The present invention pertains to recognition systems and particularly to biometric recognition systems. More particularly, the invention pertains to iris recognition systems.
U.S. application Ser. No. 11/382,373, filed May 9, 2006, is hereby incorporated by reference. U.S. Provisional Application No. 60/778,770, filed Mar. 3, 2006, is hereby incorporated by reference. U.S. application Ser. No. 11/043,366, filed Jan. 26, 2005, is hereby incorporated by reference. U.S. application Ser. No. 11/275,703, filed Jan. 25, 2006, is hereby incorporated by reference. U.S. application Ser. No. 10/446,521, filed May 27, 2003, is hereby incorporated by reference. U.S. Pat. No. 6,718,049, issued Apr. 6, 2004, is hereby incorporated by reference.
The invention is a system that incorporates an iris biometrics technology for person recognition (not necessarily cooperating) from afar.
The present system may involve remote iris detection and tracking, remote iris recognition, remote biometrics, non-cooperative iris ID, non-invasive iris recognition and face detection from a stand off range. The invention may have application to identity management, access control, identification, verification, security, surveillance, medical imaging, and so forth.
Current iris recognition (biometrics) technology and devices are limited in their application use because they require actual cooperation by the subject. They also require that the subject places his or her eye or eyes for a few seconds in line with the device scanning window and look inside the device at the imaging source, or at best from a short distance away. This may be sufficient for some access control applications. However, there are applications (e.g., non-cooperative identification, surveillance, and fast access control), which require that iris identification be accomplished from a relatively long distance away.
Various properties and characteristics make iris recognition technology a potentially reliable personal identification tool. This technology may provide uniqueness and genetic independence in identification. The iris of the eye has an extraordinary structure that is unique to each human being. Unlike other well known biometric technologies, such as face-prints and fingerprints, irises are unique to each person and even among genetically identical individuals (i.e., twins). Although the striking visual similarity of identical twins reveals the genetic penetrance of facial appearance, a comparison of genetically identical irises reveals just the opposite for iris patterns. Biomedical literature suggests that iris features are as distinct for each human as fingerprints or patterns of retinal blood vessels. An iris has a data-rich physical structure with sufficient texture to provide adequate discrimination between human subjects. There is no aging effect, that is, there is stability over life of the iris features. Iris recognition technology provides non-invasiveness. The iris is regarded an internal and unique organ, yet is externally visible and can be measured from a distance, using this technique.
From a technical point of view, biometric accuracy may rely significantly on how best the iris is resolved, focused, segmented and extracted. When acquiring iris images, the number of “on-iris” pixels, iris exposure, dynamic range and focus must all be sufficiently precise to produce a high quality image that captures the intricacy of the iris tissue structure. When analyzing iris images of cooperative subjects, the segmentation approach may be a relatively straightforward process of edge detection and circular fitting. However, this is often not the case for stand-off range eye detection and tracking or iris-at-a-distance systems, which often do not receive the cooperation of the subject. In many cases of stand-off range and at-a-distance systems, merely a portion of the iris may be captured due to, for example, closure effect and/or eyelash and eyelid occlusions. Furthermore, given that the subject is not typically asked to cooperate, a tilted head or a rotated iris typically needs also be considered. The present system may extract accurate segments of the iris borders, among other things, in a stand-off range and at-a-distance environment. Computing iris features may use a good-quality segmentation process that focuses on the subject's iris and properly extracts its borders.
The system may detect the head and/or the face from a distance, track the head/face from a distance, track the head/face, locate the eyes in the face when they are presented in a direction of the camera intentionally or unintentionally, and track them. Then a high quality zoom camera may obtain close-ups of the eye, and a smart algorithm may determine when the iris has the best orientation towards the zoom camera, at which point several high quality sequential pictures of the eye/iris may be taken, to perform the iris recognition task.
The system may be based on the following approach operating from a distance. One may include a Tri-Band Imaging™ (TBI) (Honeywell International Inc) camera skin detector. Then specific algorithms may be used to determine if the detected skin is part of the face. This may be accomplished by locating several facial features (eyes, eye brows, nose, mouth, and so forth) and their positions relevant to each other. For skin and features determinations, one may use a commercially available (COTS) face detection and tracking system.
