment of an adjustable implant for adjusting a location or force (tension) on body tissue.



FIG. 32 is an embodiment of an adjustable implant for adjusting restriction on a duct of the body.



FIG. 33 is a front view of an arrangement of magnetic sensors in relation to one or more external electromagnets of one embodiment of an external adjustment device and an internal permanent magnet.



FIG. 34 is a partial sectional view of an array of magnetic sensors in relation to external magnets of one embodiment of an external adjustment device and an internal permanent magnet.





DETAILED DESCRIPTION


FIGS. 1-3 illustrate an external adjustment device 700 that is configured for adjusting an adjustable implant, such as a force-applying device, more specifically represented by (though not limited to) a distraction device 1000. The distraction device 1000 may include any number of distraction, or generally, adjustable force-applying devices such as those described in U.S. Pat. Nos. 7,862,502, 7,955,357, 8,197,490, 8,449,543, and 8,852,187, the disclosures of which are hereby incorporated by reference in their entirety, and/or U.S. patent application Ser. Nos. 12/121,355, 12/411,107, 12/250,442, 12/761,141, 13/198,571 13/655,246, 14/065,342, 13/791,430, 14/355,202, 14/447,391, and 14/511,084, the disclosures of which are hereby incorporated by reference in their entirety. The distraction device 1000 generally includes a rotationally mounted, internal permanent magnet 1010 that rotates in response to a magnetic field applied by the external adjustment device 700. Rotation of the magnet 1010 in one direction causes distraction of the device 1000 while rotation of the magnet 1010 in the opposite direction causes retraction of the device 1000. Retraction of the device 1000 may generate compressive force while distraction of the device 1000 may generate tensile forces. The external adjustment device 700 may be powered by a rechargeable battery or by a power cord 711. The external adjustment device 700 includes a first handle 702 and a second handle 704. The second handle 704 is in a looped shape, and can be used to carry the external adjustment device 700 and/or steady the external adjustment device 700 during use. The first handle 702 extends linearly from a first end of the external adjustment device 700 while the second handle 704 is located at a second end of the external adjustment device 700 and extends substantially off axis or is angled with respect to the first handle 702. In one embodiment, the second handle 704 may be oriented substantially perpendicular relative to the first handle 702, although other arrangements are possible.


The first handle 702 contains a motor 705 that drives a first external magnet 706 and a second external magnet 708, best seen in FIG. 3, via gearing, belts or the like. On the first handle 702 is an optional orientation image 804 comprising a body outline 806 and an optional orientation arrow 808 that shows the correct direction to place the external adjustment device 700 on the patient's body, so that the distraction device is operated in the correct direction. While holding the first handle 702, the operator presses with his thumb the distraction button 722, which has a distraction symbol 717 and is a first color (e.g., green). This distracts the distraction device 1000. If the distraction device 1000 is over-distracted and it is desired to retract, or to lessen the distraction of the device 1000, the operator presses with his thumb the retraction button 724 which has a retraction symbol 719.


Distraction turns the magnets 706, 708 in one direction while retraction turns the magnets 706, 708 in the opposite direction. Magnets 706, 708 have stripes 809 that can be seen in window 811. This allows easy identification of whether the magnets 706, 708 are stationary or turning, and in which direction they are turning, as well as quick trouble shooting by the operator of the device. The operator can determine the point on the patient where the magnet of the distraction device 1000 is implanted, and then place the external adjustment device 700 in a correct location with respect to the distraction device 1000 by marking the corresponding portion of the skin of the patient, and then viewing this spot through an alignment window 716 of the external adjustment device 700.



FIG. 2 illustrates a control panel 812 that includes several buttons 814, 816, 818, 820 and a display 715. The buttons 814, 816, 818, 820 are soft keys, and able to be programmed for an array of different functions. In some embodiments, the buttons 814, 816, 818, 820 have corresponding legends which appear in the display. To set the length of distraction to be performed on the distraction device 1000, the target distraction length 830 is adjusted using an increase button 814 and/or a decrease button 816. The legend with a green plus sign graphic 822 corresponds to the increase button 814 and the legend with a red negative sign graphic 824 corresponds to the decrease button 816. It should be understood that mention herein to a specific color used for a particular feature should be viewed as illustrative. Colors other than those specifically recited herein may be used in connection with the inventive concepts described herein. Each time the increase button 814 is depressed, it causes the target distraction length 830 to increase by 0.1 mm. In the same way each time the decrease button 816 is depressed, it causes the target distraction length 830 to decrease by 0.1 mm Decrements/increments other than 0.1 mm could also be used. When the desired target distraction length 830 is displayed, and the external adjustment device 700 is placed on the patient, the operator holds down the distraction button 722, and the External Distraction Device 700 turns magnets 706, 708 until the target distraction length 830 is achieved (at which point the external adjustment device 700 stops). During the distraction process, the actual distraction length 832 is displayed, starting at 0.0 mm and increasing/decreasing until the target distraction length 830 is achieved. As the actual distraction length 832 increases/decreases, a distraction progress graphic 834 is displayed. For example a light colored box 833 that fills with a dark color from the left to the right. In FIG. 2, the target distraction length 830 is 3.5 mm, 2.1 mm of distraction has occurred, and 60% of the box 833 of the distraction progress graphic 834 is displayed. A reset button 818 corresponding to a reset graphic 826 can be pressed to reset one or both of the numbers back to zero. An additional button 820 can be assigned for other functions (e.g., help, data, etc.). This button can have its own corresponding graphic 828 (shown in FIG. 2 as “?”). Alternatively, a touch screen can be used, for example capacitive or resistive touch keys. In this embodiment, the graphics/legends 822, 824, 826, 828 may also be touch keys, replacing or augmenting the buttons 814, 816, 818, 820. In one particular embodiment, touch keys at 822, 824, 826, 828 perform the functions of buttons 814, 816, 818, 820 respectively, and the buttons 814, 816, 818, 820 are eliminated. In some embodiments, outputs other than a display may be used, including, for example, an audio output, a USB output, a Bluetooth output, or any other data output that can effectively report data resulting from use of the external adjustment device 700 to a user.


Handles 702, 704 can be held in several ways. For example the first handle 702 can be held with palm facing up while trying to find the location on the patient of the implanted magnet of the distraction device 1000. The fingers are wrapped around the handle 702 and the fingertips or mid-points of the four fingers press up slightly on the handle 702, balancing it somewhat. This allows a very sensitive feel that allows the magnetic field between the magnet in the distraction device 1000 and the magnets 706, 708 of the external adjustment device 700 to be more apparent. During the distraction, the first handle 702 may be held with the palm facing down, allowing the operator to push the device 700 down firmly onto the patient, to minimize the distance between the magnets 706, 708 of the external adjustment device 700 and the magnet 1010 of the distraction device 1000, and thus maximizing the torque coupling. This is especially appropriate if the patient is large or overweight. The second handle 704 may be held with the palm up or the palm down during the magnet sensing operation and the distraction operation, depending on the preference of the operator.



FIG. 3 illustrates the underside, or lower surface, of the external adjustment device 700. At the bottom of the external adjustment device 700, the contact surface 836 may be made of material of a soft durometer, such as an elastomeric material, for example PEBAX® (Arkema, Inc., Torrance, Calif., USA) or Polyurethane. This allows for anti-shock to protect the device 700 if it is dropped. Also, if placing the device on patient's bare skin, materials of this nature do not pull heat away from patient as quickly as some other materials; hence, they “don't feel as cold” as hard plastic or metal. The handles 702, 704 may also have similar material covering them, in order to serve as non-slip grips.



FIG. 3 also illustrates child-friendly graphics 837, including the option of a smiley face. Alternatively this could be an animal face, such as a teddy bear, a horsey, or a bunny rabbit. A set of multiple faces can be removable and interchangeable to match the likes of various young patients. In addition, the location of the faces on the underside of the device allows the operator to show the faces to a younger child, but keep it hidden from an older child, who may not be so amused. Alternatively, sock puppets or decorative covers featuring human, animal, or other characters may be produced so that the device may be thinly covered with them, without affecting the operation of the device, but additionally, the puppets or covers may be given to the young patient after a distraction procedure is performed. It is expected that this can help keep a young child more interested in returning to future procedures.



FIGS. 4 and 5 are sectional views of the external adjustment device 700 shown in FIG. 3, which illustrate the internal components of the external adjustment device 700 taken along various centerlines. FIG. 4 is a sectional view of the external adjustment device 700 taken along the line 4-4 of FIG. 3. FIG. 5 is a sectional view of the external adjustment device 700 taken along the line 5-5 of FIG. 3. The external adjustment device 700 comprises a first housing 868, a second housing 838 and a central magnet section 725. First handle 702 and second handle 704 include grip 703 (shown on first handle 702). Grip 703 may be made of an elastomeric material and may have a soft feel when gripped by the hand. The material may also have a tacky feel, in order to aid firm gripping. Power is supplied via power cord 711, which is held to second housing 838 with a strain relief 844. Wires 727 connect various electronic components including motor 840, which rotates magnets 706, 708 via gear box 842, output gear 848, and center gear 870 respectively. Center gear 870 rotates two magnet gears 852, one on each magnet 706, 708 (one such gear 852 is illustrated in FIG. 5). Output gear 848 is attached to motor output via coupling 850, and both motor 840 and output gear 848 are secured to second housing 838 via mount 846. Magnets 706, 708 are held within magnet cups 862. Magnets and gears are attached to bearings 872, 874, 856, 858, which aid in low friction rotation. Motor 840 is controlled by motor printed circuit board (PCB) 854, while the display is controlled by display PCB 866, which is attached to frame 864.



FIG. 6 illustrates the orientation of poles of the first and second external magnets 706, 708 and the implanted magnet 1010 of the distraction device 1000 during a distraction procedure. For the sake of description, the orientations will be described in relation to the numbers on a clock. First external magnet 706 is turned (by gearing, belts, etc.) synchronously with second external magnet 708 so that north pole 902 of first external magnet 706 is pointing in the twelve o′clock position when the south pole 904 of the second external magnet 708 is pointing in the twelve o′clock position. At this orientation, therefore, the south pole 906 of the first external magnet 706 is pointing is pointing in the six o'clock position while the north pole 908 of the second external magnet 708 is pointing in the six o'clock position. Both first external magnet 706 and second external magnet 708 are turned in a first direction as illustrated by respective arrows 914, 916. The rotating magnetic fields apply a torque on the implanted magnet 1010, causing it to rotate in a second direction as illustrated by arrow 918. Exemplary orientation of the north pole 1012 and south pole 1014 of the implanted magnet 1010 during torque delivery are shown in FIG. 6. When the first and second external magnets 706, 708 are turned in the opposite direction from that shown, the implanted magnet 1010 will be turned in the opposite direction from that shown. The orientation of the first external magnet 706 and the second external magnet 708 in relation to each other serves to optimize the torque delivery to the implanted magnet 1010. During operation of the external adjustment device 700, it is often difficult to confirm that the two external magnets 706, 708 are being synchronously driven as desired.


Turning to FIGS. 7 and 8, in order to ensure that the external adjustment device 700 is working properly, the motor printed circuit board 854 comprises one or more encoder systems, for example photointerrupters 920, 922 and/or Hall effect sensors 924, 926, 928, 930, 932, 934, 936, 938. Photointerrupters 920, 922 each comprise an emitter and a detector. A radially striped ring 940 may be attached to one or both of the external magnets 706, 708 allowing the photointerrupters to optically encode angular motion. Light 921, 923 is schematically illustrated between the radially striped ring 940 and photointerrupters 920, 922.


Independently, Hall effect sensors 924, 926, 928, 930, 932, 934, 936, 938 may be used as non-optical encoders to track rotation of one or both of the external magnets 706, 708. While eight (8) such Hall effect sensors are illustrated in FIG. 7, it should be understood that fewer or more such sensors may be employed. The Hall effect sensors are connected to the motor printed circuit board 854 at locations that allow the Hall effect sensors to sense the magnetic field changes as the external magnets 706, 708 rotate. Each Hall effect sensor 924, 926, 928, 930, 932, 934, 936, 938 outputs a voltage that corresponds to increases or decreases in the magnetic field strength. FIG. 9A indicates one basic arrangement of Hall effect sensors relative to sensors 924. 938. A first Hall effect sensor 924 is located at nine o'clock in relation to first external magnet 706. A second Hall effect sensor 938 is located at three o'clock in relation to second external magnet 708, As the magnets 706, 708 rotate in synchronous motion, the first voltage output 940 of first Hall effect sensor 924 and second voltage output 942 of second Hall effect sensor 938 have the same pattern, as seen in FIG. 9B, which graphs voltage for a full rotation cycle of the external magnets 706, 708. The graph indicates a sinusoidal variance of the output voltage, but the clipped peaks are due to saturation of the signal. Even if Hall effect sensors used in the design cause this effect, there is still enough signal to compare the first voltage output 940 and the second voltage output 942 over time. If either of the two Hall effect sensors 924, 938 does not output a sinusoidal signal during the operation or the external adjustment device 700, this demonstrates that the corresponding external magnet has stopped rotating. FIG. 9C illustrates a condition in which both the external magnets 706, 708 are rotating at the same approximate angular speed, but the north poles 902, 908 are not correctly synchronized. Because of this, the first voltage output 940 and second voltage output 942 are out-of-phase, and exhibit a phase shift (ϕ). These signals are processed by a processor 915 (shown in FIG. 8) and an error warning is displayed on the display 715 of the external adjustment device 700 so that the device may be resynchronized.


If independent stepper motors are used, the resynchronization process may simply be one of reprogramming, but if the two external magnets 706, 708 are coupled together, by gearing or a belt for example, a mechanical rework may be required. An alternative to the Hall effect sensor configuration of FIG. 9A is illustrated in FIG. 10A. In this embodiment, Hall effect sensor 928 is located at twelve o'clock in relation to external magnet 706 and Hall effect sensor 934 is located at twelve o′clock in relation to external magnet 708. With this configuration, the north pole 902 of external magnet 706 should be pointing towards Hall effect sensor 928 when the south pole 904 of external magnet 708 is pointing towards Hall effect sensor 934. With this arrangement, Hall effect sensor 928 outputs output voltage 944 and Hall effect sensor 934 outputs output voltage 946 (FIG. 10B). Output voltage 944 is, by design, out of phase with output voltage 946. An advantage of the Hall effect sensor configuration of FIG. 9A is that the each sensor has a larger distance between it and the opposite magnet (e.g., Hall effect sensor 924 in comparison to external magnet 708) so that there is less possibility of interference. An advantage to the Hall effect sensor configuration of FIG. 10A is that it may be possible to make a more compact external adjustment device 700 (less width). The out-of-phase pattern of FIG. 10B can also be analyzed to confirm magnet synchronicity.


Returning to FIGS. 7 and 8, additional Hall effect sensors 926, 930, 932, 936 are shown. These additional sensors allow additional precision to the rotation angle feedback of the external magnets 706, 708 of the external adjustment device 700. Again, the particular number and orientation of Hall effect sensors may vary. In place of the Hall effect sensors, magnetoresistive encoders may also be used.


In still another embodiment, additional information may be processed by processor 915 and may be displayed on display 715. For example, distractions using the external adjustment device 700 may be performed in a doctor's office by medical personnel, or by patients or members of patient's family in the home. In either case, it may be desirable to store information from each distraction session to be accessed later. For example, the date and time of each distraction, the amount of distraction attempted, and the amount of distraction obtained. This information may be stored in the processor 915 or in one or more memory modules (not shown) associated with the processor 915. In addition, the physician may be able to input distraction length limits, for example the maximum amount that can be distracted in each session, the maximum amount that can be distracted per day, the maximum amount that can be distracted per week, etc. The physician may input these limits by using a secure entry using the keys or buttons of the device, which the patient will not be able to access.


Returning to FIG. 1, in some patients, it may be desired to place a first end 1018 of the distraction device 1000 towards the head of the patient, and second end 1020 of the distraction device 1000 towards the feet of the patient. This orientation of the distraction device 1000 may be termed antegrade. In other patients, it may be desired to orient the distraction device 1000 with the second end 1020 of the distraction device 1000 towards the head of the patient, and the first end 1018 of the distraction device 1000 towards the feet of the patient. This orientation of the distraction device 1000 may be termed retrograde. In a distraction device 1000 in which the magnet 1010 rotates in order to turn a screw within a nut, the orientation of the distraction device 1000 being either antegrade or retrograde in patient could mean that the external adjustment device 700 would have to be placed in accordance with the orientation image 804 when the distraction device 1000 is placed antegrade, but placed the opposite of the orientation image 804 when the distraction device 1000 is placed retrograde. Software may be programmed so that the processor 915 recognizes whether the distraction device 1000 has been implanted antegrade or retrograde, and then turns the magnets 706, 708 in the appropriate direction when the distraction button 722 is placed.


For example, the motor 705 could be commanded to rotate the magnets 706, 708 in a first direction when distracting an antegrade placed distraction device 1000, and in a second, opposite direction when distracting a retrograde placed distraction device 1000. The physician may, for example, be prompted by the display 715 to input using the control panel 812 whether the distraction device 1000 was placed antegrade or retrograde. The patient may then continue to use the same external adjustment device 700 to assure that the motor 705 turns the magnets 706, 708 in the proper directions for both distraction and refraction. Alternatively, the distraction device may incorporate an RFID chip 1022 (shown in FIG. 1), which can be read and written to by an antenna 1024 on the external adjustment device 700. The position of the distraction device 1000 in the patient (antegrade or retrograde) can be written to the RFID chip 1022, and can thus be read by the antenna 1024 of any external adjustment device 700, allowing the patient to receive correct distractions and/or retractions, regardless of which external adjustment device 700 is used.



FIG. 11 is a magnetic flux density plot 100 of the magnetic field characteristics in the region surrounding the two external magnets 706, 708 of the external adjustment device 700, and the internal permanent magnet 1010 of the distraction device 1000. For the purposes of this disclosure, any type of adjustable force-applying (or torque-applying) implant incorporating a rotatable magnet is contemplated as an alternative. In the flux density plot 100, a series of flux lines 110 are drawn as vectors, having orientation and magnitude, the magnitude represented by the length of the arrows. As the external magnets 706, 708 magnetically couple with the internal permanent magnet 1010 and are turned by the motor 840 (FIG. 4) causing the internal permanent magnet 1010 to turn (as described in relation to FIG. 6), the flux lines 110 change considerably in magnitudes and orientation. Embodiments of the present invention use an array of magnetic sensors, such as Hall effect sensors, to receive information about the changing magnetic field characteristics and determine parameters which aid the use and function of the external adjustment device 700, and more importantly, of the distraction device 1000 itself. The first parameter is the general proximity of the external magnets 706, 708 of the external adjustment device 700 to the internal permanent magnet 1010 of the distraction device 1000. It is desired that the external magnets 706, 708 of the external adjustment device 700 be placed close enough to the internal permanent magnet 1010 of the distraction device 1000 so that it will function. A goal of the system may be to maximize the torque that the external magnets 706, 708 impart on the internal permanent magnet, and thus to maximize the distraction force delivered by the distraction device 1000. The second parameter is an estimation of the distance between the external adjustment device 700 and the distraction device 1000, particularly the distance between the external magnets 706, 708 of the external adjustment device 700 and the internal permanent magnet 1010 of the distraction device 1000. This distance estimation, as will be explained in greater detail, can be used in estimating the subsequent parameters. The third parameter is the estimated variable dimension of the distraction device 1000, such as distraction length. On some types of adjustable implants, the variable dimension may be length. On other types of adjustable implants (for example, in a restriction device), the adjustable parameter may be diameter or circumference. The fourth parameter is distraction force. Distraction force may be a useful parameter in scoliosis, in particular because in growing patients increased tensile loads on the skeletal system can accelerate growth. This is known as the Heuter-Volkmann principle. Distraction force is also useful in clinical applications concerned with increasing the length of a bone, or changing the angle or rotational orientation of a bone. Again, depending on the implant, the fourth parameter may incorporate other forces, for example, compression force in an adjustable compression implant, for example in trauma applications, such as those disclosed in U.S. Pat. No. 8,852,187. In other medical applications using an adjustable medical implant, it may be useful to know the moment applied on a body part instead of, or as well as, the force applied. For example, in a scoliosis curve, an “un-bending moment” describes the moment placed by a distraction device on the curve to cause it to straighten. For a particular force value, this moment will vary, depending on how far the distraction device is located laterally from the apex of the scoliosis curve. If the lateral distance is known, for example via an X-ray image, the un-bending moment may be calculated from determining the force applied.


