The subject matter disclosed herein relates generally to turbines and, more specifically, to integrating sections of a turbine system.
A turbomachine, such as a gas turbine engine, may include a compressor, a combustor, a turbine, and a diffuser section. Gasses are compressed in the compressor, combined with fuel, and then fed into the combustor, where the gas/fuel mixture is combusted. The high temperature and high energy combustion fluids are then fed to the turbine, wherein one or more stationary nozzle stages and one or more rotating airfoil stages convert the energy of the fluids to mechanical energy. Exhaust fluid may then exit the turbine and enter a diffuser section. The diffuser section receives the exhaust fluids from the turbine, and gradually increases the pressure and reduces the velocity of the exhaust fluids. Certain turbine systems include a turbine section and a diffuser section that are independently designed for optimal performance.
Certain embodiments commensurate in scope with the originally claimed subject matter are summarized below. These embodiments are not intended to limit the scope of the claimed subject matter, but rather these embodiments are intended only to provide a brief summary of possible forms of the subject matter. Indeed, the subject matter may encompass a variety of forms that may be similar to or different from the embodiments set forth below.
In a first embodiment, a gas turbine includes a turbine and an axial-radial diffuser. The turbine includes a last stage airfoil section, which includes a first inner annular wall disposed about an axis of rotation of the gas turbine, a plurality of airfoils, each having a proximal end coupled to the first inner annular wall and extending outward in a radial direction to a distal end, a tip shroud including a first outer annular wall disposed about the first inner annular wall and coupled to the distal ends of each of the plurality of airfoils, and a stationary shroud including a second outer annular wall disposed about the first inner annular wall and the first outer annular wall. The first inner annular wall is angled with respect to the axis of rotation at a first inner angle average, the first outer annular wall is angled with respect to the axis of rotation at a first outer angle average along the last stage airfoil section, and the second outer annular wall is angled with respect to the axis of rotation at a second outer angle average along the last stage airfoil section. The axial-radial diffuser includes a first diffuser section, which includes a third inner annular wall disposed about the axis of rotation of the gas turbine, and a third outer annular wall disposed about the third inner annular wall, wherein the first diffuser section is disposed immediately downstream from the last stage airfoil section, wherein the third inner annular wall is angled with respect to the axis of rotation at a third inner angle average, and the third outer annular wall is angled with respect to the axis of rotation at a third outer angle average along the first diffuser section. The first outer angle average is greater than the third outer angle average, the first inner angle average is greater than the third inner angle average, and the third outer angle average is greater than the second outer angle average.
In a second embodiment, a gas turbine includes a turbine, a shroud section, and an axial-radial diffuser. The turbine includes a last stage nozzle section, an inter-blade gap section, and a last stage airfoil section. The last stage nozzle section includes a plurality of nozzles, a first inner annular wall disposed about the axis of rotation of the gas turbine, and a first outer annular wall disposed about the first inner annular wall, wherein the first inner annular wall is angled with respect to the axis of rotation at a first inner angle average, and the first outer annular wall is angled with respect to the axis of rotation at a first outer angle average along the last stage nozzle section. The inter-blade gap section includes a second inner annular wall disposed about the axis of rotation of the gas turbine, and a second outer annular wall disposed about the second inner annular wall, wherein the inter-blade gap section is disposed immediately downstream of the last stage nozzle section, wherein the second inner annular wall is angled with respect to the axis of rotation at a second inner angle average, and the second outer annular wall is angled with respect to the axis of rotation at a second outer angle average along the inter-blade gap section. The last stage airfoil section includes a third inner annular wall disposed about the axis of rotation of the gas turbine, a plurality of airfoils, each having a proximal end coupled to the third inner annular wall and extending outward in a radial direction to a distal end, a tip shroud comprising a third outer annular wall disposed about the third inner annular wall, and coupled to the distal ends of each of the plurality of airfoils, and a stationary shroud comprising a fourth outer annular wall disposed about the third inner annular wall and the third outer annular wall. The last stage airfoil section is disposed immediately downstream of the inter-blade gap section, wherein the third inner annular wall is angled with respect to the axis of rotation at a third inner angle average, the third outer annular wall is angled with respect to the axis of rotation at a third outer angle average along the last stage airfoil section, and the fourth outer annular wall is angled with respect to the axis of rotation at a fourth