A high quality zoom camera may be used to obtain close-up high resolution images of a rectangular region that contains both eyes. Eye tracking algorithms may be used for iris location within the eye and to determine the “best iris position” with respect to the camera. The “best iris position” may be determined via algorithms by maximizing a function that depends on the key features of the iris and/or the face. At this point of maximization, the zoom camera may take several close-up images of each eye/iris region and pass it on to be processed by commercially available iris recognition algorithms or devices.
The iris segmentation algorithms can be of any type which faithfully outlines the imaged iris presented to them. One such algorithm is one developed by Honeywell operating in the polar domain and is described herein.
Conducting the segmentation in the polar domain may lead to a more efficient and faster process to execute not only the segmentation, but also calibration, and noise removal, all in one step to generate a feature map for the encoding step.
The system may provide reliable calibration and an efficient segmentation (i.e., localization) of the stand-off range or at-a-distance iris detection, resulting in better extraction of the iris features that may eventually be converted into a numeric code. Conversion of an iris annular image into a numeric code that can be easily manipulated may be essential to iris recognition. The iris codes may be compared with previously generated iris codes for verification and identification purposes.
The orientation of head and eyes may result into different perspective of views of the iris circular shape. The captured shapes of the iris are usually apart from being circles or ellipses due to the orientation, tilt and slant angles.
In an illustrative example, the iris biometric approach may include using a POSE™ (i.e., Honeywell International Inc.—polar segmentation) technique to move virtually immediately the analysis to a polar domain and execute a 1-D segmentation of the iris borders, using one or more symmetry properties to detect one or more non-occluded areas of the iris—non-symmetric regions can correspond to areas partially covered by eyelashes, eyelids, and so forth (thus asymmetric). In some cases, one may limit the analysis to those segments where the iris and the sclera are detected relative to their symmetry. The sclera may be regarded as a tough white fibrous outer envelope of tissue covering the entire eyeball except the cornea. Once an orientation is detected, nominal angles with the least likelihood of distortions (i.e., occluded or deformed due to orientation) may be identified by, for example, estimating the ellipse parameters from nominal angles, and computing a calibration factor. A rotated ellipse detection technique that uses overlapping variable circles to detect the iris borders modeled as elliptic or irregular shapes rather than circles, and/or a least square fitting may be used to estimate the elliptic parameters and orientation. Mixture modeling may be used to handle variation in the iris textures.
The iris inner and outer boundaries of iris may be approximated by ellipses than circles of irregular shapes using snake delineation. However, the two ellipses are usually not concentric. One may characterize the shape and texture of the structure of the iris having a large number of interlacing blocks such as freckles, coronas, furrows, crypts, and stripes. The outer boundaries of the iris may be captured with irregular edges due to presence of eyelids and eyelashes. Taken in tandem, these observations suggest that iris localization may be sensitive to a wide range of edge contrasts.
The present system is well suited for high-security access control involving stand-off range and at-a-distance biometrics applications where less control is exercised on subject positioning and/or orientations. Such operations may include, for example, subjects captured at various ranges from the acquisition device, and/or may not have the subjects eye(s) directly aligned with the imaging equipment. Usually, for such applications, it is difficult to implement the level of control required by most of the existing art to enable reliable iris recognition. The system may help cope with asymmetry in acquired iris images, and may further help under uncontrolled environments as long as some of the iris annular is visible. The system may solve the asymmetry problem associated with image acquisition without the collaboration of the subjects and operate under uncontrolled operations as long as some of the iris annular is visible.
In the present specification, some of the matter may be of a hypothetical or prophetic nature although stated in another manner or tense.
Although the invention has been described with respect to at least one illustrative example, many variations and modifications will become apparent to those skilled in the art upon reading the present specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the prior art to include all such variations and modifications.
This application is a continuation of co-pending U.S. application Ser. No. 11/382,373, filed May 9, 2006, which claims the benefit of U.S. Provisional Application No. 60/778,770, filed Mar. 3, 2006.