Determining the optimal positioning of the external adjustment device 700 is not always possible. Of course, the implanted distraction device 1000 is not visible to the operator of the external adjustment device 700, and using x-ray imaging to determine its exact location may be difficult, and undesirable due to the additional radiation. Even with an x-ray image that defines a location for the implanted distraction device 1000, the placement of the external adjustment device 700 in a desired location adjacent the skin of the patient may be complicated by extreme curvature of the surface of the patient's body (for example, in scoliosis patients with significant deformity in the torso), or by varying thickness of muscle and fat around the skeletal system (for example circumferentially around the femur in a limb-lengthening patient). FIG. 12A shows, in Cartesian form, the centerline 106 of the external adjustment device 700 aligned with the Y-axis and a gap G between a tangent 707 with the outer surface of the external adjustment device 700 and a tangent 709 with the outer surface of the distraction device 1000. The distance between external magnets 706, 708 and internal permanent magnet 1010 may be slightly larger than the gap G because of their locations within the external adjustment device 700 and the distraction device 1000, respectively (i.e., the housings add slightly to gap G). As the external magnets 706, 708 are placed closer to the internal permanent magnet 1010 of the distraction device 1000, the distraction force that can be generated increases. A lateral offset in alignment is represented by XO along the x-axis, between the centerline 106 of the external adjustment device 700 and the center of the internal permanent magnet 1010. In an embodiment wherein the external adjustment device 700 has only one external magnet, the lateral offset would be represented by the distance between the center of the external magnet and the center of the internal permanent magnet 1010, along the x-axis. In many cases, a smaller XO, allows a higher maximum possible distraction force. Also shown in dashed lines is an external adjustment device 700′ which has been tipped by an angle R1, causing the external magnet 706′ to be farther from the internal permanent magnet 1010, than if R1 was close to zero.



FIG. 12B is similar to FIG. 12A, but FIG, 12B shows a side view of the external adjustment device 700 and internal permanent magnet 1010, with the z-axis left to right and the y-axis up and down. An axial offset ZO is drawn between the axial center of the external magnet 708 and the axial center of the internal permanent magnet 1010. Also shown is an alternative configuration, with external magnet 708′ tipped at an angle R2. The axial offset ZO would tend to lower the maximum possible distraction force. FIG. 12C is a top view that shows a third tipped angle R3, between the external magnet 706 and the internal permanent magnet 1010. Though in clinical use, R2 and R3 are almost always a non-zero magnitude, the larger they are, the lower the potential coupling torque, and therefore the lower the potential distraction force.



FIGS. 13A through 13D illustrate a variance of magnetic couplings between external magnets 706, 708 and the internal permanent magnet 1010 during an adjustment procedure. FIG. 13A shows a zero torque condition, which may exist, for example, prior to initiating the rotation of the external magnets 706, 708, or at the very start of the operation of the external adjustment device 700. As shown, the north pole 902 of external magnet 706 is pointing in the positive y-direction and the south pole 906 of external magnet 706 is pointing in the negative y-direction, while the south pole 904 of the external magnet 708 is pointing in the positive y-direction and the north pole 908 of the external magnet 708 is pointing in the negative y-direction. The north pole 1011 of the internal permanent magnet 1010 is attracted to the south pole 906 of the external magnet 706 and thus is held in substantially the negative x-direction, and the south pole 1013 of the internal permanent magnet 1010 is attracted to the north pole 908 of the external magnet 708 and thus is held in the positive x direction. All magnets 706, 708, 1010 are in a balanced state and are not fighting each other. As the external adjustment device 700 is operated so that the external magnets 706, 708 begin to turn (as shown in FIG. 13B), it is often the case that there is a nominal resistance torque on the mechanism that is rotatably holding the internal permanent magnet 1010. For example, friction on pins or axles, or friction between the lead screw and the nut of the distraction mechanism. In this particular explanation, it is assumed that external adjustment device either has a single external magnet 706, or has two or more external magnets 706, 708 that rotate synchronously with one another (though other embodiments are possible), and so the reference will currently be made only to the external magnet 706 for simplicity's sake. As external magnet 706 is turned in a first rotational direction 102, up until a first angle α1, it has not yet applied a large enough applied torque τA on the internal permanent magnet 1010 to cause it to initiate rotation in a second opposite rotational direction 104. For example, when the applied torque τA is less than the static threshold resistance torque τST of the internal permanent magnet 1010. However, when angle α1 is exceeded, the applied torque τA becomes greater than the static threshold torque τST of the internal permanent magnet 1010, and thus the rotation of the internal permanent magnet 1010 in the second rotational direction 104 begins, and continues while the external magnet 706 rotates through angle α2. Thus, when the external magnet 706 reaches angle α (α=α12), the internal permanent magnet 1010 has rotated an angle β, wherein angle β is less than angle α. Angle β is less than or equal to angle α2. Angle β is less than angle α2 in cases where the dynamic resistance torque τDR increases as the internal permanent magnet 1010 rotates through angle β.



FIG. 13C illustrates the orientation of the magnets 706, 708, 1010 after additional rotation has occurred, and as the dynamic resistance torque τDR has increased. This typically occurs as the distraction force of the distraction device 1000 increases, because of increasing friction within the mechanisms of the distraction device 1000, and can occur during the first rotation, or after several rotations. Thus, as seen in FIG. 13C, internal permanent magnet 1010 has rotated a smaller additional amount than the external magnet 706. The term phase lag is used to describe the difference in rotational orientation between the external magnet 706 and the internal permanent magnet 1010. As the dynamic resistance torque τDR increases, the phase lag increases. The phase lag between the north pole 902 of the external magnet 706 and north pole 1011 of the internal permanent magnet 1010 in the zero torque condition illustrated in FIG. 13A would be defined as 90°. However, for the purposes of the embodiments of the present invention, phase lag is defined as being 0° at the zero torque condition of FIG. 13A. Regardless of the method chosen to define phase lag, the important factor is the change in the phase lag over time (or over the number of rotations). As the dynamic resistance torque τDR increases even further, a point is reached wherein the dynamic resistance torque τDR becomes higher than the applied torque τA. This creates a slip condition (or stall condition) wherein the engaged poles of the external magnet(s) and the internal permanent magnet slip past each other, or lose their magnetic engagement. Thus the external magnets 706, 708 of the external adjustment device 700 are no longer able to cause the internal permanent magnet 1010 to rotate. Just prior to slippage the phase lag can be as much as 90°. At the point of slippage, as the poles slip over each other, the internal permanent magnet 1010 typically suddenly and quickly rotates backwards in rotational direction 102 (opposite the rotational direction 104 that it had been turning) at some angle less than a full turn. This is shown in FIG. 13D.


An intelligent adjustment system 500 is illustrated in FIG. 14, and comprises an external adjustment device 502 having a magnetic sensor array 503 which is configured to adjust an adjustable medical device 400 comprising a first portion 404 and a second portion 406, adjustable in relation to the first portion 404. The adjustable medical device 400 is non-invasively adjustable, and contains a rotatable permanent magnet 402, for example a radially-poled cylindrical permanent magnet. The adjustable medical implant 400 is configured to apply an adjustable force within the body. The permanent magnet 402 may be rotationally coupled to a lead screw 408 which is configured to engage with a female thread 410 within the second portion 406, such that the rotation of the permanent magnet 402 causes the rotation of the lead screw 408 within the female thread 410, thus moving the first portion 404 and the second portion 406 longitudinally with respect to each other. The permanent magnet 402 may be non-invasively rotated by applying a torque with one or more external magnets 510 (or 511 of FIG. 16) of the external adjustment device 502. The adjustable medical device 400 is configured for implantation within a patient, and as depicted, is further configured so that the first portion 404 may be coupled to the patient at a first location and the second portion 406 may be coupled to the patient at a second location. In some embodiments, the adjustable medical device 400 may be non-invasively adjusted to increase a distraction force between the first location and the second location. In some embodiments, the adjustable medical device 400 may be non-invasively adjusted to decrease a distraction force between the first location and the second location. In some embodiments, the adjustable medical device 400 may be non-invasively adjusted to increase a compression force between the first location and the second location. In some embodiments, the adjustable medical device 400 may be non-invasively adjusted to decrease a compression force between the first location and the second location. In some embodiments, the adjustable medical device 400 may be non-invasively adjusted to perform two or more of these functions. Alternatively, the adjustable medical device may be a restriction device, configured to be adjusted to increase or decrease a diameter. For example, a diameter that at least partially restricts a body conduit, such as a blood vessel, a gastrointestinal tract or a urinary tract. In an embodiment of this nature, the movement of the first portion 406 in relation to the second portion 406 may increase or decrease traction or tension on a cable or tension member, which in turn causes the restriction (or increase, as the case may be) in diameter of the restriction device.


The magnetic sensor array 503 may comprise two circuit boards 516, 518, for example printed circuit boards (PCBs). The first circuit board 516 may be located in opposition to the second circuit board 518. For example, the first circuit board 516 may be located above and generally parallel to the second circuit board 518. Each circuit board 516, 518 may have a subarray 520 of magnetic sensors 536, 538, 540, 542, for example, Hall effect sensors. A second external magnet 511 (FIG. 16) or even more external magnets may be disposed on the external adjustment device 502. In FIG. 14, a second external magnet 511 has been removed to show detail of the magnetic sensor array 503. Standoff blocks 526, 528 may be disposed on the external adjustment device 502 to hold the first and second circuit boards 516, 518 in place. The standoff blocks 526, 528 may be movable in one or more directions to allow fine adjustment of multiple dimensions of each circuit board 516, 518, as needed, to tune the magnetic sensor array 503. The one or more external magnets 510 are rotatably secured to a base 532, and may be covered with a stationary cylindrical magnet cover 530. It may be desired to rotatably secure the one or more external magnets 510 to the base well enough so that they do not vibrate or rattle, thereby advantageously increasing the signal to noise ratio of the magnetic sensors and the overall effectiveness of the sensor array 503.


The circuit boards 516, 518 may be substantially identical to each other, or may be mirror images of each other. FIG. 15 shows circuit board 516 in more detail. Five Hall effect sensors (HES) include a forward HES 534, a back HES 536, a left HES 538, a right HES 540, and a middle HES 542. In FIG. 14 circuit board 516 is shown having the effect sensors 534, 536, 538, 540, 542 extending upward, while the circuit board 518 is shown having its Hall effect sensors extending downward (not visible in FIG. 14). In some embodiments, it may be advantageous to have the HES of circuit board 518 extending downward to minimize the distance between the Hall effect sensors and the permanent magnet 402. In some embodiments, circuit board 518 may thus have a mirror image to circuit board 516, so that the left HES 538 of circuit board 516 is directly above the left HES of circuit board 518, etc. However, if the Hall effect sensor used for the left HES is identical to the Hall effect sensor used for the right HES, and the same for forward HES and back HES, the same circuit board may be used for both circuit boards 516, 518, thus reducing manufacturing costs. It is envisioned that printed circuit boards (PCBs) would be used to allow conductive tracks for connections to a voltage source (for example, +5 Volts) for each Hall effect sensor.


In some embodiments, the Hall effect sensors 534, 536, 538, 540, 542 comprise linear Hall effect sensors. The configuration of the circuit boards 516, 518 (i.e., one above the other) aids their use in differential mode, as will be described in regard to FIG. 17. Because the middle HES 542, in both circuit boards 516, 518, is the furthest of the Hall effect sensors from the external magnets 510, 511, it can be less prone to saturation. Therefore, in such embodiments, a more sensitive Hall effect sensor may be used as the middle HES 542. For example, an A1324, produced by Allegro Microsystems LLC, Irvine, Calif., USA, which has a sensitivity of between about 4.75 and about 5.25 millivolts per Gauss (mV/G), or more particularly 5.0 mV/G, may be used. For the other Hall effect sensors (e.g., 534, 536, 538, 540), which are located closer to the external magnets 510, 511 and more likely to be saturated, a less sensitive Hall effect sensor may be used. For example, an A1302, also produced by Allegro Microsystems LLC, Irvine, Calif., USA, with a sensitivity of about 1.3 mV/G may be used.


Turning to FIG. 16, the orientation of each circuit board 516, 518 is shown in relation to the centers of each external magnet 510, 511. An exemplary arrangement comprises external magnets 510, 511 having diameters between about 2.54 cm (1.0 inches) and 8.89 cm (3.5 inches), and more particularly between about 2.54 cm (1.0 inches) and 6.35cm (2.5 inches). The length of the external magnets 510, 511 may be between about 3.81 cm (1.5 inches) and 12.7 cm (5.0 inches), or between about 3.81 cm (1.5 inches) and 7.62 cm (3.0 inches). In a particular embodiment, the external magnets have a diameter of about 3.81 cm (1.5 inches) and a length of about 5.08 cm (2.0 inches), and are made from a rare earth material, such as Neodymium-Iron-Boron, for example using a grade greater higher N42, greater than N45, greater than N50, or about N52. Returning to FIG. 14, exemplary sizes for the permanent magnet 402 may include a diameter between about 6.35 mm (0.25 inches) and 8.89 mm (0.35 inches), between about 6.85 mm (0.27 inches) and 8.13 mm (0.32 inches), or about 7.11 mm (0.28 inches). The permanent magnet 402 may have a length of between about 1.27 cm (0.50 inches) and 3.81 cm (1.50 inches), between about 1.77 cm (0.70 inches) and 3.18 cm (1.25 inches), or about 1.85 cm (0.73 inches), or about 2.54 cm (1.00 inches). In a particular embodiment, the permanent magnet 402 may be made from a rare earth material, such as Neodymium-Iron-Boron, for example using a grade greater higher N42, greater than N45, greater than N50, or about N52.


Turning again to FIG. 16, circuit board 516 (also called upper circuit board) may be located a distance Y1 from the center of the external magnets 510, 511 of about 15 mm to 32 mm, or about 21 mm. Circuit board 518 (also called lower circuit board) may be located a distance Y2 from the center of the external magnets 510, 511 of about 17 mm to 35 mm, or about 26 mm. The external adjustment device 502 may include a depression 544 between the two external magnets 510, 511 to allow skin and/or fat to move into the depression when the external adjustment device is pressed down on the patient, thereby allowing the external magnets 510, 511 to be placed as close as possible to the permanent magnet 402. In some embodiments of external adjustment devices 502 having two external magnets 510, 511, the central axes of the two external magnets 510, 511 may be separated from each other by between about 50 mm and 100 mm, between about 55 mm and 80 mm, or about 70 mm.


In FIG. 17 a front view of the external adjustment device 502 (of FIGS. 14 & 16) shows the pairs of Hall effect sensors that are coupled to the same differential amplifier. The left HES 538 of circuit board 516 is paired with the right HES 540 of circuit board 518. The left HES 538 of circuit board 518 is paired with the right HES 540 of circuit board 516. In FIG. 18, the forward HES 534 of circuit board 516 is paired with the forward HES 534 of circuit board 518. The middle HES 542 of circuit board 516 is paired with the middle HES 542 of circuit board 518. And, the back HES 536 of circuit board 516 is paired with the back HES 536 of circuit board 518. Dotted lines have been drawn in in both FIGS. 17 and 18 to better illustrate the pairings.


In FIG. 19, an external adjustment device 502 having a sensor array 503 and having at least one external magnet 510 configured for rotation is powered by a power supply 504. This power supply 504 (or a separate power supply) powers differential amplifiers 505, to which the Hall effect sensors (534, 536, 538, 540, 542 of FIGS. 17 and 18) are coupled. The at least one external magnet 510 of the external adjustment device 502 is rotated (e.g., by a motor 840 of FIG. 4) and magnetically couples to the permanent magnet 402 of the adjustable medical device 400. The coupling between the at least one external magnet 510 and the permanent magnet 402 may have variable coupling and torque characteristics (e.g., increasing dynamic resistance torque τDR) which cause a varying magnetic field represented by components (i.e., vectors) 512 and 514. It should be mentioned that it is still within the scope of the present invention that embodiments could be constructed so that the one or more rotatable external magnet(s) 510, 511 are one or more electromagnets, creating rotatable magnetic fields comparable to, for example, those created by two rotatable permanent magnets. FIG. 33 illustrates an external adjustment device 600 comprising two electromagnets 606, 608 for creating rotatable magnetic fields. The external adjustment device 600 is otherwise similar to the external adjustment device 502 of FIGS. 14-19. Returning to FIG. 19, a processor 506 (for example a microprocessor) processes signals from the differential amplifiers 505, and the resulting information is displayed on a user interface 508.



FIG. 20 illustrates the system logic 200 within an intelligent adjustment system, (e.g., 500 of FIG. 14) that allows it to take signals received by the sensor array 503 and determine or estimate: 1) the general proximity of the external magnets 706, 708, 510, 511 of the external adjustment device 700,502 to the internal permanent magnet 1010, 402 of the distraction device 1000, 400, 2) a distance between the external adjustment device 700,502 and the distraction device 1000, 400, particularly the distance between the external magnets 706, 708, 510, 511 of the external adjustment device 700, 502 and the internal permanent magnet 1010, 402 of the distraction device 1000, 400, 3) the estimated distraction length of the distraction device 1000, 400, and 4) the distraction force. Data is acquired, in continuous mode in some embodiments, and, for example, at a sampling rate of 1,000 Hz. In step 202 differential inputs from the middle HES 542, left HES 538, and right HES 540 are analyzed, with the maximum and minimum values (voltages) of each complete rotation cycle, thus in step 204, identifying the amplitude of the waveform of the middle HES 542. This amplitude will be used during several subsequent functions programming 206 steps. In step 208, rotational detection is performed. For example, in one embodiment, if the amplitude of the waveform is smaller than 4.2 Volts, then the permanent magnet 1010, 402 of the distraction device 1000, 400 is determined to be rotationally stationary. In step 210, the general proximity of the external adjustment device 700, 502 to the permanent magnet 1010, 402 of the distraction device 1000, 400 is determined. For example a yes or no determination of whether the external adjustment device 700, 502 is close enough to the permanent magnet 1010, 402 to allow operation of the external adjustment device 700, 502. In one embodiment, the data acquisition array is analyzed and if the first and last elements (i.e., all of the values measured in the data acquisition array) are smaller than 0.5 Volts, then the peak of the waveform produced by the Hall effect sensors is complete for being processed. If the amplitude of the waveform is larger than 9.2 Volts, the external adjustment device 700, 502 is acceptably close to the permanent magnet 1010, 402 of the distraction device 1000, 400 to warrant continued adjustment, without aborting.


In step 212, an estimation is done of the actual distance between the external adjustment device 700, 502 and the distraction device 1000, 400 (or between the external magnets 706, 708, 510, 511 and the permanent magnet 1010, 402). Empirical data and curve fit data are used to estimate this distance (gap G). For example, for one particular embodiment. FIG. 22 illustrates a graph 266 of empirical data obtained of voltage (V) for a series of gaps G. A curve fit generated the equation:

V=286.71×G−1.095

where V is voltage in Volts, and G is gap G in millimeters.


Returning to FIG. 20, in step 214 the maximum distraction force at the current distance (gap G) is estimated based on empirical data and curve fit data. For example, for one particular embodiment, FIG. 23 illustrates a graph 268 of maximum possible force in pounds (lbs.) for a series of gaps G. A curve fit 272 generated the equation:

F=0.0298×G2−2.3262×G+60.591

where F is Force in pounds (lbs.), and G is gap G in millimeters


Returning to FIG. 20, in step 216 a real time estimate of distraction force is performed based on empirical data and curve fit data. For example, for one particular embodiment, FIG. 24 illustrates a graph 270 of estimated or actual distraction force in pounds (lbs.) over a range of voltage differentials. A curve fit 274 generated the equation:

F=0.006×Vd3−0.2168×Vd2+3.8129×V3+1.1936

where F if Force in pounds (lbs.), and Vd is differential voltage in Volts.