outer angle average along the last stage airfoil section. The axial-radial diffuser includes a first and a second diffuser section. The first diffuser section includes a fifth inner annular wall disposed about the axis of rotation of the gas turbine, and a fifth outer annular wall disposed about the fifth inner annular wall, wherein the first diffuser section is disposed immediately downstream from the last stage airfoil section, wherein the fifth inner annular wall is angled with respect to the axis of rotation at a fifth inner angle average, and the fifth outer annular wall is angled with respect to the axis of rotation at a fifth outer angle average along the first diffuser section. The second diffuser section includes a sixth inner annular wall disposed about the axis of rotation of the gas turbine, and a sixth outer annular wall disposed about the sixth inner annular wall, wherein the second diffuser section is disposed immediately downstream of the first diffuser section, wherein the sixth inner annular wall is angled with respect to the axis of rotation at a sixth inner angle average, and the sixth outer annular wall is angled with respect to the axis of rotation at a sixth outer angle average along the second diffuser section. The third outer angle average is greater than the fifth outer angle average, the third inner angle average is greater than the fifth inner angle average, and the fifth outer angle average is greater than the fourth outer angle average.
In a third embodiment, a method includes providing a turbine and an axial-radial diffuser. The turbine includes a last stage airfoil section, which includes a first inner annular wall disposed about an axis of rotation of the gas turbine, a plurality of airfoils, each having a proximal end coupled to the first inner annular wall and extending outward in a radial direction to a distal end, a tip shroud including a first outer annular wall disposed about the first inner annular wall and coupled to the distal ends of each of the plurality of airfoils, and a stationary shroud including a second outer annular wall disposed about the first inner annular wall and the first outer annular wall. The first inner annular wall is angled with respect to the axis of rotation at a first inner angle average, the first outer annular wall is angled with respect to the axis of rotation at a first outer angle average along the last stage airfoil section, and the second outer annular wall is angled with respect to the axis of rotation at a second outer angle average along the last stage airfoil section. The axial-radial diffuser includes a first diffuser section, which includes a third inner annular wall disposed about the axis of rotation of the gas turbine, and a third outer annular wall disposed about the third inner annular wall, wherein the first diffuser section is disposed immediately downstream from the last stage airfoil section, wherein the third inner annular wall is angled with respect to the axis of rotation at a third inner angle average, and the third outer annular wall is angled with respect to the axis of rotation at a third outer angle average along the first diffuser section. The first outer angle average is greater than the third outer angle average, the first inner angle average is greater than the third inner angle average, and the third outer angle average is greater than the second outer angle average.
These and other features, aspects, and advantages of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
One or more specific embodiments of the present subject matter will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the present disclosure, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
Following combustion in a gas turbine engine, exhaust fluids exit the combustor, flow through the turbine, and enter the diffuser. The turbine exit flow profile (i.e., the radial profile of total pressure and swirl) may be correlative of diffuser performance (i.e., the pressure recovery coefficient, Cp). Typically, the turbine and the diffuser are independently designed for optimal performance. Unfortunately, when such systems are integrated, the combined turbine and diffuser may not function optimally. As described below, the hub and the casing of the turbine may be designed to create total pressure (PTA) and swirl profiles at the inlet of the diffuser, which may help to improve diffuser performance. Additionally, the casing of the diffuser may be designed such that the wall angles are steeper early (e.g., upstream) in the diffuser when the flow is energy rich, and then shallower later (e.g., downstream) when the flow is lower in energy to prevent separation. The differences in the angles may also create an impinging effect, creating a local PTA spike, which also improves diffuser performance. The techniques disclosed herein may be used to design a turbine and a diffuser to work together to improve the overall performance of the system.
Turning now to the figures,
When the turbine 16 and the diffuser 18 are designed to work with one another, the performance of the diffuser 18 may be improved. As described below, the hub and the casing of the turbine 16 may be designed to create desirable total pressure (PTA) and swirl profiles at the inlet of the diffuser 18, which may help to improve diffuser 18 performance. The casing of the diffuser 18 may then be designed such that the wall angles are steeper early (e.g., upstream) in the diffuser 18 to extract energy when the flow is energy rich, and then shallower later (e.g., downstream) when the flow is lower in energy to prevent separation.