Returning to FIG. 20, a button may be pushed on a user interface 226, whenever a value for this force is desired, or it may be set to continually update. In step 218, slippage between the external magnets 706, 708, 510, 511 and the permanent magnet 1010, 402 is detected. First, in step 222, the differential input between the left and right HES 538, 540 is acquired, and the maximum and minimum values obtained. Then, in step 224, stall detection logic is run. In one embodiment, if the ratio between the maximum and minimum values of the waveform between two periods is larger than 0.77 Volts during a valid waveform period, and if it happens two times in a row, the slippage is detected (for example, between the left HES 538 of circuit board 516 and the right HES 540 of circuit board 518 and/or between the right HES 40 of circuit board 516 and the left HES 538 of circuit board 518). In one particular embodiment, if the current amplitude is 1.16 times (or more) larger than the previous current amplitude (or 1.16 times or more smaller), slippage is detected. In one embodiment, if the difference between the maximum index and the minimum index is smaller than 12 Volts, slippage is detected. If a stall is detected by the left and right HES 538, 540, slippage is detected. If slippage is detected, an alarm 228 may be sounded or lit. FIG. 25 illustrates a graph 276 of two differential voltages over time in an embodiment of the present invention. Differential voltage 286 (thin line) between the middle HES pair 542 of circuit board 516 and 542 of circuit board 518 may be used to calculate many of the parameters. The triangular perturbation 290 is typically located within the cycle of the differential voltage 286. Changes in the amplitude of the triangular perturbation may represent, for example, slippage or may represent the changes in coupling torque. Differential voltage 288 (thick line) between side pairs (for example, between the left HES 538 of circuit board 516 and the right HES 540 of circuit board 518) is used for confirmation of magnetic slippage. Perturbation 292 is typically located within the cycle of the differential voltage 288. Changes in the amplitude of the perturbation 292 may occur during magnetic slippage.


Returning to FIG. 20, in step 230, when a real time torque value is requested (for example, but pushing a button on the user interface 226), the voltage or amplitude of the waveform is recorded. In step 220 the rotation cycles are counted (this occurs continuously). The distraction length is also counted. For example, in one embodiment, 0.32 mm of linear distraction occurs for every rotation of the internal permanent magnet 1010, 402. In another embodiment, 0.005 mm of linear distraction occurs for every rotation of the internal permanent magnet 1010, 402. The number of rotations may be the number of rotations of the internal permanent magnet 1010, 402 or a fraction or multiple of the number of rotations of the internal permanent magnet 1010, 402 (i.e., “rotations” can be a non-integer number and can be less than 1 or greater than 1). For example, in a distraction device 1000, 400 having a gear module 412 (FIG. 14) between the internal permanent magnet 1010, 402 and the lead screw 408, it may be desired to count the number of rotations of the internal permanent magnet 1010, 402 divided by the gear reduction. For example in a gear reduction of 64:1 wherein the lead screw 408 rotates at a number of rotations per unit time that is 1/64 times that of the internal permanent magnet 1010, 402, the number counted by the system 500 may be the number of rotations of the internal permanent magnet 1010, 402 divided by 64.


In addition to the functions described that are possible with the magnetic sensor array 503, it is possible to use the magnetic sensor array 503 in place of the Hall effect sensors 924, 926, 928, 930, 932, 934, 936, 938 of the embodiments described in relation with FIGS. 7-10B in order to track rotation of the external magnet(s) 706, 708,510, 511.


One embodiment of a user interface 226 for conveying information to the user and receiving inputs from the user is illustrated in FIG. 21. The user interface 226 may comprise a graphic user interface (GUI) and may include a display and control buttons, or one or more touchscreens. The user interface may include an estimated gap display 232, which tells the user the approximate distance (gap G) between the external adjustment device 700, 502 and the distraction device 1000, 400, or between the external magnets 706, 708, 510, 511 of the external adjustment device 700, 502 and the internal permanent magnet 1010, 402 of the distraction device 1000, 400. If this gap G is small enough, an “OK to distract” indicator 234 may light up, vibrate, or sound, depending on whether it is a visual (e.g., LED), tactile, or audio indicator. At this point, the user may initiate distraction/retraction of the distraction device 1000, 400 by pressing a “Start” button 236 of the external adjustment device 700, 502. Alternatively, neither the “OK to distract” indicator 234 nor the “Start” button 236 may appear on the user interface 226 until the gap G is determined to be within an acceptable level, and only then the “Start” button 236 will be displayed on the user interface 226. For example, in one embodiment, an acceptable gap G is a distance below which a coupling may be generated between the external magnets 706, 708, 510, 510 of the external adjustment device 700, 502 and the internal permanent magnet 1010, 402 of the distraction device 1000, 400 sufficient to generate a significant distraction force (e.g., enough to distract bones, joints or tissue). In some embodiments, this may be a gap G of 51 mm or less. In other embodiments, this may be a gap G of 25 mm or less. In other embodiments, this may be a gap of 12 mm or less. In some embodiments, the significant distraction force to distract bones, joints, or tissue may be 1 pound or greater. In other embodiments, it may be 20 pounds or greater. In other embodiments, it may be 50 pounds or greater. In some embodiments, there may be an additional indicator if the gap G is too small. For example, if the gap is 1 mm or less, the system 500 may be set to not function, for example, in order to protect components of body tissue from forces or torques that are too large. This feature may function based on data such as that from FIG. 22. A maximum possible force display 240 may indicate the expected maximum possible force at the current condition (i.e., gap G), either graphically as shown, or with the display of a number, for example, from the data such as that of FIG. 23.


If the “Start” button 236 is pressed and the external adjustment device 700, 502 begins to distract the distraction device 1000, 400, the system 500 will begin counting the revolutions of the internal permanent magnet 1010, 402 and determining the estimated distraction length as described. This may be displayed on the distraction length display 238. An estimated force or actual force display 242 may show the current distraction force (or compression force or other force). This may be updated at any range of update rates. Alternatively, it may be updated only when the user presses a “Determine Force” button 244. If slippage between the magnets 510, 511 and internal permanent magnet 402 or between magnets 706, 708 and internal permanent magnet 1010 is detected, a “Not Lengthening” indicator 250 may light up, vibrate, or sound, depending on whether it is a visual (e.g., LED), tactile, or audio indicator. If at any time any significant event occurs for which user should be notified, an alarm 246 may light up, vibrate, or sound, depending on whether it is a visual (e.g., LED), tactile or audio indicator. Such events may include reaching too high of a force, or reaching the limit of the distraction device 1000, 400, such as its maximum or minimum length. A data input module 248 may be used to input data, for example the starting distraction length of the distraction device 1000, 400, the model of the distraction device, and/or any relevant patient demographic data. At any point during the operation of the system 500, the user may press a “Stop” button 252 to stop all activity. A graph 254 may be included on the user interface 226, for example showing the maximum possible force 256 and the actual force 258 over time. Shifts 260 of the maximum possible force 256 over time may be caused by the gap G changing due to the user applying more or less pressure on the external adjustment device 700, 502. The graph of the actual distraction force 258 may include a ramp up 262, as the distraction device 1000, 400 first moves without significant resistance, and then begins to encounter the resistance caused by tissue or bone. In may also include slippage jumps 264, as the applied torque τA on the internal permanent magnet 1010, 402 increases a little, and then quickly drops as slippage occurs, subsequently being caught and slightly increased by the next pole of the external magnet 706.


The system 500 may have limits that shut down the system if the voltage values demonstrate that the device is being used improperly. Reference above to external magnets 706, 708 may be considered to also reference external magnets 510, 511 where appropriate, and vice versa. For example, if a patient were to turn the external adjustment device 502 backwards, and/or to run the external magnets 510, 511 in an incorrect direction. This is also true for internal permanent magnets 1010 and 402, distraction device 1000 and adjustable device 400, and external adjustment devices 700, 502.


Several embodiments of adjustable implants configured for use with the system 500 are illustrated in FIGS. 26-32. The adjustable spinal implant 300 of FIG. 26, is secured to a spine 280 having vertebrae 282 and intervertebral discs 284. A first end 312 is secured to a portion of the spine 280, for example, to a first vertebra 316 with a pedicle screw 318. A second end 314 is secured to a portion of the spine 280, for example, to a second vertebra 320 with a pedicle screw 322. Alternatively, hooks, wires or other anchoring systems may be used to secure the adjustable spinal implant 300 to the spine 280. Many different portions of the vertebrae may be used to secure the adjustable spine implant 300. For example, the pedicle, the spinous process, the transverse process(es), the lamina, and the vertebral body, for example in an anteriorly placed adjustable spinal implant 300. The adjustable spinal implant 300 may alternatively be secured at either or both ends to ribs, or ilium. The adjustable spinal implant 300 comprises a first portion 301 and a second portion 302. The first portion 301 includes a hollow housing 324 and the second portion 302 includes a rod 326 which is axially extendable in both directions, and which is telescopically contained within the hollow housing 324. A permanent magnet 304 is contained within the hollow housing 324, and is configured for rotation. The permanent magnet 304 is coupled to a lead screw 306 via an intermediate gear module 310. The gear module 310 may be eliminated in some embodiments, with the permanent magnet 304 directly connected to the lead screw 306. In either embodiment, rotation of the permanent magnet 304 (for example, including by application of an externally applied moving magnetic field of an external adjustment device 700, 502) causes rotation of the lead screw 306 (either at the same rotational velocity or at a different rotational velocity, depending on the gearing used). The lead screw 306 is threadingly engaged with a female thread 308, disposed within the rod 326. Certain embodiments of the adjustable spinal implant 300 may be used for distraction of the spine 280 or compression of the spine 280. Certain embodiments of the adjustable spinal implant 300 may be used to correct the spine of a patient with spinal deformity, for example due to scoliosis, hyper (or hypo) kyphosis, or hyper (or hypo) lordosis. Certain embodiments of the adjustable spinal implant 300 may be used to distract a spine, in order to open the spinal canal which may have been causing the patient pain. Certain embodiments of the adjustable spinal implant 300 may be used for adjustable dynamic stabilization of the spine, for control of the range of motion. Certain embodiments of the adjustable spinal implant 300 may be used to correct spondylolisthesis. Certain embodiments of the adjustable spinal implant 300 may be used to stabilize the spine during fusion, allowing for controlled load sharing, or selectable unloading of the spine. The adjustable spinal implant 300 may be configured in certain embodiments as an adjustable artificial disc, or to adjust vertebral body height. In treatment of early onset scoliosis, the adjustable spinal implant 300 is secured to the spine 280 of a patient, over the scoliotic curve 296, and is lengthened intermittently by the system 500. In order to obtain the desired growth rate of the spine, a specific force may be determined which is most effective for that patient. Or, an overall average force (for example 20 pounds) may be determined to be effective as a force target during lengthenings (distraction procedures). The system 500 allows the operator to determine whether the target force is reached, and can also protect against too large of a force being placed on the spine 280. In FIG. 26, a distance D is shown between the center of the spinal adjustment device 300 and the spine 280 at the apex vertebra 282. This may be, for example, measured from an X-ray image. The target force may be derived from a target “unbending” moment, defined as:

MU=D×FT

where MU is the target unbending moment, D is the distance D, and FT is the target force.



FIG. 27 illustrates a bone 328 with an adjustable intramedullary implant 330 placed within the medullary canal 332. In this particular case, the bone 328 is a femur, though a variety of other bones are contemplated, including, but not limited to the tibia and humerus. The adjustable intramedullary implant 330 includes a first portion 334 having a cavity 338 and a second portion 336, telescopically disposed within the first portion 334. Within the cavity 338 of the first portion 334 is a rotatable permanent magnet 340, which is rotationally coupled to a lead screw 342, first example, via a gear module 344. The first portion 334 is secured to a first section 346 of the bone 328, for example, using a bone screw 350. The second portion 336 is secured to a second section 348 of the bone 328, for example, using a bone screw 352. Rotation of the permanent magnet 340 (for example, by application of an externally applied moving magnetic field of an external adjustment device 700, 502) causes rotation of the lead screw 342 within a female thread 354 that is disposed in the second portion 336, and moves the first portion 334 and the second portion 336 either together or apart. In limb lengthening applications, it may be desired to increase the length of the bone 328, by creating an osteotomy 356, and then gradually distracting the two bone sections 346, 348 away from each other. A rate of approximately one millimeter per day has been shown to be effective in growing the length of the bone, with minimal non-unions or early consolidations. Stretching of the surrounding soft tissue may cause the patient significant pain. By use of the system 500, the patient or physician may determine a relationship between the patient's pain threshold and the force measured by the system 500. In future lengthenings, the force may be measured, and the pain threshold force avoided. In certain applications (e.g., trauma, problematic limb lengthening), it may be desired to place a controlled compression force between the two bone sections 346, 348, in order to form a callus, to induce controlled bone growth, or simply to induce healing, if no limb lengthening is required. System 500 may be used to place a controlled compression on the space between the two bone sections 346, 348.


A bone 328 is illustrated in FIG. 28 with an adjustable intramedullary implant 358 placed within the medullary canal 332. In this particular case, the bone 328 is a femur, though a variety of other bones are contemplated, including, but not limited to the tibia and humerus. The adjustable intramedullary implant 358 includes a first portion 360 having a cavity 362 and a second portion 364, rotationally disposed within the first portion 360. Within the cavity 362 of the first portion 360 is a rotatable permanent magnet 366, which is rotationally coupled to a lead screw 368, first example, via a gear module 370. The first portion 360 is secured to a first section 346 of the bone 328, for example, using a bone screw 350. The second portion 364 is secured to a second section 348 of the bone 328, for example, using a bone screw 352. Rotation of the permanent magnet 366 (for example, by application of an externally applied moving magnetic field of an external adjustment device 700, 502) causes rotation of the lead screw 368 within a female thread 372 that is disposed in a rotation module 374, and moves the first portion 360 and the second portion 364 rotationally with respect to each other. The rotation module 374 may make use of embodiments disclosed in U.S. Pat. No. 8,852,187. In bone rotational deformity applications, it may be desired to change the orientation between the first portion 346 and the second portion 348 of the bone 328, by creating an osteotomy 356, and then gradually rotating the bone sections 346, 348 with respect to each other. Stretching of the surrounding soft tissue may cause the patient significant pain. By use of the system 500, the patient or physician may determine a relationship between the patient's pain threshold and the force measured by the system 500. In future rotations, the force may be measured, and the pain threshold force avoided.


A knee joint 376 is illustrated in FIGS. 29 and 30, and comprises a femur 328, a tibia 394, and a fibula 384. Certain patients having osteoarthritis of the knee joint 376 may be eligible for implants configured to non-invasively adjust the angle of a wedge osteotomy 388 made in the tibia 394, which divides the tibia 394 into a first portion 390 and a second portion 392. Two such implants include an adjustable intramedullary implant 386 (FIG. 29) and an adjustable plate implant 420 (FIG. 30). The adjustable intramedullary implant 386 includes a first portion 396 which is secured to the first portion 390 of the tibia 394 using one or more bone screws 378, 380 and a second portion 398 which is secured to the second portion 392 of the tibia 394 using one or more bone screws 382. A permanent magnet 381 within the adjustable intramedullary implant 386 is rotationally coupled to a lead screw 383, which in turn engages female threads 385 of the second portion 398. In a particular embodiment, the bone screw 378 passes through the adjustable intramedullary implant 386 at a pivoting interface 387. As the angle of the osteotomy 388 is increased with one or more non-invasive adjustments, the bone screw 378 is able to pivot in relation to the adjustable intramedullary implant 386, while still holding the adjustable intramedullary implant 386 securely to the bone of the tibia 394. A rate of between about 0.5 mm and 2.5 mm per day may be effective in growing the angle of the bone, with minimal non-unions or early consolidation. Stretching of the surrounding soft tissue may cause the patient significant pain. By use of the system 500, the patient or physician may determine a relationship between the patient's pain threshold and the force measured by the system 500. In future lengthenings, the force may be measured, and the pain threshold force avoided.


The adjustable plate implant 420 (FIG. 30) includes a first portion 422 having a first plate 438, which is secured externally to the first portion 390 of the tibia 394 using one or more bone screws 426, 428 and a second portion 424 having a second plate 440, which is secured externally to the second portion 392 of the tibia 394 using one or more bone screws 430. A permanent magnet 432 within the adjustable plate implant 420 is rotationally coupled to a lead screw 434, which in turn engages female threads 436 of the second portion 424. Stretching of the surrounding soft tissue may cause the patient significant pain. By use of the system 500, the patient or physician determine a relationship between the patient's pain threshold and the force measured by the system 500. In future lengthenings, the force may be measured, and the pain threshold force avoided.


An adjustable suture anchor 444 is illustrated in FIG. 31. Though the embodiment is shown in a rotator cuff 134 of a shoulder joint 136, the adjustable suture anchor 444 also has application in anterior cruciate ligament (ACL) repair, or any other soft tissue to bone attachment in which securement tension is an factor. The adjustable suture anchor 444 comprises a first end 446 and a second end 448 that is configured to insert into the head 140 of a humerus 138 through cortical bone 146 and cancellous bone 142. Threads 460 at the first end 446 are secured to the cortical bone 146 and the second end 448 may additionally be inserted into a pocket 144 for further stabilization. Suture 450 is wound around a spool 458 within the adjustable suture anchor 444, extends out of the adjustable suture anchor 444, and is attached to a tendon 150 of a muscle 132 through a puncture 152 by one or more knots 452, for example, at the greater tubercle 148 of the humerus 138. A permanent magnet 454 is rotatably held within the adjustable suture anchor 444 and is rotatably coupled to the spool 458, for example via a gear module 456. It may be desirable during and/or after surgery, to keep a muscle secured to a bone at a very specific range of tensions, so that healing is maximized and range of motion is optimized. Using the system 500, the force may be measured, adjusted accordingly, at surgery, immediately after surgery, and during the healing period in the weeks after surgery).



FIG. 32 illustrates an adjustable restriction device 462 having an adjustable ring 472 which is configured to be secured around a body duct 120 and closed with a closure or snap 474. The adjustable restriction device 462 may be implanted in a laparoscopic surgery. A housing 464 having suture tabs 466 is secured to the patient, for example, by suturing though holes 468 in the suture tabs 466 to the patient's tissue, such as fascia of abdominal muscle. Within the housing 464 is a magnet 478 which is rotationally coupled to a lead screw 482. A nut 480 threadingly engages with the lead screw 482 and is also engaged with a tensile line 476, which may comprise wire, for example Nitinol wire. The tensile line 476 passes through a protective sheath 470 and passes around the interior of a flexible jacket 484 that makes up the adjustable ring 472. The flexible jacket 484 may be constructed of silicone, and may have a wavy shape 486, that aids in its ability to constrict to a smaller diameter. The duct 120 is shown in cross-section at the edge of the adjustable ring 472, in order to show the restricted interior 488 of the duct 120. Certain gastrointestinal ducts including the stomach, esophagus, and small intestine may be adjustably restricted. Sphincters such as the anal and urethral sphincters may also be adjustably restricted. Blood vessels such as the pulmonary artery may also be adjustably restricted. During adjustment of the adjustable restriction device 462, an external adjustment device 700, 502 is placed in proximity to the patient and the magnet 478 is non-invasively rotated. The rotation of the magnet 478 rotates the lead screw 482, which, depending on the direction of rotation, either pulls the nut 480 toward the magnet 478 or pushes the nut away from the magnet 478, thereby either increasing restriction or releasing restriction, respectively. Because restricted ducts may have complex geometries, their effective size is hard to characterize, even using three-dimensional imaging modalities, such as CT or MRI. The force of constriction on the duct may be a more accurate way of estimating the effective restriction. For example, a stomach is restricted with a tangential force (akin to the tension on the tensile line 476) on the order of one pound. With a fine lead screw having about 80 threads per inch, a fine adjustment of the nut 480, and thus of the adjustable ring may be made. By including a gear module 490 between the magnet 478 and the lead screw 482, and even more precise adjustment may be made. By use of the system 500, the force may be measured, during adjustment, so that an “ideal restriction” may be returned to after changes occur in the patient (tissue growth, deformation, etc.).



FIG. 34 illustrates an external adjustment device 1100 having one or more magnets 1106, 1108 which may comprise permanent magnets or electromagnets, as described in other embodiments herein. In some applications, one or more of the Hall effect sensors 534, 538, 540 may experience an undesired amount of saturation. An upper leg portion 1102 having a bone 1118 extending within muscle/fat 1116 and skin 1104 is shown in FIG. 34. An implant 1110, such as a limb lengthening implant, having a magnet 1010 is placed within the medullary canal of the bone 1118. In large upper leg portions 1102, for example in patients having a large amount of muscle or fat 1116, the distance “A” between the magnet 1010 and the Hall effect sensors 534, 538, 540 decreases the signal the magnet 1010 can impart on the Hall effect sensors 534, 538, 540 thus increasing the relative effect the one or more magnets 1106, 1108 have on the Hall effect sensors 534, 538, 540. The external adjustment device 1100 includes one or more Hall effect sensors 597, 599 spaced from the one or more magnets 1106, 1108. The one or more Hall effect sensors 597, 599 may be electrically coupled to the external adjustment device 1100 directly or remotely. In some embodiments, the one or more Hall effect sensors 597,599 may be mechanically attached to the external adjustment device 1100, or may be attachable to the body of the patient, for example to the upper leg portion 1102. Distances B and C may each range between about 5 cm and 15 cm, between about 7 cm and 11 cm, or between about 8 cm and 10 cm. In some embodiments, one or both of the Hall effect sensors 597, 599 may include a shield 1112, 1114 , such as a plate. The shield may comprise iron or MuMETAL®, (Magnetic Shield Corporation, Bensenville, Ill., USA). The shield may be shaped or oriented in a manner such that it is not between the particular Hall effect sensor 597, 599 and the magnet 1010, but is between the particular Hall effect sensor 597, 599 and the one or more magnets 1106, 1108. The Hall effect sensors 597, 599 may each be used to acquire a differential voltage, as described in relation to the other Hall effect sensors 534, 538, 540. Larger distances between that the Hall effect sensors 597, 599 and the one or more magnets 1106, 1108 can advantageously minimize the amount of saturation due to the magnets 1106, 1108. Additionally, the shield 1112, 1114 can significantly minimize the amount of saturation.