The integrated system 50 may include a series of connected inner annular walls 54, 56, 58, 62, 64 extending in an axial direction 30 and wrapping in the circumferential direction 34 about the rotational axis 24. The integrated system may also include a series of connected outer annular walls 66, 68, 70, 74, 76 which circumferentially 34 surround and may be coaxial to the inner annular walls 54, 56, 58, 62, 64 which also extend in the axial direction 30 and wrap in the circumferential direction 34 about the rotational axis 24. The inner annular walls 54, 56, 58, 62, 64 and the outer annular wall 66, 68, 70, 74, 76 define an annular flow path 78 through which fluid (e.g., exhaust fluids) may flow from an upstream end 80 to a downstream end 82 of the integrated system 50. As shown in
The velocity of the exhaust fluid is generally increased through the turbine. As shown in
In
Similarly, in
It should be understood, however, that the angles of the inner annular walls 54, 56, 58, 62, 64 and the outer annular walls 66, 68, 70, 74, 76 shown in
In some embodiments, the shapes of the inner annular walls 54, 56, 58, 62, 64 and the outer annular walls 66, 68, 70, 74, 76 may not be defined by the values of individual angles, but rather by the differences between certain angles (e.g., impingement angles) or the values of some angles in relation to the value of other angles. For example, the difference between θ3 and θ5 may be 3.6±2.0 degrees. For example, the difference between θ3 and θ5 may be 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 5.2, 5.4, or 5.6 degrees. Similarly, the difference between θ3 and θ5 may be 4.6±2.0 degrees. For example, the difference between α3 and α5 may be 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.8, 5.0, 5.2, 5.4, 5.6, 6.8, 6.0, 6.2, 6.4, or 6.6 degrees. Similarly, the difference between θ4 and θ5 may be 8.8±2.0 degrees. For example, the difference between θ4 and θ5 may be 6.8, 7.0, 7.2, 7.4, 7.6, 7.8, 8.0, 8.2, 8.4, 8.6, 9.0, 9.2, 9.4, 9.6, 9.8, 10.0, 10.2, 10.4, 10.6, or 10.8 degrees.
In some embodiments, the last nozzle stage 26 may include a plurality of airfoil-shaped nozzles 96 disposed circumferentially around the first inner annular wall 54 and extending in a radial direction 32 to the first outer annular wall 66. In some embodiments, the nozzles 96 may include a suction side bulge and/or a pressure side tilt as set forth in U.S. patent application Ser. No. 14/789,507 entitled “BULGED NOZZLE FOR CONTROL OF SECONDARY FLOW AND OPTIMAL DIFFUSER PERFORMANCE,” filed on Jul. 1, 2015, which is hereby incorporated into the present disclosure by reference in their entirety. It should be understood, however, that the techniques disclosed herein may also be used in a system having a last nozzle stage 26 with nozzles 96 that do not have a suction side bulge or a pressure side tilt.
As previously discussed, the average angle of the first inner annular wall 54 along the last nozzle stage section 84 is represented by α1. In the embodiment shown in
Disposed immediately downstream of the last nozzle stage section 84 is the inter-blade gap section 86. The inter-blade gap section 86 is an annular shaped space disposed between the second inner annular wall 56 and the second outer annular wall 68 in the radial direction 32 and between the last nozzle stage section 84 and the last airfoil stage section 88 in the axial direction 30. The inter-blade gap section 86 provides a space through which fluid flows between the last nozzle stage 26 and the last airfoil stage 28. It should be understood that
The average angle of the second inner annular wall 56 along the last inter-blade gap section 86 is represented by α2. In the embodiment shown in
Disposed immediately downstream of the inter-blade gap section 86 is the last stage airfoil section 88. In some embodiments, the last airfoil stage 28 the third inner annular wall 58 may be part of a hub 98. The last airfoil stage 28 may further include a plurality of airfoil-shaped airfoils 100 disposed circumferentially about the hub 98 and extending outward in a radial direction 32 toward a tip 102. The tip 102 is disposed at the distal end of the airfoil 100 and is proximate to an interior surface of the third outer annular wall 70. The tip may have a tip shroud surrounded by a stationary shroud 52 or a fourth annular wall 70. In some embodiments, the airfoil 100 may be designed with an increased thickness centered at approximately 65% of the span between the hub 98 and the tip 102, as set forth in U.S. patent application Ser. No. 14/936,253 entitled “LAST STAGE AIRFOIL DESIGN FOR OPTIMAL DIFFUSER PERFORMANCE,” filed on Nov. 9, 2015, which is hereby incorporated into the present disclosure by reference in their entirety. It should be understood, however, that the techniques disclosed herein may also be used in a system having a last airfoil stage 28 with airfoils 100 that do not have an increased thickness centered at approximately 65% of the span between the hub 98 and the tip 102.