While embodiments have been shown and described, various modifications may be made without departing from the scope of the inventive concepts disclosed herein. The invention(s), therefore, should not be limited, except to the following claims, and their equivalents.

Claims
  • 1. A remote control, comprising: one or more rotatable magnets coupled to a handle;a motor disposed in the handle, the motor operably coupled to the one or more rotatable magnets and configured to rotate the one or more rotatable magnets to transmit a rotating magnetic field to a medical implant having a rotatable permanent magnet wherein rotation of the permanent magnet changes a dimension of the medical implant;a first circuit board having an array of magnetic sensors and a second circuit board having an array of magnetic sensors, the first circuit board being disposed above the second circuit board, the second circuit board being located between the one or more rotatable magnets and the rotatable permanent magnet of the medical implant, with the first circuit board and second circuit board configured to receive information corresponding to changing magnetic field characteristics caused by the rotation of the rotatable permanent magnet of the medical implant, and configured to determine one or more of a force generated by the medical implant and a change in dimension of the medical implant; anda user interface configured to report to a user at least one of the force generated on the rotatable permanent magnet and an amount of change of the dimension of the medical implant,wherein at least two sensors of the array of magnetic sensors of the first circuit board have differing sensitivities relative to each other, andwherein at least two sensors of the array of magnetic sensors of the second circuit board have differing sensitivities relative to each other.
  • 2. The remote control as in claim 1, wherein the user interface further comprises one or more displays configured to display an indicator of an amount of adjustment of the medical implant, in response to the rotating magnetic field.
  • 3. The remote control as in claim 2, wherein the indicator of the amount of the adjustment comprises an indicator of a number of revolutions performed by the rotatable permanent magnet of the medical implant in response to the rotating magnetic field.
  • 4. The remote control as in claim 2, wherein the one or more displays further comprise an indicator for indicating that the rotatable permanent magnet of the medical implant is not achieving a predetermined threshold of responsiveness to the rotating magnetic field.
  • 5. The remote control as in claim 1, wherein when force is applied to the medical implant, the force is calculated by a processor based upon a measurement of the responsiveness of the medical implant to the rotating magnetic field.
  • 6. The remote control as in claim 5, wherein the first circuit board comprising a Hall effect sensor array.
  • 7. The remote control as in claim 6, wherein the first circuit board contains at least five Hall effect sensors, and wherein the second circuit board contains at least five Hall effect sensors.
  • 8. The remote control as in claim 7, wherein an amount of force generated by the medical implant is determined at least in part from one or more voltage differentials between at least two of the five Hall effect sensors of the first circuit board and at least two of the five Hall effect sensors of the second circuit board.
  • 9. The remote control as in claim 8, wherein when force is applied to the medical implant, the amount of force applied upon the medical implant is determined by the processor based at least in part on empirical data and curve fit data.
  • 10. The remote control of claim 7, comprising at least one differential amplifier to acquire a differential voltage between at least two of the Hall effect sensors.
  • 11. The remote control of claim 10, wherein the processor receives the input differential voltage data from the at least one differential amplifier and calculates one or more of: a binary proximity indication of the remote control relative to the medical implant; a distance between the remote control and the medical implant; a change in dimension of the medical implant in response to the magnetic field; and the maximum possible force applied upon the medical implant.
  • 12. The remote control as in claim 1, wherein the amount of change of the dimension comprises a change in an axial dimension of at least a portion of the medical implant.
  • 13. A remote control comprising: one or more rotatable magnets coupled to a handle;a motor disposed in the handle, the motor operably coupled to the one or more rotatable magnets and configured to rotate the one or more rotatable magnets to transmit a rotating magnetic field to a medical implant having a rotatable permanent magnet wherein rotation of the permanent magnet changes a dimension of the medical implant;a first circuit board having an array of magnetic sensors and a second circuit board having an array of Hall effect sensors, the first circuit board being disposed above the second circuit board, the second circuit board being located between the one or more rotatable magnets and the rotatable permanent magnet of the medical implant, with the first circuit board and second circuit board configured to receive information corresponding to changing magnetic field characteristics caused by the rotation of the rotatable permanent magnet of the medical implant, and configured to determine one or more of a force generated by the medical implant and a change in dimension of the medical implant; anda user interface configured to report to a user at least one of the force generated on the rotatable permanent magnet and an amount of change of the dimension of the medical implant,wherein at least two sensors of the array of Hall effect sensors of the first circuit board have differing sensitivities relative to each other, andwherein at least two sensors of the array of Hall effect sensors of the second circuit board have differing sensitivities relative to each other.
  • 14. The remote control as in claim 13, wherein the amount of change in dimension comprises a change in an axial dimension of at least a portion of the medical implant.
  • 15. The remote control as in claim 13, wherein the first circuit board contains at least five Hall effect sensors, and wherein the second circuit board contains at least five Hall effect sensors.
  • 16. The remote control as in claim 15, wherein the amount of force generated by the medical implant is determined at least in part from one or more voltage differentials between at least two of the five Hall effect sensors of the first circuit board and at least two of the five Hall effect sensors of the second circuit board.
  • 17. The remote control as in claim 16, wherein when force is applied to the medical implant, the amount of force applied upon the medical implant is determined by the processor based at least in part on empirical data and curve fit data.
  • 18. A remote control comprising: one or more rotatable magnets coupled to a handle;a motor disposed in the handle, the motor operably coupled to the one or more rotatable magnets and configured to rotate the one or more rotatable magnets to transmit a rotating magnetic field to a medical implant having a rotatable permanent magnet wherein rotation of the rotatable permanent magnet changes a dimension of the medical implant;a first circuit board having an array of magnetic sensors and a second circuit board having an array of magnetic sensors, the second circuit board being located between the one or more rotatable magnets and the rotatable permanent magnet of the medical implant, with the first circuit board and second circuit board configured to receive information corresponding to changing magnetic field characteristics caused by the rotation of the rotatable permanent magnet of the medical implant, and configured to determine one or more of a force generated by the medical implant and a change in dimension of the medical implant; anda user interface configured to report to a user at least one of the force generated on the rotatable permanent magnet and an amount of change of the dimension of the medical implant,wherein at least two sensors of the array of magnetic sensors of the first circuit board have differing sensitivities relative to each other, andwherein at least two sensors of the array of magnetic sensors of the second circuit board have differing sensitivities relative to each other.
US Referenced Citations (1346)
Number Name Date Kind
1599538 Ludger Sep 1926 A
2702031 Wenger Feb 1955 A
3111945 Von Nov 1963 A
3372476 Richard et al. Mar 1968 A
3377576 Edwin et al. Apr 1968 A
3397928 Galle Aug 1968 A
3512901 Law May 1970 A
3527220 Summers Sep 1970 A
3597781 Eibes et al. Aug 1971 A
3726279 Barefoot et al. Apr 1973 A
3749098 De Bennetot Jul 1973 A
3750194 Summers Aug 1973 A
3810259 Summers May 1974 A
3840018 Heifetz Oct 1974 A
3866510 Eibes et al. Feb 1975 A
3900025 Barnes, Jr. Aug 1975 A
3915151 Kraus Oct 1975 A
RE28907 Eibes et al. Jul 1976 E
3976060 Hildebrandt et al. Aug 1976 A
4010758 Rockland et al. Mar 1977 A
4056743 Clifford et al. Nov 1977 A
4068821 Morrison Jan 1978 A
4078559 Nissinen Mar 1978 A
4118805 Reimels Oct 1978 A
4204541 Kapitanov May 1980 A
4222374 Sampson et al. Sep 1980 A
4235246 Weiss Nov 1980 A
4256094 Kapp et al. Mar 1981 A
4286584 Sampson et al. Sep 1981 A
4300223 Maire Nov 1981 A
4357946 Dutcher et al. Nov 1982 A
4386603 Mayfield Jun 1983 A
4395259 Prestele et al. Jul 1983 A
4448191 Rodnyansky et al. May 1984 A
4486176 Tardieu et al. Dec 1984 A
4501266 McDaniel Feb 1985 A
4522501 Shannon Jun 1985 A
4537520 Ochiai et al. Aug 1985 A
4550279 Klein Oct 1985 A
4561798 Elcrin et al. Dec 1985 A
4573454 Hoffman Mar 1986 A
4592339 Kuzmak et al. Jun 1986 A
4592355 Antebi Jun 1986 A
4595007 Mericle Jun 1986 A
4608992 Hakim et al. Sep 1986 A
4642257 Chase Feb 1987 A
4658809 Ulrich et al. Apr 1987 A
4696288 Kuzmak et al. Sep 1987 A
4700091 Wuthrich Oct 1987 A
4747832 Buffet May 1988 A
4760837 Petit Aug 1988 A
4854304 Zielke Aug 1989 A
4872515 Lundell Oct 1989 A
4904861 Epstein et al. Feb 1990 A
4931055 Bumpus et al. Jun 1990 A
4940467 Tronzo Jul 1990 A
4957495 Kluger Sep 1990 A
4973331 Pursley et al. Nov 1990 A
4978323 Freedman Dec 1990 A
4998013 Epstein et al. Mar 1991 A
5010879 Moriya et al. Apr 1991 A
5030235 Campbell, Jr. Jul 1991 A
5041112 Mingozzi et al. Aug 1991 A
5053047 Yoon Oct 1991 A
5064004 Lundell Nov 1991 A
5074868 Kuzmak Dec 1991 A
5074882 Grammont et al. Dec 1991 A
5092889 Campbell, Jr. Mar 1992 A
5133716 Plaza Jul 1992 A
5142407 Varaprasad et al. Aug 1992 A
5152770 Bengmark et al. Oct 1992 A
5156605 Pursley et al. Oct 1992 A
5176618 Freedman Jan 1993 A
5180380 Pursley et al. Jan 1993 A
5222976 Yoon Jun 1993 A
5226429 Kuzmak Jul 1993 A
5261908 Campbell, Jr. Nov 1993 A
5263955 Baumgart et al. Nov 1993 A
5290289 Sanders et al. Mar 1994 A
5306275 Bryan Apr 1994 A
5330503 Yoon Jul 1994 A
5334202 Carter Aug 1994 A
5336223 Rogers Aug 1994 A
5356411 Spievack Oct 1994 A
5356424 Buzerak et al. Oct 1994 A
5360407 Leonard et al. Nov 1994 A
5364396 Robinson et al. Nov 1994 A
5381943 Allen et al. Jan 1995 A
5399168 Wadsworth, Jr. et al. Mar 1995 A
5403322 Herzenberg et al. Apr 1995 A
5429638 Muschler et al. Jul 1995 A
5433721 Hooven et al. Jul 1995 A
5437266 McPherson et al. Aug 1995 A
5438990 Wahlstrand et al. Aug 1995 A
5449368 Kuzmak Sep 1995 A
5466261 Richelsoph Nov 1995 A
5468030 Walling Nov 1995 A
5480437 Draenert Jan 1996 A
5498262 Bryan Mar 1996 A
5509888 Miller Apr 1996 A
5516335 Kummer et al. May 1996 A
5527309 Shelton Jun 1996 A
5536269 Spievack Jul 1996 A
5536296 Ten Eyck et al. Jul 1996 A
5549610 Russell et al. Aug 1996 A
5573012 McEwan Nov 1996 A
5573496 McPherson et al. Nov 1996 A
5575790 Chen et al. Nov 1996 A
5582616 Bolduc et al. Dec 1996 A
5601224 Bishop et al. Feb 1997 A
5620445 Brosnahan et al. Apr 1997 A
5620449 Faccioli et al. Apr 1997 A
5626579 Muschler et al. May 1997 A
5626613 Schmieding May 1997 A
5628888 Bakhir et al. May 1997 A
5632744 Campbell, Jr. May 1997 A
5659217 Petersen Aug 1997 A
5662683 Kay Sep 1997 A
5672175 Martin Sep 1997 A
5672177 Seldin Sep 1997 A
5676162 Larson, Jr. et al. Oct 1997 A
5693091 Larson, Jr. et al. Dec 1997 A
5700263 Schendel Dec 1997 A
5702430 Larson, Jr. et al. Dec 1997 A
5704893 Timm Jan 1998 A
5704938 Staehlin et al. Jan 1998 A
5704939 Justin Jan 1998 A
5720746 Soubeiran Feb 1998 A
5722429 Larson, Jr. et al. Mar 1998 A
5722930 Larson, Jr. et al. Mar 1998 A
5743910 Bays et al. Apr 1998 A
5758666 Larson, Jr. et al. Jun 1998 A
5762599 Sohn Jun 1998 A
5766208 McEwan Jun 1998 A
5771903 Jakobsson Jun 1998 A
5800434 Campbell, Jr. Sep 1998 A
5810815 Morales Sep 1998 A
5824008 Bolduc et al. Oct 1998 A
5827286 Incavo et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5830221 Stein et al. Nov 1998 A
5843129 Larson, Jr. et al. Dec 1998 A
5874796 Petersen Feb 1999 A
5879375 Larson, Jr. et al. Mar 1999 A
5902304 Walker et al. May 1999 A
5935127 Border Aug 1999 A
5938669 Klaiber et al. Aug 1999 A
5945762 Chen et al. Aug 1999 A
5954915 Voorhees et al. Sep 1999 A
5961553 Coty et al. Oct 1999 A
5964763 Incavo et al. Oct 1999 A
5976138 Baumgart et al. Nov 1999 A
5979456 Magovern Nov 1999 A
5985110 Bakhir et al. Nov 1999 A
5997490 McLeod et al. Dec 1999 A
6009837 McClasky Jan 2000 A
6022349 McLeod et al. Feb 2000 A
6033412 Losken et al. Mar 2000 A
6034296 Elvin et al. Mar 2000 A
6067991 Forsell May 2000 A
6074341 Anderson et al. Jun 2000 A
6074882 Eckardt Jun 2000 A
6092531 Chen et al. Jul 2000 A
6102922 Jakobsson et al. Aug 2000 A
6106525 Sachse Aug 2000 A
6126660 Dietz Oct 2000 A
6126661 Faccioli et al. Oct 2000 A
6138681 Chen et al. Oct 2000 A
6139316 Sachdeva et al. Oct 2000 A
6162223 Orsak et al. Dec 2000 A
6183476 Gerhardt et al. Feb 2001 B1
6200317 Aalsma et al. Mar 2001 B1
6210347 Forsell Apr 2001 B1
6217847 Contag et al. Apr 2001 B1
6221074 Cole et al. Apr 2001 B1
6234299 Voorhees et al. May 2001 B1
6234956 He et al. May 2001 B1
6241730 Alby Jun 2001 B1
6245075 Betz et al. Jun 2001 B1
6263230 Haynor et al. Jul 2001 B1
6283156 Motley Sep 2001 B1
6292680 Somogyi et al. Sep 2001 B1
6296643 Hopf et al. Oct 2001 B1
6296656 Bolduc et al. Oct 2001 B1
6299613 Ogilvie et al. Oct 2001 B1
6315784 Djurovic Nov 2001 B1
6319255 Grundei et al. Nov 2001 B1
6321106 Lemelson Nov 2001 B1
6325805 Ogilvie et al. Dec 2001 B1
6327492 Lemelson Dec 2001 B1
6331744 Chen et al. Dec 2001 B1
6336929 Justin Jan 2002 B1
6343568 McClasky Feb 2002 B1
6358283 Hogfors et al. Mar 2002 B1
6375682 Fleischmann et al. Apr 2002 B1
6386083 Hwang May 2002 B1
6389187 Greenaway et al. May 2002 B1
6400980 Lemelson Jun 2002 B1
6402753 Cole et al. Jun 2002 B1
6409175 Evans et al. Jun 2002 B1
6416516 Stauch et al. Jul 2002 B1
6417750 Sohn Jul 2002 B1
6423061 Bryant Jul 2002 B1
6432040 Meah Aug 2002 B1
6450173 Forsell Sep 2002 B1
6450946 Forsell Sep 2002 B1
6453907 Forsell Sep 2002 B1
6454698 Forsell Sep 2002 B1
6454699 Forsell Sep 2002 B1
6454700 Forsell Sep 2002 B1
6454701 Forsell Sep 2002 B1
6460543 Forsell Oct 2002 B1
6461292 Forsell Oct 2002 B1
6461293 Forsell Oct 2002 B1
6463935 Forsell Oct 2002 B1
6464628 Forsell Oct 2002 B1
6470892 Forsell Oct 2002 B1
6471635 Forsell Oct 2002 B1
6475136 Forsell Nov 2002 B1
6482145 Forsell Nov 2002 B1
6494879 Lennox et al. Dec 2002 B2
6499907 Baur Dec 2002 B1
6500110 Davey et al. Dec 2002 B1
6503189 Forsell Jan 2003 B1