The average angle of the third inner annular wall 58 along the last airfoil stage section 88 is represented by α3. In the embodiment shown in
The diffuser 18 may be disposed immediately downstream of the last airfoil stage section 88. By increasing the volume of the flow path of the exhaust fluids flowing through the diffuser 18, the diffuser reduces the speed and increases the pressure of the exhaust fluids. For the sake of clarity, in this disclosure the diffuser 18 will be described as having two sections, defined by their spatial relationship to the diffuser strut 104: a first diffuser section 92 and a second diffuser section 94. It should be understood, however, that in operation the diffuser 18 may not actually be divided into two sections. The first diffuser section is an annular shaped space disposed between the fifth inner annular wall 62 and the fifth outer annular wall 74 in the radial direction 32 and between the last airfoil stage section 88 and the second diffuser section 94 in the axial direction 30. The first diffuser section 92 is the portion of the diffuser 18 that is immediately downstream of the shroud 52 and immediately upstream of the diffuser strut 104. The first diffuser section 92 provides a space through which exhaust fluid flows between the last airfoil stage section 88 and the second diffuser section 94. It should be understood that
The average angle of the fifth inner annular wall 62 along the first diffuser section 92 is represented by α5. In the embodiment shown in
The second diffuser section 94 is disposed immediately downstream of the first diffuser section 92. The second diffuser section 94 is an annular shaped space disposed between the sixth inner annular wall 64 and the sixth outer annular wall 76 in the radial direction 32 and between the first diffuser section 92 and the downstream end 82 of the diffuser 18 in the axial direction 30. The second diffuser section 94 is the portion of the diffuser 18 that extends in the axial direction from about the leading edge of the diffuser strut 104 to the downstream end 82 of the diffuser 18. However in some embodiments, the axial extent of the strut 104 may be shared by both the first section 92 and second section 94 of the diffuser. The second diffuser section 94 provides a space through which exhaust fluid flows between the first diffuser section 92 and the downstream end of the diffuser 82. It should be understood that
The average angle of the sixth inner annular wall 64 along the second diffuser section 94 is represented by α6. In the embodiment shown in
As previously discussed, it should be understood that the angles of the inner annular walls 54, 56, 58, 62, 64 and the outer annular walls 66, 68, 70, 74, 76 shown in
In some embodiments, the shapes of the inner annular walls 54, 56, 58, 62, 64 and the outer annular walls 66, 68, 70, 74, 76 may not be defined by the values of individual angles, but rather by the differences between certain angles or the values of some angles in relation to the value of other angles. For example, the difference between θ3 and θ5 may be 3.6±2.0 degrees. For example, the difference between θ3 and θ5 may be 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 5.2, 5.4, or 5.6 degrees. Similarly, the difference between α3 and α5 may be 4.6±2.0 degrees. For example, the difference between α3 and α5 may be 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.8, 5.0, 5.2, 5.4, 5.6, 6.8, 6.0, 6.2, 6.4, or 6.6 degrees. The difference between θ4 and θ5 may be 8.8±2.0 degrees. For example, the difference between θ4 and θ5 may be 6.8, 7.0, 7.2, 7.4, 7.6, 7.8, 8.0, 8.2, 8.4, 8.6, 9.0, 9.2, 9.4, 9.6, 9.8, 10.0, 10.2, 10.4, 10.6, or 10.8 degrees.