6508820 Bales Jan 2003 B2
6510345 Van Bentem Jan 2003 B1
6511490 Robert Jan 2003 B2
6527701 Sayet et al. Mar 2003 B1
6527702 Whalen et al. Mar 2003 B2
6536499 Voorhees et al. Mar 2003 B2
6537196 Creighton, IV et al. Mar 2003 B1
6547801 Dargent et al. Apr 2003 B1
6554831 Rivard et al. Apr 2003 B1
6558400 Deem et al. May 2003 B2
6562051 Bolduc et al. May 2003 B1
6565573 Ferrante et al. May 2003 B1
6565576 Stauch et al. May 2003 B1
6573706 Mendes et al. Jun 2003 B2
6582313 Perrow Jun 2003 B2
6583630 Mendes et al. Jun 2003 B2
6587719 Barrett et al. Jul 2003 B1
6595912 Lau et al. Jul 2003 B2
6602184 Lau et al. Aug 2003 B2
6604529 Kim Aug 2003 B2
6607363 Domroese Aug 2003 B1
6609025 Barrett et al. Aug 2003 B2
6612978 Lau et al. Sep 2003 B2
6612979 Lau et al. Sep 2003 B2
6616669 Ogilvie et al. Sep 2003 B2
6621956 Greenaway et al. Sep 2003 B2
6626899 Houser et al. Sep 2003 B2
6626917 Craig Sep 2003 B1
6627206 Lloyd Sep 2003 B2
6649143 Contag et al. Nov 2003 B1
6656135 Zogbi et al. Dec 2003 B2
6656194 Gannoe et al. Dec 2003 B1
6657351 Chen et al. Dec 2003 B2
6667725 Simons et al. Dec 2003 B1
6669687 Saadat Dec 2003 B1
6673079 Kane Jan 2004 B1
6676674 Dudai Jan 2004 B1
6682474 Lau et al. Jan 2004 B2
6689046 Sayet et al. Feb 2004 B2
6702732 Lau et al. Mar 2004 B1
6702816 Buhler Mar 2004 B2
6706042 Taylor Mar 2004 B2
6709293 Mori et al. Mar 2004 B2
6709385 Forsell Mar 2004 B2
6730087 Butsch May 2004 B1
6749556 Banik Jun 2004 B2
6752754 Feng et al. Jun 2004 B1
6761503 Breese Jul 2004 B2
6765330 Baur Jul 2004 B2
6769499 Cargill et al. Aug 2004 B2
6773437 Ogilvie et al. Aug 2004 B2
6774624 Anderson et al. Aug 2004 B2
6789442 Forch Sep 2004 B2
6796984 Soubeiran Sep 2004 B2
6802844 Ferree Oct 2004 B2
6802847 Carson et al. Oct 2004 B1
6809434 Duncan et al. Oct 2004 B1
6835183 Lennox et al. Dec 2004 B2
6835207 Zacouto et al. Dec 2004 B2
6849076 Blunn et al. Feb 2005 B2
6852113 Nathanson et al. Feb 2005 B2
6864647 Duncan et al. Mar 2005 B2
6884248 Bolduc et al. Apr 2005 B2
6890515 Contag et al. May 2005 B2
6908605 Contag et al. Jun 2005 B2
6915165 Forsell Jul 2005 B2
6916326 Benchetrit Jul 2005 B2
6916462 Contag et al. Jul 2005 B2
6918838 Schwarzler et al. Jul 2005 B2
6918910 Smith et al. Jul 2005 B2
6921360 Banik Jul 2005 B2
6921400 Sohngen Jul 2005 B2
6923951 Contag et al. Aug 2005 B2
6926719 Sohngen et al. Aug 2005 B2
6939533 Contag et al. Sep 2005 B2
6953429 Forsell Oct 2005 B2
6961553 Zhao et al. Nov 2005 B2
6971143 Domroese Dec 2005 B2
6980921 Anderson et al. Dec 2005 B2
6997952 Furukawa et al. Feb 2006 B2
7001327 Whalen et al. Feb 2006 B2
7001346 White Feb 2006 B2
7008425 Phillips Mar 2006 B2
7009386 Tromblee Mar 2006 B2
7011621 Sayet et al. Mar 2006 B2
7011658 Young Mar 2006 B2
7011682 Lashinski et al. Mar 2006 B2
7018380 Cole Mar 2006 B2
7029472 Fortin Apr 2006 B1
7029475 Panjabi Apr 2006 B2
7041105 Michelson May 2006 B2
7060075 Govari et al. Jun 2006 B2
7060080 Bachmann Jun 2006 B2
7063706 Wittenstein Jun 2006 B2
7077802 Lau et al. Jul 2006 B2
7081086 Lau et al. Jul 2006 B2
7083629 Weller et al. Aug 2006 B2
7096148 Anderson et al. Aug 2006 B2
7097611 Lau et al. Aug 2006 B2
7105029 Doubler et al. Sep 2006 B2
7105968 Nissen Sep 2006 B2
7114501 Johnson et al. Oct 2006 B2
7115129 Heggeness Oct 2006 B2
7115130 Michelson Oct 2006 B2
7124493 Lau et al. Oct 2006 B2
7128707 Banik Oct 2006 B2
7128750 Stergiopulos Oct 2006 B1
7135022 Kosashvili et al. Nov 2006 B2
7160312 Saadat Jan 2007 B2
7163538 Altarac et al. Jan 2007 B2
7172607 Hofle et al. Feb 2007 B2
7175589 Deem et al. Feb 2007 B2
7175660 Cartledge et al. Feb 2007 B2
7186262 Saadat Mar 2007 B2
7188627 Nelson et al. Mar 2007 B2
7189005 Ward Mar 2007 B2
7189202 Lau et al. Mar 2007 B2
7189251 Kay Mar 2007 B2
7191007 Desai et al. Mar 2007 B2
7194297 Talpade et al. Mar 2007 B2
7195608 Burnett Mar 2007 B2
7198774 Contag et al. Apr 2007 B2
7211094 Gannoe et al. May 2007 B2
7216648 Nelson et al. May 2007 B2
7217284 Houser et al. May 2007 B2
7218232 DiSilvestro et al. May 2007 B2
7232449 Sharkawy et al. Jun 2007 B2
7234468 Johnson et al. Jun 2007 B2
7234544 Kent Jun 2007 B2
7238152 Lau et al. Jul 2007 B2
7238191 Bachmann Jul 2007 B2
7241300 Sharkawy et al. Jul 2007 B2
7243719 Baron et al. Jul 2007 B2
7255682 Bartol, Jr. et al. Aug 2007 B1
7255714 Malek Aug 2007 B2
7255851 Contag et al. Aug 2007 B2
7276022 Lau et al. Oct 2007 B2
7282023 Frering Oct 2007 B2
7285087 Moaddeb et al. Oct 2007 B2
7288064 Boustani et al. Oct 2007 B2
7288099 Deem et al. Oct 2007 B2
7288101 Deem et al. Oct 2007 B2
7296577 Lashinski et al. Nov 2007 B2
7297150 Cartledge et al. Nov 2007 B2
7299091 Barrett et al. Nov 2007 B2
7302015 Kim et al. Nov 2007 B2
7302858 Walsh et al. Dec 2007 B2
7306614 Weller et al. Dec 2007 B2
7311690 Burnett Dec 2007 B2
7314372 Belfor et al. Jan 2008 B2
7314443 Jordan et al. Jan 2008 B2
7320706 Al-Najjar Jan 2008 B2
7331995 Eisermann et al. Feb 2008 B2
7333013 Berger Feb 2008 B2
7338433 Coe Mar 2008 B2
7340306 Barrett et al. Mar 2008 B2
7351198 Byrum et al. Apr 2008 B2
7351240 Hassler, Jr. et al. Apr 2008 B2
7353747 Swayze et al. Apr 2008 B2
7357037 Hnat et al. Apr 2008 B2
7357635 Belfor et al. Apr 2008 B2
7360542 Nelson et al. Apr 2008 B2
7361192 Doty Apr 2008 B2
7364542 Jambor et al. Apr 2008 B2
7364589 Eisermann Apr 2008 B2
7367340 Nelson et al. May 2008 B2
7367937 Jambor et al. May 2008 B2
7367938 Forsell May 2008 B2
7371244 Chatlynne et al. May 2008 B2
7374557 Conlon et al. May 2008 B2
7383164 Aram et al. Jun 2008 B2
7390007 Helms et al. Jun 2008 B2
7390294 Hassler, Jr. Jun 2008 B2
7400926 Forsell Jul 2008 B2
7402134 Moaddeb et al. Jul 2008 B2
7402176 Malek Jul 2008 B2
7410461 Lau et al. Aug 2008 B2
7416528 Crawford et al. Aug 2008 B2
7422566 Miethke Sep 2008 B2
7429259 Cadeddu et al. Sep 2008 B2
7431692 Zollinger et al. Oct 2008 B2
7441559 Nelson et al. Oct 2008 B2
7442196 Fisher et al. Oct 2008 B2
7445010 Kugler et al. Nov 2008 B2
7455690 Cartledge et al. Nov 2008 B2
7458981 Fielding et al. Dec 2008 B2
7468060 Utley et al. Dec 2008 B2
7476195 Sayet et al. Jan 2009 B2
7476238 Panjabi Jan 2009 B2
7481224 Nelson et al. Jan 2009 B2
7481763 Hassler, Jr. et al. Jan 2009 B2
7481841 Hazebrouck et al. Jan 2009 B2
7485149 White Feb 2009 B1
7489495 Stevenson Feb 2009 B2
7494459 Anstadt et al. Feb 2009 B2
7500484 Nelson et al. Mar 2009 B2
7503922 Deem et al. Mar 2009 B2
7503934 Eisermann et al. Mar 2009 B2
7507252 Lashinski et al. Mar 2009 B2
7510559 Deem et al. Mar 2009 B2
7525309 Sherman et al. Apr 2009 B2
7530981 Kutsenko May 2009 B2
7531002 Sutton et al. May 2009 B2
7547291 Lennox et al. Jun 2009 B2
7553298 Hunt et al. Jun 2009 B2
7559951 DiSilvestro et al. Jul 2009 B2
7561916 Hunt et al. Jul 2009 B2
7562660 Saadat Jul 2009 B2
7566297 Banik Jul 2009 B2
7569057 Liu et al. Aug 2009 B2
7578821 Fisher et al. Aug 2009 B2
7584788 Baron et al. Sep 2009 B2
7594887 Moaddeb et al. Sep 2009 B2
7601156 Robinson Oct 2009 B2
7601162 Hassler, Jr. et al. Oct 2009 B2
7601171 Ainsworth et al. Oct 2009 B2
7611526 Carl et al. Nov 2009 B2
7615001 Jambor et al. Nov 2009 B2
7615068 Timm et al. Nov 2009 B2
7618435 Opolski Nov 2009 B2
7621886 Burnett Nov 2009 B2
7635379 Callahan et al. Dec 2009 B2
7651483 Byrum et al. Jan 2010 B2
7658753 Carl et al. Feb 2010 B2
7658754 Zhang et al. Feb 2010 B2
7666132 Forsell Feb 2010 B2
7666184 Stauch Feb 2010 B2
7666210 Franck et al. Feb 2010 B2
7678136 Doubler et al. Mar 2010 B2
7678139 Garamszegi et al. Mar 2010 B2
7691103 Fernandez et al. Apr 2010 B2
7691144 Chang et al. Apr 2010 B2
7695512 Lashinski et al. Apr 2010 B2
7704279 Moskowitz et al. Apr 2010 B2
7704282 Disilvestro et al. Apr 2010 B2
7708737 Kraft et al. May 2010 B2
7708762 McCarthy et al. May 2010 B2
7708765 Carl et al. May 2010 B2
7708779 Edie et al. May 2010 B2
7713287 Timm et al. May 2010 B2
7717959 William et al. May 2010 B2
7727141 Hassler, Jr. et al. Jun 2010 B2
7727143 Birk et al. Jun 2010 B2
7749224 Cresina et al. Jul 2010 B2
7753913 Szakelyhidi, Jr. et al. Jul 2010 B2
7753915 Eksler et al. Jul 2010 B1
7757552 Bogath et al. Jul 2010 B2
7762998 Birk et al. Jul 2010 B2
7763053 Gordon Jul 2010 B2
7763080 Southworth Jul 2010 B2
7766815 Ortiz Aug 2010 B2
7766855 Miethke Aug 2010 B2
7775099 Bogath et al. Aug 2010 B2
7775215 Hassler, Jr. et al. Aug 2010 B2
7776061 Garner et al. Aug 2010 B2
7776068 Ainsworth et al. Aug 2010 B2
7776075 Bruneau et al. Aug 2010 B2
7776091 Mastrorio et al. Aug 2010 B2
7780590 Birk et al. Aug 2010 B2
7787958 Stevenson Aug 2010 B2
7789912 Manzi et al. Sep 2010 B2
7793583 Radinger et al. Sep 2010 B2
7794447 Dann et al. Sep 2010 B2
7794476 Wisnewski Sep 2010 B2
7798954 Birk et al. Sep 2010 B2
7799080 Doty Sep 2010 B2
7803106 Whalen et al. Sep 2010 B2
7803157 Michelson Sep 2010 B2
7811275 Birk et al. Oct 2010 B2
7811298 Birk Oct 2010 B2
7811328 Molz, IV et al. Oct 2010 B2
7815643 Johnson et al. Oct 2010 B2
7828714 Feng et al. Nov 2010 B2
7828813 Mouton Nov 2010 B2
7833228 Hershberger Nov 2010 B1
7835779 Anderson et al. Nov 2010 B2
7837669 Dann et al. Nov 2010 B2
7837691 Cordes et al. Nov 2010 B2
7842036 Phillips Nov 2010 B2
7845356 Paraschac et al. Dec 2010 B2
7846188 Moskowitz et al. Dec 2010 B2
7850660 Uth et al. Dec 2010 B2
7850735 Eisermann et al. Dec 2010 B2
7854769 Hershberger Dec 2010 B2
7862546 Conlon et al. Jan 2011 B2
7862574 Deem et al. Jan 2011 B2
7862586 Malek Jan 2011 B2
7867235 Fell et al. Jan 2011 B2
7871368 Zollinger et al. Jan 2011 B2
7875033 Richter et al. Jan 2011 B2
7887566 Hynes Feb 2011 B2
7901381 Birk et al. Mar 2011 B2
7901419 Bachmann et al. Mar 2011 B2
7909790 Burnett Mar 2011 B2
7909838 Deem et al. Mar 2011 B2
7909839 Fields Mar 2011 B2
7909852 Boomer et al. Mar 2011 B2
7918844 Byrum et al. Apr 2011 B2
7921850 Nelson et al. Apr 2011 B2
7922765 Reiley Apr 2011 B2
7927354 Edidin et al. Apr 2011 B2
7927357 Sacher et al. Apr 2011 B2
7931679 Heggeness Apr 2011 B2
7932825 Berger Apr 2011 B2
7938836 Ainsworth et al. May 2011 B2
7938841 Sharkawy et al. May 2011 B2
7942903 Moskowitz et al. May 2011 B2
7942908 Sacher et al. May 2011 B2
7947011 Birk et al. May 2011 B2
7948231 Takahashi et al. May 2011 B2
7951067 Byrum et al. May 2011 B2
7951180 Moskowitz et al. May 2011 B2
7958895 Nelson et al. Jun 2011 B2
7958896 Nelson et al. Jun 2011 B2
7959552 Jordan et al. Jun 2011 B2
7972315 Birk et al. Jul 2011 B2
7972346 Bachmann et al. Jul 2011 B2
7972363 Moskowitz et al. Jul 2011 B2
7976545 Hershberger et al. Jul 2011 B2
7983763 Stevenson et al. Jul 2011 B2
7985256 Grotz et al. Jul 2011 B2
7987241 St Jacques, Jr. et al. Jul 2011 B2
7988707 Panjabi Aug 2011 B2
7988709 Clark et al. Aug 2011 B2
7993342 Malandain et al. Aug 2011 B2
7993397 Lashinski et al. Aug 2011 B2
7998174 Malandain et al. Aug 2011 B2
7998208 Kohm et al. Aug 2011 B2
8002801 Carl et al. Aug 2011 B2
8002809 Baynham Aug 2011 B2
8007458 Lennox et al. Aug 2011 B2
8007474 Uth et al. Aug 2011 B2
8007479 Birk et al. Aug 2011 B2
8011308 Picchio Sep 2011 B2
8012162 Bachmann Sep 2011 B2
8016745 Hassler, Jr. et al. Sep 2011 B2
8016837 Giger et al. Sep 2011 B2
8016860 Carl et al. Sep 2011 B2
8026729 Kroh et al. Sep 2011 B2
8029477 Byrum et al. Oct 2011 B2
8029507 Green et al. Oct 2011 B2
8029567 Edidin et al. Oct 2011 B2
8034080 Malandain et al. Oct 2011 B2
8037871 McClendon Oct 2011 B2
8038680 Ainsworth et al. Oct 2011 B2
8038698 Edidin et al. Oct 2011 B2
8043206 Birk Oct 2011 B2
8043290 Harrison et al. Oct 2011 B2
8043299 Conway Oct 2011 B2
8043338 Dant Oct 2011 B2
8043345 Carl et al. Oct 2011 B2
8048169 Burnett et al. Nov 2011 B2
8057473 Orsak et al. Nov 2011 B2
8057513 Kohm et al. Nov 2011 B2
8066650 Lee et al. Nov 2011 B2
8070670 Deem et al. Dec 2011 B2
8070671 Deem et al. Dec 2011 B2
8070695 Gupta et al. Dec 2011 B2
8070813 Grotz et al. Dec 2011 B2
8074654 Paraschac et al. Dec 2011 B2
8075577 Deem et al. Dec 2011 B2
8079974 Stergiopulos Dec 2011 B2
8079989 Birk et al. Dec 2011 B2
8080022 Deem et al. Dec 2011 B2
8080025 Deem et al. Dec 2011 B2
8083741 Morgan et al. Dec 2011 B2
8088166 Makower et al. Jan 2012 B2
8092459 Malandain Jan 2012 B2
8092499 Roth Jan 2012 B1
8095317 Ekseth et al. Jan 2012 B2
8096302 Nelson et al. Jan 2012 B2
8096938 Forsell Jan 2012 B2
8096995 Kohm et al. Jan 2012 B2
8097018 Malandain et al. Jan 2012 B2
8097038 Malek Jan 2012 B2
8100819 Banik Jan 2012 B2
8100943 Malandain et al. Jan 2012 B2
8100967 Makower et al. Jan 2012 B2
8105360 Connor Jan 2012 B1
8105363 Fielding et al. Jan 2012 B2
8105364 McCarthy et al. Jan 2012 B2
8109974 Boomer et al. Feb 2012 B2
8114158 Carl et al. Feb 2012 B2
8123765 Deem et al. Feb 2012 B2
8123805 Makower et al. Feb 2012 B2
8128628 Freid et al. Mar 2012 B2
8133280 Voellmicke et al. Mar 2012 B2
8137349 Soubeiran Mar 2012 B2
8137366 Deem et al. Mar 2012 B2
8137367 Deem et al. Mar 2012 B2
8142454 Harrison et al. Mar 2012 B2
8142494 Randert et al. Mar 2012 B2
8147517 Trieu et al. Apr 2012 B2
8147549 Metcalf, Jr. et al. Apr 2012 B2
8157841 Malandain et al. Apr 2012 B2
8162897 Byrum Apr 2012 B2
8162979 Sachs et al. Apr 2012 B2
8163013 Machold et al. Apr 2012 B2
8177789 Magill et al. May 2012 B2
8182411 Dlugos May 2012 B2
8187324 Webler et al. May 2012 B2
8197490 Pool et al. Jun 2012 B2
8197544 Manzi et al. Jun 2012 B1
8202305 Reiley Jun 2012 B2
8211127 Uth et al. Jul 2012 B2
8211149 Justis Jul 2012 B2
8211151 Schwab et al. Jul 2012 B2
8211179 Molz, IV et al. Jul 2012 B2
8216275 Fielding et al. Jul 2012 B2
8221420 Keller Jul 2012 B2
8226690 Altarac et al. Jul 2012 B2
8236002 Fortin et al. Aug 2012 B2
8241292 Collazo Aug 2012 B2
8241293 Stone et al. Aug 2012 B2
8241331 Arnin Aug 2012 B2
8246630 Manzi et al. Aug 2012 B2
8251888 Roslin et al. Aug 2012 B2
8252063 Stauch Aug 2012 B2
8257370 Moskowitz et al. Sep 2012 B2
8257442 Edie et al. Sep 2012 B2
8263024 Wan et al. Sep 2012 B2
8267969 Altarac et al. Sep 2012 B2
8273112 Garamszegi et al. Sep 2012 B2
8278941 Kroh et al. Oct 2012 B2
8282671 Connor Oct 2012 B2
8287540 LeCronier et al. Oct 2012 B2
8298133 Wiley et al. Oct 2012 B2
8298240 Giger et al. Oct 2012 B2
8308779 Reiley Nov 2012 B2
8313423 Forsell Nov 2012 B2
8316856 Nelson et al. Nov 2012 B2
8317761 Birk et al. Nov 2012 B2
8317802 Manzi et al. Nov 2012 B1
8323290 Metzger et al. Dec 2012 B2
8326435 Stevenson Dec 2012 B2
8328807 Brigido Dec 2012 B2
8328854 Baynham et al. Dec 2012 B2
8333204 Saadat Dec 2012 B2
8333790 Timm et al. Dec 2012 B2
8353913 Moskowitz et al. Jan 2013 B2
8357169 Henniges et al. Jan 2013 B2
8357182 Seme Jan 2013 B2
8357183 Seme et al. Jan 2013 B2
8360955 Sayet et al. Jan 2013 B2
8366628 Denker et al. Feb 2013 B2
8372078 Collazo Feb 2013 B2
8382652 Sayet et al. Feb 2013 B2
8386018 Stauch et al. Feb 2013 B2
8388667 Reiley et al. Mar 2013 B2
8394124 Biyani Mar 2013 B2
8394143 Grotz et al. Mar 2013 B2
8403958 Schwab Mar 2013 B2
8409203 Birk et al. Apr 2013 B2
8409281 Makower et al. Apr 2013 B2
8414584 Brigido Apr 2013 B2
8414648 Reiley Apr 2013 B2
8419734 Walker et al. Apr 2013 B2
8419755 Deem et al. Apr 2013 B2
8419801 DiSilvestro et al. Apr 2013 B2
8425570 Reiley Apr 2013 B2
8425608 Dewey et al. Apr 2013 B2
8433519 Ekseth et al. Apr 2013 B2
8435268 Thompson et al. May 2013 B2
8439915 Harrison et al. May 2013 B2
8439926 Bojarski et al. May 2013 B2
8444693 Reiley May 2013 B2
8449553 Kam et al. May 2013 B2
8449580 Voellmicke et al. May 2013 B2
8454695 Grotz et al. Jun 2013 B2
8469908 Asfora Jun 2013 B2
8469978 Fobi et al. Jun 2013 B2
8470003 Voellmicke et al. Jun 2013 B2
8470004 Reiley Jun 2013 B2
8475354 Phillips et al. Jul 2013 B2
8475356 Feng et al. Jul 2013 B2
8475499 Cournoyer et al. Jul 2013 B2
8480554 Phillips et al. Jul 2013 B2
8480668 Fernandez et al. Jul 2013 B2
8480741 Grotz et al. Jul 2013 B2
8486070 Morgan et al. Jul 2013 B2
8486076 Chavarria et al. Jul 2013 B2
8486110 Fielding et al. Jul 2013 B2
8486113 Malek Jul 2013 B2
8486147 de Villiers et al. Jul 2013 B2
8491589 Fisher et al. Jul 2013 B2
8494805 Roche et al. Jul 2013 B2
8496662 Novak et al. Jul 2013 B2
8500810 Mastrorio et al. Aug 2013 B2
8506517 Stergiopulos Aug 2013 B2
8506569 Keefer et al. Aug 2013 B2
8517973 Burnett Aug 2013 B2
8518062 Cole et al. Aug 2013 B2
8518086 Seme et al. Aug 2013 B2
8522790 Nelson et al. Sep 2013 B2
8523865 Reglos et al. Sep 2013 B2
8523866 Sidebotham et al. Sep 2013 B2
8523883 Saadat Sep 2013 B2
8529474 Gupta et al. Sep 2013 B2
8529606 Alamin et al. Sep 2013 B2
8529607 Alamin et al. Sep 2013 B2
8529630 Bojarski et al. Sep 2013 B2
8545384 Forsell Oct 2013 B2
8545508 Collazo Oct 2013 B2
8545814 Contag et al. Oct 2013 B2
8551092 Morgan et al. Oct 2013 B2
8551142 Altarac et al. Oct 2013 B2
8551422 Wan et al. Oct 2013 B2
8556901 Anthony et al. Oct 2013 B2
8556911 Mehta et al. Oct 2013 B2
8556975 Ciupik et al. Oct 2013 B2
8562653 Alamin et al. Oct 2013 B2
8568416 Schmitz et al. Oct 2013 B2
8568457 Hunziker Oct 2013 B2
8574267 Linares Nov 2013 B2
8579919 Bolduc et al. Nov 2013 B2
8579979 Edie et al. Nov 2013 B2
8585595 Heilman Nov 2013 B2
8585702 Orsak et al. Nov 2013 B2
8585738 Linares Nov 2013 B2
8585740 Ross et al. Nov 2013 B1
8591549 Lange Nov 2013 B2
8591553 Eisermann et al. Nov 2013 B2
8597362 Shenoy et al. Dec 2013 B2
8613749 Deem et al. Dec 2013 B2
8613758 Linares Dec 2013 B2
8617212 Linares Dec 2013 B2
8617220 Skaggs Dec 2013 B2
8617243 Eisermann et al. Dec 2013 B2
8622936 Schenberger et al. Jan 2014 B2
8623036 Harrison et al. Jan 2014 B2
8623042 Roslin et al. Jan 2014 B2
8623056 Linares Jan 2014 B2
8632544 Haaja et al. Jan 2014 B2
8632547 Maxson et al. Jan 2014 B2
8632548 Soubeiran Jan 2014 B2
8632563 Nagase et al. Jan 2014 B2
8632594 Williams et al. Jan 2014 B2
8636770 Hestad et al. Jan 2014 B2
8636771 Butler et al. Jan 2014 B2
8636802 Serhan et al. Jan 2014 B2
8641719 Gephart et al. Feb 2014 B2
8641723 Connor Feb 2014 B2
8652175 Timm et al. Feb 2014 B2
8657765 Asfora Feb 2014 B2
8657856 Gephart et al. Feb 2014 B2
8657885 Burnett et al. Feb 2014 B2
8663139 Asfora Mar 2014 B2
8663140 Asfora Mar 2014 B2
8663285 Dall et al. Mar 2014 B2
8663287 Butler et al. Mar 2014 B2
8663338 Burnett et al. Mar 2014 B2
8668719 Alamin et al. Mar 2014 B2
8673001 Cartledge et al. Mar 2014 B2
8679161 Malandain et al. Mar 2014 B2
8690858 Machold et al. Apr 2014 B2
8707959 Paraschac et al. Apr 2014 B2
8709090 Makower et al. Apr 2014 B2
8715243 Uth et al. May 2014 B2
8715290 Fisher et al. May 2014 B2
8721570 Gupta et al. May 2014 B2
8721643 Morgan et al. May 2014 B2
8728125 Bruneau et al. May 2014 B2
8734318 Forsell May 2014 B2
8734516 Moskowitz et al. May 2014 B2
8734519 de Villiers et al. May 2014 B2
8747444 Moskowitz et al. Jun 2014 B2
8752552 Nelson et al. Jun 2014 B2
8758303 Uth et al. Jun 2014 B2
8758347 Weiner et al. Jun 2014 B2
8758355 Fisher et al. Jun 2014 B2
8758372 Cartledge et al. Jun 2014 B2
8762308 Najarian et al. Jun 2014 B2
8764713 Uth et al. Jul 2014 B2
8771272 LeCronier et al. Jul 2014 B2
8777947 Zahrly et al. Jul 2014 B2
8777995 McClintock et al. Jul 2014 B2
8781744 Ekseth et al. Jul 2014 B2
8784482 Rahdert et al. Jul 2014 B2
8790343 McClellan et al. Jul 2014 B2
8790380 Buttermann Jul 2014 B2
8790409 Van den Heuvel et al. Jul 2014 B2
8794243 Deem et al. Aug 2014 B2
8795339 Boomer et al. Aug 2014 B2
8801795 Makower et al. Aug 2014 B2
8808206 Asfora Aug 2014 B2
8813727 McClendon Aug 2014 B2
8814869 Freid et al. Aug 2014 B2
8828058 Elsebaie et al. Sep 2014 B2
8828087 Stone et al. Sep 2014 B2
8840623 Reiley Sep 2014 B2
8840651 Reiley Sep 2014 B2
8845692 Wisnewski Sep 2014 B2
8845724 Shenoy et al. Sep 2014 B2
8864717 Conlon et al. Oct 2014 B2
8864823 Cartledge et al. Oct 2014 B2
8870881 Rezach et al. Oct 2014 B2
8870918 Boomer et al. Oct 2014 B2
8870959 Arnin Oct 2014 B2
8882699 Burnett Nov 2014 B2
8882830 Cartledge et al. Nov 2014 B2
8888672 Phillips et al. Nov 2014 B2
8888673 Phillips et al. Nov 2014 B2
8894663 Giger et al. Nov 2014 B2
8915915 Harrison et al. Dec 2014 B2
8915917 Doherty et al. Dec 2014 B2
8920422 Homeier et al. Dec 2014 B2
8932247 Stergiopulos Jan 2015 B2
8945188 Rezach et al. Feb 2015 B2
8945210 Cartledge et al. Feb 2015 B2
8956407 Macoviak et al. Feb 2015 B2
8961386 Phillips et al. Feb 2015 B2
8961521 Keefer et al. Feb 2015 B2
8961567 Hunziker Feb 2015 B2
8968402 Myers et al. Mar 2015 B2
8968406 Arnin Mar 2015 B2
8974463 Pool et al. Mar 2015 B2
8986348 Reiley Mar 2015 B2
8992527 Guichet Mar 2015 B2
9005251 Heggeness Apr 2015 B2
9005293 Moskowitz et al. Apr 2015 B2
9005298 Makower et al. Apr 2015 B2
9011491 Carl et al. Apr 2015 B2
9015057 Phillips et al. Apr 2015 B2
9022917 Kasic et al. May 2015 B2
9028550 Shulock et al. May 2015 B2
9033957 Cadeddu et al. May 2015 B2
9033988 Gephart et al. May 2015 B2
9034016 Panjabi May 2015 B2
9044218 Young Jun 2015 B2
9060810 Kercher et al. Jun 2015 B2
9060844 Kagan et al. Jun 2015 B2
9072530 Mehta et al. Jul 2015 B2
9072606 Lucas et al. Jul 2015 B2
9078703 Arnin Jul 2015 B2
9084632 Orsak et al. Jul 2015 B2
9089348 Chavarria et al. Jul 2015 B2
9095436 Boyden et al. Aug 2015 B2
9095437 Boyden et al. Aug 2015 B2
9101422 Freid et al. Aug 2015 B2
9101427 Globerman et al. Aug 2015 B2
9107706 Alamin et al. Aug 2015 B2
9113967 Soubeiran Aug 2015 B2
9114016 Shenoy et al. Aug 2015 B2
9125746 Clifford et al. Sep 2015 B2
9138266 Stauch Sep 2015 B2
9144482 Sayet Sep 2015 B2
9155565 Boomer et al. Oct 2015 B2
9161856 Nelson et al. Oct 2015 B2
9168071 Seme et al. Oct 2015 B2
9168076 Patty et al. Oct 2015 B2
9173681 Seme Nov 2015 B2
9173715 Baumgartner Nov 2015 B2
9186158 Anthony et al. Nov 2015 B2
9186185 Hestad et al. Nov 2015 B2
9198771 Ciupik Dec 2015 B2
9204899 Buttermann Dec 2015 B2
9204908 Buttermann Dec 2015 B2
9220536 Skaggs Dec 2015 B2
9226783 Brigido Jan 2016 B2
9242070 Tieu Jan 2016 B2
9259243 Giger et al. Feb 2016 B2
9272159 Phillips et al. Mar 2016 B2
9278004 Shenoy et al. Mar 2016 B2
9278046 Asfora Mar 2016 B2
9282997 Hunziker Mar 2016 B2
9301792 Henniges et al. Apr 2016 B2
9301854 Moskowitz et al. Apr 2016 B2
9308089 Vicatos et al. Apr 2016 B2
9308387 Phillips et al. Apr 2016 B2
9320618 Schmitz et al. Apr 2016 B2
9326728 Demir et al. May 2016 B2
9333009 Kroll et al. May 2016 B2
9339197 Griswold et al. May 2016 B2
9339300 Kantelhardt May 2016 B2
9339307 McClintock et al. May 2016 B2
9339312 Doherty et al. May 2016 B2
9358044 Seme et al. Jun 2016 B2
9364267 Northcutt et al. Jun 2016 B2
9370388 Globerman et al. Jun 2016 B2
9393123 Lucas et al. Jul 2016 B2
9408644 Zahrly et al. Aug 2016 B2
9421347 Burnett Aug 2016 B2
9427267 Homeier et al. Aug 2016 B2
9439744 Forsell Sep 2016 B2
9439797 Baym et al. Sep 2016 B2
9445848 Anderson et al. Sep 2016 B2
9451997 Carl et al. Sep 2016 B2
9456953 Asfora Oct 2016 B2
9474612 Haaja et al. Oct 2016 B2
9492199 Orsak et al. Nov 2016 B2
9492276 Lee et al. Nov 2016 B2
9498258 Boomer et al. Nov 2016 B2
9498366 Burnett et al. Nov 2016 B2
9510834 Burnett et al. Dec 2016 B2
9532804 Clifford et al. Jan 2017 B2
9561062 Hayes et al. Feb 2017 B2
9561063 Reiley Feb 2017 B2
9572588 Fisher et al. Feb 2017 B2
9572746 Asfora Feb 2017 B2
9572910 Messersmith et al. Feb 2017 B2
9579110 Bojarski et al. Feb 2017 B2
9579203 Soubeiran Feb 2017 B2
9603605 Collazo Mar 2017 B2
9603713 Moskowitz et al. Mar 2017 B2
9610161 Macoviak et al. Apr 2017 B2
9622875 Moskowitz et al. Apr 2017 B2
9642735 Burnett May 2017 B2
9655651 Panjabi May 2017 B2
9668868 Shenoy et al. Jun 2017 B2
9687243 Burnett et al. Jun 2017 B2
9687414 Asfora Jun 2017 B2
9693867 Lucas et al. Jul 2017 B2
9700419 Clifford et al. Jul 2017 B2
9700450 Burnett Jul 2017 B2
9717537 Gordon Aug 2017 B2
9724135 Koch et al. Aug 2017 B2
9724265 Asfora Aug 2017 B2
9730738 Gephart et al. Aug 2017 B2
9743969 Reiley Aug 2017 B2
9782206 Mueckter et al. Oct 2017 B2
9795410 Shenoy et al. Oct 2017 B2
9814600 Shulock et al. Nov 2017 B2
9820789 Reiley Nov 2017 B2
9826987 Keefer et al. Nov 2017 B2
9833291 Baumgartner Dec 2017 B2
9848894 Burley et al. Dec 2017 B2
9848993 Moskowitz et al. Dec 2017 B2
9861376 Chavarria et al. Jan 2018 B2
9861390 Hunziker Jan 2018 B2
9861404 Reiley Jan 2018 B2
9867719 Moskowitz et al. Jan 2018 B2
20010011543 Forsell Aug 2001 A1
20020019580 Lau et al. Feb 2002 A1
20020050112 Koch et al. May 2002 A1
20020072758 Reo et al. Jun 2002 A1
20020164905 Bryant Nov 2002 A1
20030019498 Forsell Jan 2003 A1
20030032857 Forsell Feb 2003 A1
20030040671 Somogyi et al. Feb 2003 A1
20030066536 Forsell Apr 2003 A1
20030114731 Cadeddu et al. Jun 2003 A1
20030144669 Robinson Jul 2003 A1
20030187447 Ferrante et al. Oct 2003 A1
20030208212 Cigaina Nov 2003 A1
20030220643 Ferree Nov 2003 A1
20030220644 Thelen et al. Nov 2003 A1
20040006342 Altarac et al. Jan 2004 A1
20040011137 Hnat et al. Jan 2004 A1
20040011365 Govari et al. Jan 2004 A1
20040019353 Freid et al. Jan 2004 A1
20040023623 Stauch et al. Feb 2004 A1
20040055610 Forsell Mar 2004 A1
20040064030 Forsell Apr 2004 A1
20040068205 Zogbi et al. Apr 2004 A1
20040092939 Freid et al. May 2004 A1
20040098121 Opolski May 2004 A1
20040116773 Furness et al. Jun 2004 A1
20040133219 Forsell Jul 2004 A1
20040138725 Forsell Jul 2004 A1
20040153106 Dudai Aug 2004 A1
20040158254 Eisermann Aug 2004 A1
20040172040 Heggeness Sep 2004 A1
20040173222 Kim Sep 2004 A1
20040193266 Meyer Sep 2004 A1
20040220567 Eisermann et al. Nov 2004 A1
20040220668 Eisermann et al. Nov 2004 A1
20040230307 Eisermann Nov 2004 A1
20040250820 Forsell Dec 2004 A1
20040260287 Ferree Dec 2004 A1
20040260319 Egle Dec 2004 A1
20050002984 Byrum et al. Jan 2005 A1
20050010301 Disilvestro Jan 2005 A1
20050043802 Eisermann et al. Feb 2005 A1
20050049617 Chatlynne et al. Mar 2005 A1
20050055025 Zacouto et al. Mar 2005 A1
20050055039 Burnett et al. Mar 2005 A1
20050065529 Liu et al. Mar 2005 A1
20050070937 Jambor et al. Mar 2005 A1
20050080427 Govari et al. Apr 2005 A1
20050080439 Carson et al. Apr 2005 A1
20050090823 Bartimus Apr 2005 A1
20050096750 Kagan et al. May 2005 A1
20050119672 Benchetrit Jun 2005 A1
20050131352 Conlon et al. Jun 2005 A1
20050159637 Nelson et al. Jul 2005 A9
20050159754 Odrich Jul 2005 A1
20050159755 Odrich Jul 2005 A1
20050165440 Cancel et al. Jul 2005 A1
20050171543 Timm et al. Aug 2005 A1
20050177164 Walters et al. Aug 2005 A1
20050182400 White Aug 2005 A1
20050182401 Timm et al. Aug 2005 A1
20050182412 Johnson et al. Aug 2005 A1
20050192629 Saadat et al. Sep 2005 A1
20050222489 Rahdert et al. Oct 2005 A1
20050234289 Anstadt et al. Oct 2005 A1
20050234448 McCarthy Oct 2005 A1
20050234462 Hershberger Oct 2005 A1
20050246034 Soubeiran Nov 2005 A1
20050251109 Soubeiran Nov 2005 A1
20050261779 Meyer Nov 2005 A1
20050272976 Tanaka et al. Dec 2005 A1
20050288672 Ferree Dec 2005 A1
20060004447 Mastrorio Jan 2006 A1
20060004458 Hazebrouck Jan 2006 A1
20060004459 Hazebrouck et al. Jan 2006 A1
20060009767 Kiester Jan 2006 A1
20060020278 Burnett et al. Jan 2006 A1
20060036251 Reiley Feb 2006 A1
20060036259 Carl et al. Feb 2006 A1
20060036323 Carl et al. Feb 2006 A1
20060036324 Sachs et al. Feb 2006 A1
20060047282 Gordon Mar 2006 A1
20060052782 Morgan et al. Mar 2006 A1
20060058792 Hynes Mar 2006 A1
20060069447 DiSilvestro et al. Mar 2006 A1
20060074448 Harrison et al. Apr 2006 A1
20060079897 Harrison et al. Apr 2006 A1
20060084043 Stevenson Apr 2006 A1
20060116757 Lashinski et al. Jun 2006 A1
20060124140 Forsell Jun 2006 A1
20060136062 DiNello et al. Jun 2006 A1
20060142634 Anstadt et al. Jun 2006 A1
20060142767 Green et al. Jun 2006 A1
20060155279 Ogilvie Jul 2006 A1
20060155347 Forsell Jul 2006 A1
20060184240 Jimenez et al. Aug 2006 A1
20060184248 Edidin et al. Aug 2006 A1
20060195087 Sacher et al. Aug 2006 A1
20060195088 Sacher et al. Aug 2006 A1
20060195102 Malandain Aug 2006 A1
20060200134 Freid et al. Sep 2006 A1
20060204156 Takehara et al. Sep 2006 A1
20060211909 Anstadt et al. Sep 2006 A1
20060235299 Martinelli Oct 2006 A1
20060235424 Vitale et al. Oct 2006 A1
20060241746 Shaoulian et al. Oct 2006 A1
20060241748 Lee et al. Oct 2006 A1
20060241767 Doty Oct 2006 A1
20060249914 Dulin Nov 2006 A1
20060252983 Lembo et al. Nov 2006 A1
20060271107 Harrison et al. Nov 2006 A1
20060276812 Hill et al. Dec 2006 A1
20060282073 Simanovsky Dec 2006 A1
20060289014 Purdy et al. Dec 2006 A1
20060293671 Heggeness Dec 2006 A1
20060293683 Stauch Dec 2006 A1
20070010814 Stauch Jan 2007 A1
20070010887 Williams et al. Jan 2007 A1
20070015955 Tsonton Jan 2007 A1
20070021644 Woolson et al. Jan 2007 A1
20070031131 Griffitts Feb 2007 A1
20070043376 Leatherbury Feb 2007 A1
20070050030 Kim Mar 2007 A1
20070055237 Edidin et al. Mar 2007 A1
20070055368 Rhee et al. Mar 2007 A1
20070118215 Moaddeb May 2007 A1
20070135913 Moaddeb et al. Jun 2007 A1
20070161984 Cresina et al. Jul 2007 A1
20070162032 Johnson et al. Jul 2007 A1
20070173837 Chan et al. Jul 2007 A1
20070173869 Gannoe et al. Jul 2007 A1
20070179493 Kim Aug 2007 A1
20070185374 Kick et al. Aug 2007 A1
20070213751 Scirica et al. Sep 2007 A1
20070233098 Mastrorio et al. Oct 2007 A1
20070239159 Altarac et al. Oct 2007 A1
20070239161 Giger et al. Oct 2007 A1
20070244488 Metzger Oct 2007 A1
20070250084 Sharkawy et al. Oct 2007 A1
20070255088 Jacobson et al. Nov 2007 A1
20070256693 Paraschac et al. Nov 2007 A1
20070260270 Assell et al. Nov 2007 A1
20070264605 Belfor et al. Nov 2007 A1
20070265646 McCoy et al. Nov 2007 A1
20070270631 Nelson et al. Nov 2007 A1
20070270803 Giger et al. Nov 2007 A1
20070276368 Trieu et al. Nov 2007 A1
20070276369 Allard et al. Nov 2007 A1
20070276372 Malandain et al. Nov 2007 A1
20070276373 Malandain Nov 2007 A1
20070276378 Harrison et al. Nov 2007 A1
20070276493 Malandain et al. Nov 2007 A1
20070288024 Gollogly Dec 2007 A1
20070288183 Bulkes et al. Dec 2007 A1
20080009792 Henniges et al. Jan 2008 A1
20080015577 Loeb Jan 2008 A1
20080021454 Chao et al. Jan 2008 A1
20080021455 Chao et al. Jan 2008 A1
20080021456 Gupta et al. Jan 2008 A1
20080027436 Cournoyer et al. Jan 2008 A1
20080033431 Jung et al. Feb 2008 A1
20080033436 Song et al. Feb 2008 A1
20080048855 Berger Feb 2008 A1
20080051784 Gollogly Feb 2008 A1
20080051895 Malandain et al. Feb 2008 A1
20080058936 Malandain et al. Mar 2008 A1
20080058937 Malandain et al. Mar 2008 A1
20080065077 Ferree Mar 2008 A1
20080065215 Reiley Mar 2008 A1
20080066764 Paraschac et al. Mar 2008 A1
20080071275 Ferree Mar 2008 A1
20080071276 Ferree Mar 2008 A1
20080082118 Edidin et al. Apr 2008 A1
20080082167 Edidin et al. Apr 2008 A1
20080083413 Forsell Apr 2008 A1
20080086128 Lewis Apr 2008 A1
20080091059 Machold et al. Apr 2008 A1
20080097188 Pool et al. Apr 2008 A1
20080097249 Pool et al. Apr 2008 A1
20080097487 Pool et al. Apr 2008 A1
20080097496 Chang et al. Apr 2008 A1
20080097523 Bolduc et al. Apr 2008 A1
20080108995 Conway et al. May 2008 A1
20080140188 Randert et al. Jun 2008 A1
20080147139 Barrett et al. Jun 2008 A1
20080147192 Edidin et al. Jun 2008 A1
20080161933 Grotz et al. Jul 2008 A1
20080167685 Allard et al. Jul 2008 A1
20080172063 Taylor Jul 2008 A1
20080172072 Pool et al. Jul 2008 A1
20080177319 Schwab Jul 2008 A1
20080177326 Thompson Jul 2008 A1
20080190237 Radinger et al. Aug 2008 A1
20080195156 Ainsworth et al. Aug 2008 A1
20080226563 Contag et al. Sep 2008 A1
20080228186 Gall et al. Sep 2008 A1
20080255615 Vittur et al. Oct 2008 A1
20080272928 Shuster Nov 2008 A1
20080275552 Makower et al. Nov 2008 A1
20080275555 Makower et al. Nov 2008 A1
20080275557 Makower et al. Nov 2008 A1
20080275567 Makower et al. Nov 2008 A1