The values discussed with regard to
The inter-blade gap section 86 may include a second inner annular wall 56 disposed about the axis of rotation 24, and a second outer annular wall 68 disposed about the second inner annular wall 56. The inter-blade gap section 86 may be disposed immediately downstream of the last stage nozzle section 84. The second inner annular wall 56 may be angled with respect to the axis of rotation 24 at a second inner angle average α2, and the second outer annular wall 68 may be angled with respect to the axis of rotation 24 at a second outer angle average θ2 along the inter-blade gap section 86.
The last stage airfoil section 88 may include a plurality of airfoils 100, a third inner annular wall 58 disposed about the axis of rotation 24, a third outer annular wall (e.g., tip shroud) at the tip 102 of the airfoil, and a fourth outer annular wall 70 (e.g., stationary shroud 52) disposed about the third inner annular wall 58 and surrounding the airfoils 100. The last stage airfoil section 88 may be disposed immediately downstream of the inter-blade gap section 86. The third inner annular wall 58 may be angled with respect to the axis of rotation 24 at a third inner angle average α3, and the third outer annular wall (e.g., tip shroud) may be angled with respect to the axis of rotation 24 at a third outer angle average θ3 along the last stage airfoil section 88. The fourth outer annular wall 70 (e.g., stationary shroud) may be angled with respect to the axis of rotation 24 at a fourth outer angle average θ4 along the last stage airfoil section 88.
In block 112 an axial-radial diffuser 16 is provided. The axial-radial diffuser 16 may include a first diffuser section 92 and a second diffuser section 94. The first diffuser section 92 may include a fifth inner annular wall 62 disposed about the axis of rotation 24, and a fifth outer annular wall 74 disposed about the fifth inner annular wall 62. The first diffuser section 92 may be disposed immediately downstream from the last stage airfoil section 88. The fifth inner annular wall 62 may be angled with respect to the axis of rotation 24 at a fifth inner angle average α5, and the fifth outer annular wall 74 may be angled with respect to the axis of rotation 24 at a fifth outer angle average θ5 along the first diffuser section 92.
The second diffuser section 94 may include a sixth inner annular wall 64 disposed about the axis of rotation 24, and a sixth outer annular wall 76 disposed about the sixth inner annular wall 64. The second diffuser section 94 may be disposed immediately downstream of the first diffuser section 92. The sixth inner annular wall 64 may be angled with respect to the axis of rotation 24 at a sixth inner angle average α6, and the sixth outer annular wall 76 is angled with respect to the axis of rotation 24 at a sixth outer angle average θ6 along the second diffuser section 94.
Specific values and ranges for the various inner angle averages α1, α2, α3, α5, α6 and outer angle averages θ1, θ2, θ3, θ4, θ5, θ6, were discussed with regard to
Similarly,
The integrated system 50 discussed herein helps to improve the performance of the diffuser 18 in a number of different ways. First, the shape of the inner annular walls 54, 56, 58, and the outer annular walls 66, 68, 70, across the last nozzle stage section 84, the inter-blade gap section 86, and the last airfoil (e.g., bucket or blade) stage section 88 creates favorable swirl and PTA profiles at the inlet of the diffuser 18. Specifically, PTA spikes and near-zero swirl angles around the fifth inner annular wall 62 and the fifth outer annular wall 74 improves the pressure recovery of the diffuser 18. Second, steep (e.g., greater than 14 degrees) fifth outer annular wall 74 angles early in the diffuser 18 (e.g., first diffuser section 92) increase the recovery of residual kinetic energy in the fluid flow not extracted by the turbine 16 in the upstream end 80 of the diffuser 18 where the fluid flow is energy rich. Third, shallower sixth outer annular wall 76 angles later in the diffuser 18 (e.g., second diffuser section 94), where the fluid flow is weaker may help to avoid separation in the diffuser 18. Fourth, the differences in angles discussed with regard to
This written description uses examples to disclose the subject matter, including the best mode, and also to enable any person skilled in the art to practice the subject matter, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the subject matter is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.