20080293995 Moaddeb et al. Nov 2008 A1
20090030462 Buttermann Jan 2009 A1
20090062825 Pool et al. Mar 2009 A1
20090076597 Dahlgren et al. Mar 2009 A1
20090082815 Zylber et al. Mar 2009 A1
20090088803 Justis et al. Apr 2009 A1
20090093820 Trieu et al. Apr 2009 A1
20090093890 Gelbart Apr 2009 A1
20090112207 Walker Apr 2009 A1
20090112262 Pool et al. Apr 2009 A1
20090112263 Pool et al. Apr 2009 A1
20090118699 Utley et al. May 2009 A1
20090163780 Tieu Jun 2009 A1
20090171356 Klett Jul 2009 A1
20090177203 Reiley Jul 2009 A1
20090182356 Coe Jul 2009 A1
20090192514 Feinberg et al. Jul 2009 A1
20090198144 Phillips et al. Aug 2009 A1
20090204055 Lennox et al. Aug 2009 A1
20090206827 Aimuta Aug 2009 A1
20090216113 Meier et al. Aug 2009 A1
20090216262 Burnett et al. Aug 2009 A1
20090240173 Hsia et al. Sep 2009 A1
20090259236 Burnett et al. Oct 2009 A2
20090270871 Liu et al. Oct 2009 A1
20090275984 Kim Nov 2009 A1
20090318919 Robinson Dec 2009 A1
20100004654 Schmitz et al. Jan 2010 A1
20100030281 Gollogly Feb 2010 A1
20100057127 McGuire et al. Mar 2010 A1
20100081868 Moaddeb et al. Apr 2010 A1
20100094302 Pool Apr 2010 A1
20100094303 Chang et al. Apr 2010 A1
20100094304 Pool Apr 2010 A1
20100094305 Chang et al. Apr 2010 A1
20100094306 Chang et al. Apr 2010 A1
20100100185 Trieu et al. Apr 2010 A1
20100106192 Barry Apr 2010 A1
20100106193 Barry Apr 2010 A1
20100114103 Harrison et al. May 2010 A1
20100114322 Clifford et al. May 2010 A1
20100121323 Pool May 2010 A1
20100121457 Clifford et al. May 2010 A1
20100130941 Conlon et al. May 2010 A1
20100137872 Kam et al. Jun 2010 A1
20100145449 Makower et al. Jun 2010 A1
20100145462 Ainsworth et al. Jun 2010 A1
20100168751 Anderson et al. Jul 2010 A1
20100179601 Jung et al. Jul 2010 A1
20100198261 Trieu et al. Aug 2010 A1
20100228167 Ilovich et al. Sep 2010 A1
20100241168 Franck et al. Sep 2010 A1
20100249782 Durham Sep 2010 A1
20100249839 Alamin et al. Sep 2010 A1
20100249847 Jung et al. Sep 2010 A1
20100256626 Muller et al. Oct 2010 A1
20100262160 Boyden et al. Oct 2010 A1
20100262239 Boyden Oct 2010 A1
20100274290 Jung et al. Oct 2010 A1
20100286730 Gordon Nov 2010 A1
20100286791 Goldsmith Nov 2010 A1
20100318129 Seme et al. Dec 2010 A1
20100324684 Eisermann et al. Dec 2010 A1
20100331883 Schmitz et al. Dec 2010 A1
20110004076 Janna et al. Jan 2011 A1
20110057756 Marinescu et al. Mar 2011 A1
20110060421 Martin Mar 2011 A1
20110060422 Makower et al. Mar 2011 A1
20110066188 Seme et al. Mar 2011 A1
20110098748 Jangra Apr 2011 A1
20110130702 Stergiopulos Jun 2011 A1
20110137415 Clifford et al. Jun 2011 A1
20110152725 Demir et al. Jun 2011 A1
20110184505 Sharkawy et al. Jul 2011 A1
20110196371 Forsell Aug 2011 A1
20110196435 Forsell Aug 2011 A1
20110202138 Shenoy et al. Aug 2011 A1
20110237861 Pool et al. Sep 2011 A1
20110238126 Soubeiran Sep 2011 A1
20110257655 Copf, Jr. Oct 2011 A1
20110275879 Nelson et al. Nov 2011 A1
20110284014 Cadeddu et al. Nov 2011 A1
20120004494 Payne Jan 2012 A1
20120019341 Gabay et al. Jan 2012 A1
20120019342 Gabay et al. Jan 2012 A1
20120053633 Stauch Mar 2012 A1
20120088953 King Apr 2012 A1
20120089186 Carl et al. Apr 2012 A1
20120089191 Altarac et al. Apr 2012 A1
20120109207 Trieu May 2012 A1
20120116522 Makower et al. May 2012 A1
20120116535 Ratron et al. May 2012 A1
20120130426 Thompson May 2012 A1
20120136449 Makower et al. May 2012 A1
20120157996 Walker et al. Jun 2012 A1
20120158061 Koch et al. Jun 2012 A1
20120172883 Sayago Jul 2012 A1
20120179215 Soubeiran Jul 2012 A1
20120179273 Clifford et al. Jul 2012 A1
20120185040 Rahdert et al. Jul 2012 A1
20120203282 Sachs et al. Aug 2012 A1
20120221101 Moaddeb et al. Aug 2012 A1
20120221106 Makower et al. Aug 2012 A1
20120271353 Barry Oct 2012 A1
20120277747 Keller Nov 2012 A1
20120283781 Arnin Nov 2012 A1
20120296234 Wilhelm et al. Nov 2012 A1
20120312307 Paraschac et al. Dec 2012 A1
20120329882 Messersmith et al. Dec 2012 A1
20130013066 Landry et al. Jan 2013 A1
20130018468 Moskowitz et al. Jan 2013 A1
20130018469 Moskowitz et al. Jan 2013 A1
20130023991 Moskowitz et al. Jan 2013 A1
20130072932 Stauch Mar 2013 A1
20130079830 Garamszegi et al. Mar 2013 A1
20130085408 Pool Apr 2013 A1
20130123847 Anderson et al. May 2013 A1
20130138017 Jundt et al. May 2013 A1
20130138154 Reiley May 2013 A1
20130150709 Baumgartner Jun 2013 A1
20130150863 Baumgartner Jun 2013 A1
20130150889 Fening et al. Jun 2013 A1
20130178903 Abdou Jul 2013 A1
20130197639 Clifford et al. Aug 2013 A1
20130204266 Heilman Aug 2013 A1
20130204376 DiSilvestro et al. Aug 2013 A1
20130211521 Shenoy et al. Aug 2013 A1
20130238094 Voellmicke et al. Sep 2013 A1
20130245692 Hayes et al. Sep 2013 A1
20130253344 Griswold et al. Sep 2013 A1
20130253587 Carls et al. Sep 2013 A1
20130261623 Voellmicke et al. Oct 2013 A1
20130261672 Horvath Oct 2013 A1
20130296863 Globerman et al. Nov 2013 A1
20130296864 Burley et al. Nov 2013 A1
20130296940 Northcutt et al. Nov 2013 A1
20130325006 Michelinie et al. Dec 2013 A1
20130325071 Niemiec et al. Dec 2013 A1
20130331889 Alamin et al. Dec 2013 A1
20130345802 Cartledge et al. Dec 2013 A1
20140005788 Haaja et al. Jan 2014 A1
20140018913 Cartledge et al. Jan 2014 A1
20140025172 Lucas et al. Jan 2014 A1
20140031826 Bojarski et al. Jan 2014 A1
20140031929 Cartledge et al. Jan 2014 A1
20140039558 Alamin et al. Feb 2014 A1
20140051914 Fobi et al. Feb 2014 A1
20140052134 Orisek Feb 2014 A1
20140058392 Mueckter et al. Feb 2014 A1
20140058450 Arlet Feb 2014 A1
20140066987 Hestad et al. Mar 2014 A1
20140067075 Makower et al. Mar 2014 A1
20140080203 Wan et al. Mar 2014 A1
20140088715 Ciupik Mar 2014 A1
20140107704 Serhan et al. Apr 2014 A1
20140128920 Kantelhardt May 2014 A1
20140135838 Alamin et al. May 2014 A1
20140142631 Hunziker May 2014 A1
20140142698 Landry et al. May 2014 A1
20140156004 Shenoy et al. Jun 2014 A1
20140163664 Goldsmith Jun 2014 A1
20140172097 Clifford et al. Jun 2014 A1
20140194932 Bruneau et al. Jul 2014 A1
20140222138 Machold et al. Aug 2014 A1
20140236234 Kroll et al. Aug 2014 A1
20140236311 Vicatos et al. Aug 2014 A1
20140257412 Patty et al. Sep 2014 A1
20140263552 Hall Sep 2014 A1
20140277446 Clifford et al. Sep 2014 A1
20140296918 Fening et al. Oct 2014 A1
20140303538 Baym et al. Oct 2014 A1
20140303539 Baym et al. Oct 2014 A1
20140303540 Baym et al. Oct 2014 A1
20140324047 Zahrly et al. Oct 2014 A1
20140336756 Lee et al. Nov 2014 A1
20140358150 Kaufman et al. Dec 2014 A1
20150013687 Paraschac et al. Jan 2015 A1
20150057490 Forsell Feb 2015 A1
20150073565 Nelson et al. Mar 2015 A1
20150105782 D'Lima et al. Apr 2015 A1
20150105824 Moskowitz et al. Apr 2015 A1
20150132174 Marinescu et al. May 2015 A1
20150134007 Alamin et al. May 2015 A1
20150142110 Myers et al. May 2015 A1
20150150561 Burnett et al. Jun 2015 A1
20150157364 Hunziker Jun 2015 A1
20150272600 Mehta et al. Oct 2015 A1
20150313649 Alamin et al. Nov 2015 A1
20150313745 Cheng Nov 2015 A1
Foreign Referenced Citations (114)
Number Date Country
20068468 Mar 2001 AU
1697630 Nov 2005 CN
101040807 Sep 2007 CN
1541262 Jun 1969 DE
1541262 Jun 1969 DE
1541262 Feb 1976 DE
8515687 Oct 1985 DE
8515687 Dec 1985 DE
68515687.6 Dec 1985 DE
19626230 Jan 1998 DE
19751733 Dec 1998 DE
19745654 Apr 1999 DE
102005045070 Apr 2007 DE
102007053362 May 2009 DE
0663184 Jul 1995 EP
1547549 Jun 2005 EP
1547549 Jun 2005 EP
1547549 Aug 2005 EP
1745765 Jan 2007 EP
1745765 Jan 2007 EP
1905388 Apr 2008 EP
1905388 Apr 2008 EP
1745765 Jun 2008 EP
1547549 Aug 2009 EP
1905388 Jan 2012 EP
2802406 Jun 2001 FR
2823663 Oct 2002 FR
2827756 Jan 2003 FR
2892617 May 2007 FR
2900563 Nov 2007 FR
2901991 Dec 2007 FR
2916622 Dec 2008 FR
2961386 Dec 2011 FR
1174814 Dec 1969 GB
223454 Apr 2002 HU
05-104022 Apr 1993 JP
09-056736 Mar 1997 JP
2001-507608 Jun 2001 JP
2002500063 Jan 2002 JP
2003-172372 Jun 2003 JP
2003-530195 Oct 2003 JP
2007-050339 Mar 2007 JP
2011502003 Jan 2011 JP
WO8604498 Aug 1986 WO
WO8707134 Dec 1987 WO
WO8906940 Aug 1989 WO
WO9601597 Jan 1996 WO
WO9808454 Mar 1998 WO
WO9830163 Jul 1998 WO
WO1998044858 Oct 1998 WO
WO9850309 Nov 1998 WO
WO9903348 Jan 1999 WO
WO9923744 May 1999 WO
9934746 Jul 1999 WO
WO9951160 Oct 1999 WO
WO1999051160 Oct 1999 WO
WO9963907 Dec 1999 WO
WO0000108 Jan 2000 WO
WO0072768 Dec 2000 WO
WO0105463 Jan 2001 WO
WO0112108 Feb 2001 WO
WO0124742 Apr 2001 WO
WO2001024697 Apr 2001 WO
WO0141671 Jun 2001 WO
WO0145485 Jun 2001 WO
WO0145487 Jun 2001 WO
WO0145597 Jun 2001 WO
WO0158390 Aug 2001 WO
WO0167973 Sep 2001 WO
WO0178614 Oct 2001 WO
WO0236975 May 2002 WO
WO03059215 Jul 2003 WO
WO2004014245 Feb 2004 WO
2004017705 Mar 2004 WO
WO2004019796 Mar 2004 WO
WO2004021870 Mar 2004 WO
WO2004043280 May 2004 WO
WO2005023090 Mar 2005 WO
WO2005072195 Aug 2005 WO
WO2005072664 Aug 2005 WO
WO2005105001 Nov 2005 WO
WO2006019520 Feb 2006 WO
WO2006019521 Feb 2006 WO
WO2006089085 Aug 2006 WO
WO2006090380 Aug 2006 WO
WO2006103071 Oct 2006 WO
WO2006103074 Oct 2006 WO
WO2006105084 Oct 2006 WO
WO2007013059 Feb 2007 WO
WO2007015239 Feb 2007 WO
WO2007025191 Mar 2007 WO
WO2007048012 Apr 2007 WO
WO2007081304 Jul 2007 WO
WO2007118179 Oct 2007 WO
WO2007140180 Dec 2007 WO
WO2007149555 Dec 2007 WO
WO20071144489 Dec 2007 WO
WO2008003952 Jan 2008 WO
WO2008013623 Jan 2008 WO
WO2008015679 Feb 2008 WO
WO2008040880 Apr 2008 WO
WO2008140756 Nov 2008 WO
2009058546 Jul 2009 WO
WO2010017649 Feb 2010 WO
WO2010050891 May 2010 WO
WO2010056650 May 2010 WO
WO2011018778 Feb 2011 WO
WO2011116158 Sep 2011 WO
WO2013119528 Aug 2013 WO
WO2013181329 Dec 2013 WO
WO2014040013 Mar 2014 WO
2014070681 May 2014 WO
2014070681 Aug 2014 WO
WO2011041398 Apr 2015 WO
Non-Patent Literature Citations (106)
Entry
US 9,161,784 B2, 10/2015, Buttermann (withdrawn)
PCT Search Report and Written Opinion in PCT Application No. PCT/US2015/028079 dated Jul. 28, 2015 in 16 pages.
Abe, Jun, Kensei Nagata, Mamoru Ariyoshi, and Akio Inoue. “Experimental external fixation combined with percutaneous discectomy in the management of scoliosis.” Spine 24, No. 7 (1999): 646-653.
Amer, A. R. A. L., and Ashraf A. Khanfour. “Evaluation of treatment of late-onset tibia vara using gradual angulationtranslation high tibial osteotomy.” Acta orthopaedica Belgica 76, No. 3 (2010): 360.
Angrisani, L., F. Favretti, F. Furbetta, S. Gennai, G. Segato, V. Borrelli, A. Sergio, T. Lafullarde, G. Vander Velpen, and M Lorenzo. “Lap-Band ((R)) Rapid Port (TM) System: Preliminary results in 21 patients.” In Obesity Surgery, vol. 15, No. 7,pp. 936-936.
Baumgart, Rainer, Stefan Hinterwimmer, Michael Krammer, Oliver Muensterer, and Wolf Mutschler. “The bioexpandable prosthesis: a new perspective after resection of malignant bone tumors in children.” Journal of pediatric hematology/oncology 27, No. 8 (2005): 452-455.
Baumgart, R., P. Thaller, S. Hinterwimmer, M. Krammer, T. Hierl, and W. Mutschler. “A fully implantable, programmable distraction nail (Fitbone)—new perspectives for corrective and reconstructive limb surgery.” In Practice of Intramedullary Locked Nails, pp. 189-198. Springer Berlin Heidelberg, 2006.
Bodó, László, László Hangody, Balázs Borsitzky, György Béres, Gabriella Arató, Péter Nagy, and Gábor K. Ráthonyi. “Development of a tension-adjustable implant for anterior cruciate ligament reconstruction.” Eklem Hast Cerrahisi 19, No. 1 (2008): 27-32.
Boudjemline, Younes, Emmanuelle Pineau, Caroline Bonnet, Alix Mollet, Sylvia Abadir, Damien Bonnet, Daniel Sidi, and Gabriella Agnoletti. “Off-label use of an adjustable gastric banding system for pulmonary artery banding.” The Journal of thoracic and cardiovascular surgery 131, No. 5 (2006): 1130-1135.
Brochure-VEPTR II Technique Guide Apr. 2008.
Brochure-VEPTR Patient Guide dated Feb. 2005.
Brown, S. “Single Port Surgery and the Dundee Endocone.” SAGES Annual Scientific Sessions, Poster Abstracts (2007): 323-324.
Buchowski, Jacob M., Rishi Bhatnagar, David L. Skaggs, and Paul D. Sponseller. “Temporary internal distraction as an aid to correction of severe scoliosis.” The Journal of Bone & Joint Surgery 88, No. 9 (2006): 2035-2041.
Burghardt, R. D., J. E. Herzenberg, S. C. Specht, and D. Paley. “Mechanical failure of the Intramedullary Skeletal Kinetic Distractor in limb lengthening.” Journal of Bone & Joint Surgery, British vol. 93, No. 5 (2011): 639-643.
Burke, John Gerard. “Design of a minimally invasive non fusion device for the surgical management of scoliosis in the skeletally immature.” Studies in health technology and informatics 123 (2005): 378-384.
Carter, D. R., and W. E. Caler. “A cumulative damage model for bone fracture.” Journal of Orthopaedic Research 3, No. 1 (1985): 84-90.
Chapman, Andrew E., George Kiroff, Philip Game, Bruce Foster, Paul O'Brien, John Ham, and Guy J. Maddern. “Laparoscopic adjustable gastric banding in the treatment of obesity: a systematic literature review.” Surgery 135, No. 3 (2004): 326-351.
Cole, J. Dean, Daniel Justin, Tagus Kasparis, Derk DeVlught, and Carl Knobloch. “The intramedullary skeletal distractor (ISKD): first clinical results of a new intramedullary nail for lengthening of the femur and tibia.” Injury 32 (2001):129-139.
Cole, J., D. Paley, and M. Dahl. “Operative Technique. ISKD. Intramedullary Skeletal Kinetic Distractor. Tibial Surgical Technique.” IS-0508 (A)-OPT-US © Orthofix Inc 28 (2005).
Dailey, Hannah L., Charles J. Daly, John G. Galbraith, Michael Cronin, and James A. Harty. “A novel intramedullary nail for micromotion stimulation of tibial fractures.” Clinical Biomechanics 27, No. 2 (2012): 182-188.
Daniels, A. U., Patrick Gemperline, Allen R. Grahn, and Harold K. Dunn. “A new method for continuous intraoperative measurement of Harrington rod loading patterns.” Annals of biomedical engineering 12, No. 3 (1984): 233-246.
De Giorgi, G., G. Stella, S. Becchetti, G. Martucci, and D. Miscioscia. “Cotrel-Dubousset instrumentation for the treatment of severe scoliosis.” European Spine Journal 8, No. 1 (1999): 8-15.
Dorsey, W. O., Bruce S. Miller, Jared P. Tadje, and Cari R. Bryant. “The stability of three commercially available implants used in medial opening wedge high tibial osteotomy.” The journal of knee surgery 19, No. 2 (2006): 95-98.
Edeland, H. G., G. Eriksson, and E. Dahlberg. “Instrumentation for distraction by limited surgery in scoliosis treatment.” Journal of biomedical engineering 3, No. 2 (1981): 143-146.
Ember, T., and H. Noordeen. “Distraction forces required during growth rod lengthening.” Journal of Bone & Joint Surgery, British vol. 88, No. SUPP II (2006): 229-229.
Fabry, Hans, Robrecht Van Hee, Leo Hendrickx, and Eric Totté. “A technique for prevention of port adjustable silicone gastric banding.” Obesity surgery 12, No. 2 (2002): 285-288.
Fried, M., W. Lechner, and K. Kormanova. “In vivo measurements of different gastric band pressures towards the gastric wall at the stoma region.” In Obesity Surgery, vol. 14, No. 7, pp. 914-914. 3100 Bayview Ave, Unit 4, Toronto, Ontario M2N 5L3, Canada: F D-Communications Inc, 2004.
Gao, Xiaochong, Derek Gordon, Dongping Zhang, Richard Browne, Cynthia Helms, Joseph Gillum, Samuel Weber et al. “CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis.” The American Journal of Human Genetics 80, No. 5 (2007): 957-965.
Gebhart, M., M. Neel, A. Soubeiran, and J. Dubousset. “Early clinical experience with a custom made growing endoprosthesis in children with malignant bone tumors of the lower extremity actioned by an external permanent magnet: the Phenix M system.” In International Society of Limb Salvage 14th International Symposium on Limb Salvage.2007.
Gillespie, R., and J. Obrien. “Harrington instrumentation without fusion.” In Journal of Bone and Joint Surgerybritish Volume, vol. 63, No. 3, pp. 461-461. 22 Buckingham Street, London, England WC2N 6ET: British Editorial Soc Bone Joint Surgery, 1981.
Goodship, Allen E., James L. Cunningham, and John Kenwright. “Strain rate and timing of stimulation in mechanical modulation of fracture healing.” Clinical orthopaedics and related research 355 (1998): S105-S115.
Grass, P. Jose, A. Valentin Soto, and H. Paula Araya. “Intermittent distracting rod for correction of high neurologic risk congenital scoliosis.” Spine 22, No. 16 (1997): 1922-1927.
Gray's Anatomy, http://education.yahoo.com/reference/gray/subjects/subject/128, published Jul. 1, 2007.
Grimer, R., S. Carter, R. Tillman, A. Abudu, and L. Jeys. “Non-Invasive Extendable Endoprostheses for Children—Expensive But Worth It!.” Journal of Bone & Joint Surgery, British vol. 93, No. SUPP I (2011): 5-5.
Grünert, R. D. “[The development of a totally implantable electronic sphincter].” Langenbecks Archiv fur Chirurgie 325 (1968): 1170-1174.
Guichet, Jean-Marc, Barbara Deromedis, Leo T. Donnan, Giovanni Peretti, Pierre Lascombes, and Flavio Bado. “Gradual femoral lengthening with the Albizzia intramedullary nail.” The Journal of Bone & Joint Surgery 85, No. 5 (2003): 838-848.
Gupta, A., J. Meswania, R. Pollock, S. R. Cannon, T. W. R. Briggs, S. Taylor, and G. Blunn. “Non-invasive distal femoral expandable endoprosthesis for limb-salvage surgery in paediatric tumours.” Journal of Bone & Joint Surgery, British vol. 88, No. 5 (2006): 649-654.
Hankemeier S, Gösling T, Pape HC, et al. Limb lengthening with the Intramedullary Skeletal Kinetic Distractor (ISKD) Oper Orthop Traumatol. 2005;17:79-101.
Harrington PR (1962) Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg Am 44-A:591-610.
Hazem Elsebaie, M. D. “Single Growing Rods.” Changing the Foundations: Does it affect the Results., J Child Orthop. (2007) 1:258.
Hennig, Alex C.; Incavo, Stephen J.; Beynnon, Bruce D.; Abate, Joseph A.; Urse, John S.; Kelly, Stephen / The safety and efficacy of a new adjustable plate used for proximal tibial opening wedge osteotomy in the treatment of unicompartmental knee osteoarthrosis. In: The journal of knee surgery, vol. 20, No. 1, Jan. 1, 2007, p. 6-14.
Hofmeister, M., C. Hierholzer, and V. Bühren. “Callus Distraction with the Albizzia Nail.” In Practice of Intramedullary Locked Nails, pp. 211-215. Springer Berlin Heidelberg, 2006.
Horbach, T., D. Herzog, and I. Knerr. “First experiences with the routine use of the Rapid Port (TM) system with the Lap-Band (R).” In Obesity Surgery, vol. 16, No. 4, pp. 418-418. 3100 Bayview Ave, Unit 4, Toronto, Ontario M2N 5L3, Canada: F D-Communications Inc, 2006.
Hyodo, Akira, Helmuth Kotschi, Helen Kambic, and George Muschler. “Bone transport using intramedullary fixation and a single flexible traction cable.” Clinical orthopaedics and related research 325 (1996): 256-268.
Ahlbom, A., U. Bergqvist, J. H. Bernhardt, J. P. Cesarini, M. Grandolfo, M. Hietanen, A. F. Mckinlay et al. “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection.” Health Phys 74, No. 4 (1998): 494-522.
International Commission on Non-Ionizing Radiation Protection. “Guidelines on limits of exposure to static magnetic fields.” Health Physics 96, No. 4 (2009): 504-514.
INVIS®/Lamello Catalog, 2006, Article No. 68906A001 GB.
Kasliwal, Manish K., Justin S. Smith, Adam Kanter, Ching-Jen Chen, Praveen V. Mummaneni, Robert A. Hart, and Christopher I. Shaffrey. “Management of high-grade spondylolisthesis.” Neurosurgery Clinics of North America 24, No. 2 (2013): 275-291.
Kenawey, Mohamed, Christian Krettek, Emmanouil Liodakis, Ulrich Wiebking, and Stefan Hankemeier. “Leg lengthening using intramedullay skeletal kinetic distractor: results of 57 consecutive applications.” Injury 42, No. 2 (2011): 150-155.
Kent, Matthew E., Arvind Arora, P. Julian Owen, and Vikas Khanduja. “Assessment and correction of femoral malrotation following intramedullary nailing of the femur.” Acta Orthop Belg 76, No. 5 (2010): 580-4.
Klemme, William R., Francis Denis, Robert B. Winter, John W. Lonstein, and Steven E. Koop. “Spinal instrumentation without fusion for progressive scoliosis in young children.” Journal of Pediatric Orthopaedics 17, No. 6 (1997): 734-742.
Korenkov, M., S. Sauerland, N. Yücel, L. Köhler, P. Goh, J. Schierholz, and H. Troidl. “Port function after laparoscopic adjustable gastric banding for morbid obesity.” Surgical Endoscopy and Other Interventional Techniques 17, No. 7 (2003): 1068-1071.
Krieg, Andreas H., Bernhard M. Speth, and Bruce K. Foster. “Leg lengthening with a motorized nail in adolescents.” Clinical orthopaedics and related research 466, No. 1 (2008): 189-197.
Kucukkaya, Metin, Raffi Armagan, and Unal Kuzgun. “The new intramedullary cable bone transport technique.” Journal of orthopaedic trauma 23, No. 7 (2009): 531-536.
Lechner, W. L., W. Kirchmayr, and G. Schwab. “In vivo band manometry: a new method in band adjustment.” In Obesity Surgery, vol. 15, No. 7, pp. 935-935. 3100 Bayview Ave, Unit 4, Toronto, Ontario M2N 5L3, Canada: F DCOMMUNICATIONSINC, 2005.
Lechner, W., M. Gadenstatter, R. Ciovica, W. Kirchmayer, and G. Schwab. “Intra-band manometry for band adjustments: The basics.” In Obesity Surgery, vol. 16, No. 4, pp. 417-418. 3100 Bayview Ave, Unit 4, Toronto, Ontario M2N 5L3, Canada: F D-Communications Inc, 2006.
Li, G., S. Berven, N. A. Athanasou, and A. H. R. W. Simpson. “Bone transport over an intramedullary nail: A case report with histologic examination of the regenerated segment.” Injury 30, No. 8 (1999): 525-534.
Lonner, Baron S. “Emerging minimally invasive technologies for the management of scoliosis.” Orthopedic Clinics of North America 38, No. 3 (2007): 431-440.
Teli, Marco MD. “Measurement of Forces Generated During Distraction of Growing Rods, J.” Marco Teli. Journal of Child Orthop 1 (2007): 257-258.
Matthews, Michael Wayne, Harry Conrad Eggleston, Steven D. Pekarek, and Greg Eugene Hilmas. “Magnetically adjustable intraocular lens.” Journal of Cataract & Refractive Surgery 29, No. 11 (2003): 2211-2216.
Micromotion “Micro Drive Engineering⋅General catalogue” pp. 14⋅24; Jun. 2009.
Mineiro, Jorge, and Stuart L. Weinstein. “Subcutaneous rodding for progressive spinal curvatures: early results.” Journal of Pediatric Orthopaedics 22, No. 3 (2002): 290-295.
Moe, John H., Khalil Kharrat, Robert B. Winter, and John L. Cummine. “Harrington instrumentation without fusion plus external orthotic support for the treatment of difficult curvature problems in young children.” Clinical orthopaedics and related research 185 (1984): 35-45.
Montague, R. G., C. M. Bingham, and K. Atallah. “Magnetic gear dynamics for servo control.” in Melecon 2010-2010 15th IEEE Mediterranean Electrotechnical Conference, pp. 1192-1197. IEEE, 2010.
Montague, Ryan, Chris Bingham, and Kais Atallah. “Servo control of magnetic gears.” Mechatronics, IEEE/ASME Transactions on 17, No. 2 (2012): 269-278.
Nachemson, Alf, and Gösta Elfström. “Intravital wireless telemetry of axial forces in Harrington distraction rods in patients with idiopathic scoliosis.” The Journal of Bone & Joint Surgery 53, No. 3 (1971): 445-465.
Nachlas, I. William, and Jesse N. Borden. “The cure of experimental scoliosis by directed growth control.” The Journal of Bone & Joint Surgery 33, No. 1 (1951): 24-34.
Newton, P. “Fusionless Scoliosis Correction by Anterolateral Tethering . . . Can it Work?.” In 39th Annual Scoliosis Research Society Meeting. 2004.
Observations by a third party under Article 115 EPC issued by the European Patent Office dated Feb. 15, 2010 in European Patent Application No. 08805612.2, Applicant: Soubeiran, Arnaud (7 pages).
Oh, Chang-Wug, Hae-Ryong Song, Jae-Young Roh, Jong-Keon Oh, Woo-Kie Min, Hee-Soo Kyung, Joon-Woo Kim, Poong-Taek Kim, and Joo-Chul Ihn. “Bone transport over an intramedullary nail for reconstruction of long bone defects in tibia.” Archives of orthopaedic and trauma surgery 128, No. 8 (2008): 801-808.
Ozcivici, Engin, Yen Kim Luu, Ben Adler, Yi-Xian Qin, Janet Rubin, Stefan Judex, and Clinton T. Rubin. “Mechanical signals as anabolic agents in bone.” Nature Reviews Rheumatology 6, No. 1 (2010): 50-59.
Patient Guide, VEPTR Vertical Expandable Prosthetic Titanium Rib, Synthes Spine (2005) (23pages).
Piorkowski, James R., Scott J. Ellner, Arun A. Mavanur, and Carlos A. Barba. “Preventing port site inversion in laparoscopic adjustable gastric banding.” Surgery for Obesity and Related Diseases 3, No. 2 (2007): 159-161.
Prontes, Isabel, http://wwwehow.com/about_4795793_longest-bone-body.html, published Jun. 12, 2012.
Rathjen, Karl, Megan Wood, Anna McClung, and Zachary Vest. “Clinical and radiographic results after implant removal in idiopathic scoliosis.” Spine 32, No. 20 (2007): 2184-2188.
Ren, Christine J., and George A. Fielding. “Laparoscopic adjustable gastric banding: surgical technique.” Journal of Laparoendoscopic & Advanced Surgical Techniques 13, No. 4 (2003): 257-263.
Reyes-Sánchez, Alejandro, Luis Miguel Rosales, and Víctor Miramontes. “External fixation for dynamic correction of severe scoliosis.” The Spine Journal 5, No. 4 (2005): 418-426.
Rinsky, Lawrence A., James G. Gamble, and Eugene E. Bleck. “Segmental Instrumentation Without Fusion in Children With Progressive Scoliosis.” Journal of Pediatric Orthopedics 5, No. 6 (1985): 687-690.
Rode, V., F. Gay, A. J. Baraza, and J. Dargent. “A simple way to adjust bands under radiologic control.” In Obesity Surgery, vol. 16, No. 4, pp. 418-418. 3100 Bayview Ave, Unit 4, Toronto, Ontario M2N 5L3, Canada: F DCOMMUNICATIONS Inc, 2006.
Schmerling, M. A., M. A. Wilkov, A. E. Sanders, and J. E. Woosley. “Using the shape recovery of nitinol in the Harrington rod treatment of scoliosis.” Journal of biomedical materials research 10, No. 6 (1976): 879-892.
Scott, D. J., S. J. Tang, R. Fernandez, R. Bergs, and J. A. Cadeddu. “Transgastric, transcolonic, and transvaginal cholecystectomy using magnetically anchored instruments.” In SAGES Meeting, p. P511. 2007.
Sharke, Paul. “The machinery of life.” Mechanical Engineering 126, No. 2 (2004): 30.
Shiha, Anis, Mohamed Alam El-Deen, Abdel Rahman Khalifa, and Mohamed Kenawey. “Ilizarov gradual correction of genu varum deformity in adults.” Acta Orthop Belg 75 (2009): 784-91.
Simpson, A. H. W. R., H. Shalaby, and G. Keenan. “Femoral lengthening with the intramedullary skeletal kinetic distractor.” Journal of Bone & Joint Surgery, British vol. 91, No. 7 (2009): 955-961.
Smith, John T. “The use of growth-sparing instrumentation in pediatric spinal deformity.” Orthopedic Clinics of North America 38, No. 4 (2007): 547-552.
Soubeiran, A., M. Gebhart, L. Miladi, J. Griffet, M. Neel, and J. Dubousset. “The Phenix M System. A Mechanical Fully Implanted Lengthening Device Externally Controllable Through the Skin with a Palm Size Permanent Magnet; Applications to Pediatric Orthopaedics.” In 6th European Research Conference in Pediatric Orthopaedics. 2006.
Stokes, Oliver M., Elizabeth J. O'Donovan, Dino Samartzis, Cora H. Bow, Keith DK Luk, and Kenneth MC Cheung. Reducing radiation exposure in early-onset scoliosis surgery patients: novel use of ultrasonography to measure lengthening in magnet.
Sun, Zongyang, Katherine L. Rafferty, Mark A. Egbert, and Susan W. Herring. “Masticatory mechanics of a mandibular distraction osteogenesis site: interfragmentary micromovement.” Bone 41, No. 2 (2007): 188-196.
Takaso, Masashi, Hideshige Moriya, Hiroshi Kitahara, Shohei Minami, Kazuhisa Takahashi, Keijiro Isobe, Masatsune Yamagata, Yoshinori Otsuka, Yoshinori Nakata, and Masatoshi Inoue. “New remote-controlled growing-rod spinal instrumentation possibly applicable for scoliosis in young children.” Journal of orthopaedic science 3, No. 6 (1998): 336-340.
Tello, Carlos A. “Harrington instrumentation without arthrodesis and consecutive distraction program for young children with severe spinal deformities. Experience and technical details.” The Orthopedic clinics of North America 25, No. 2 (1994): 333-351.
Thaller, Peter Helmut, Julian Fürmetz, Florian Wolf, Thorsten Eilers, and Wolf Mutschler. “Limb lengthening with fully implantable magnetically actuated mechanical nails (PHENIX®)—Preliminary results.” Injury 45 (2014): S60-S65.
Thompson, George H., Lawrence G. Lenke, Behrooz A. Akbarnia, Richard E. McCarthy, and Robert M. Campbell. “Early onset scoliosis: future directions.” The Journal of Bone & Joint Surgery 89, No. suppl 1 (2007): 163-166.
Thonse, Raghuram, John E. Herzenberg, Shawn C. Standard, and Dror Paley. “Limb lengthening with a fully implantable, telescopic, intramedullary nail.” Operative Techniques in Orthopedics 15, No. 4 (2005): 355-362.
Trias, A., P. Bourassa, and M. Massoud. “Dynamic loads experienced in correction of idiopathic scoliosis using two types of Harrington rods.” Spine 4, No. 3 (1978): 228-235.
Veptr II. Vertical Expandable Prosthetic Titanium Rib II, Technique Guide, Systhes Spine (2008) (40 pages).
Verkerke, G. J., Koops H. Schraffordt, R. P. Veth, H. J. Grootenboer, L. J. De Boer, J. Oldhoff, and A. Postma. “Development and test of an extendable endoprosthesis for bone reconstruction in the leg.” The International journal of artificial organs 17, No. 3 (1994): 155-162.
Verkerke, G. J., H. Schraffordt Koops, R. P. H. Veth, J. Oldhoff, H. K. L. Nielsen, H. H. Van den Kroonenberg, H. J. Grootenboer, and F. M. Van Krieken. “Design of a lengthening element for a modular femur endoprosthetic system.” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 203, No. 2 (1989): 97-102.
Verkerke, G. J., H. Schraffordt Koops, R. P. H. Veth, H. H. van den Kroonenberg, H. J. Grootenboer, H. K. L. Nielsen, J. Oldhoff, and A. Postma. “An extendable modular endoprosthetic system for bone tumour management in the leg.” Journal of biomedical engineering 12, No. 2 (1990): 91-96.
Weiner, Rudolph A., Michael Korenkov, Esther Matzig, Sylvia Weiner, and Woiteck K. Karcz. “Initial clinical experience with telemetrically adjustable gastric banding.” Surgical technology international 15 (2005): 63-69.
Wenger, H. L. “Spine Jack Operation in the Correction of Scoliotic Deformity: A Direct Intrathoracic Attack to Straighten the Laterally Bent Spine: Preliminary Report.” Archives of Surgery 83, No. 6 (1961): 901-910.
White III, Augustus A., and Manohar M. Panjabi. “The clinical biomechanics of scoliosis.” Clinical orthopaedics and related research 118 (1976): 100-112.
Yonnet, Jean-Paul. “Passive magnetic bearings with permanent magnets.” Magnetics, IEEE Transactions on 14, No. 5 (1978): 803-805.
Yonnet, Jean-Paul. “A new type of permanent magnet coupling.” Magnetics, IEEE Transactions on 17, No. 6 (1981): 2991-2993.
Zheng, Pan, Yousef Haik, Mohammad Kilani, and Ching-Jen Chen. “Force and torque characteristics for magnetically driven blood pump.” Journal of Magnetism and Magnetic Materials 241, No. 2 (2002): 292-302.
L. Angrisani et al., Abstract, “27 Lap-Band(R) Rapid Pod(TM) System: Preliminary Results in 21 Patients,” Obesity Surgery, 15:936, 2005 (1 page).
Stokes et al., Abstract, “23. Reducing Radiation Exposure in Early-Onset Scoliosis Patients: Novel use of Ultrasonography to Measure Lengthening in Magnetically-Controlled Growing Rods Prospective Validation Study and Assessment of Clinical Algorithm,” Final Program, 20th International Meeting on Advanced Spine Techniques, pp. 80-81, Jul. 10-13, 2013 (4 pages).
Related Publications (1)
Number Date Country
20150313745 A1 Nov 2015 US
Provisional Applications (1)
Number Date Country
61985406 Apr 2014 US