Number | Name | Date | Kind |
---|---|---|---|
4641349 | Flom et al. | Feb 1987 | A |
4836670 | Hutchinson | Jun 1989 | A |
5231674 | Cleveland et al. | Jul 1993 | A |
5291560 | Daugman | Mar 1994 | A |
5293427 | Ueno et al. | Mar 1994 | A |
5359382 | Uenaka | Oct 1994 | A |
5404013 | Tajima | Apr 1995 | A |
5543887 | Akashi | Aug 1996 | A |
5551027 | Choy et al. | Aug 1996 | A |
5572596 | Wildes et al. | Nov 1996 | A |
5608472 | Szirth et al. | Mar 1997 | A |
5664239 | Nakata | Sep 1997 | A |
5671447 | Tokunaga | Sep 1997 | A |
5687031 | Ishihara | Nov 1997 | A |
5717512 | Chmielewski, Jr. et al. | Feb 1998 | A |
5751836 | Wildes et al. | May 1998 | A |
5859686 | Aboutalib et al. | Jan 1999 | A |
5860032 | Iwane | Jan 1999 | A |
5896174 | Nakata | Apr 1999 | A |
5901238 | Matsuhita | May 1999 | A |
5909269 | Isogai et al. | Jun 1999 | A |
5953440 | Zhang et al. | Sep 1999 | A |
5956122 | Doster | Sep 1999 | A |
5978494 | Zhang | Nov 1999 | A |
5991429 | Coffin et al. | Nov 1999 | A |
6005704 | Chmielewski, Jr. et al. | Dec 1999 | A |
6007202 | Apple et al. | Dec 1999 | A |
6012376 | Hanke et al. | Jan 2000 | A |
6021210 | Camus et al. | Feb 2000 | A |
6028949 | McKendall | Feb 2000 | A |
6055322 | Salganicoff et al. | Apr 2000 | A |
6064752 | Rozmus et al. | May 2000 | A |
6069967 | Rozmus et al. | May 2000 | A |
6081607 | Mori et al. | Jun 2000 | A |
6088470 | Camus et al. | Jul 2000 | A |
6091899 | Konishi et al. | Jul 2000 | A |
6101477 | Hohle et al. | Aug 2000 | A |
6104431 | Inoue et al. | Aug 2000 | A |
6108636 | Yap et al. | Aug 2000 | A |
6119096 | Mann et al. | Sep 2000 | A |
6120461 | Smyth | Sep 2000 | A |
6134339 | Luo | Oct 2000 | A |
6144754 | Okano et al. | Nov 2000 | A |
6246751 | Bergl et al. | Jun 2001 | B1 |
6247813 | Kim et al. | Jun 2001 | B1 |
6252977 | Salganicoff et al. | Jun 2001 | B1 |
6259478 | Hori | Jul 2001 | B1 |
6282475 | Washington | Aug 2001 | B1 |
6285505 | Melville et al. | Sep 2001 | B1 |
6285780 | Yamakita et al. | Sep 2001 | B1 |
6289113 | McHugh et al. | Sep 2001 | B1 |
6299306 | Braithwaite et al. | Oct 2001 | B1 |
6308015 | Matsumoto | Oct 2001 | B1 |
6309069 | Seal et al. | Oct 2001 | B1 |
6320610 | Van Sant et al. | Nov 2001 | B1 |
6320612 | Young | Nov 2001 | B1 |
6320973 | Suzaki et al. | Nov 2001 | B2 |
6323761 | Son | Nov 2001 | B1 |
6325765 | Hay et al. | Dec 2001 | B1 |
6330674 | Angelo et al. | Dec 2001 | B1 |
6332193 | Glass et al. | Dec 2001 | B1 |
6344683 | Kim | Feb 2002 | B1 |
6370260 | Pavlidis et al. | Apr 2002 | B1 |
6377699 | Musgrave et al. | Apr 2002 | B1 |
6393136 | Amir et al. | May 2002 | B1 |
6400835 | Lemelson et al. | Jun 2002 | B1 |
6424727 | Musgrave et al. | Jul 2002 | B1 |
6424845 | Emmoft et al. | Jul 2002 | B1 |
6433818 | Steinberg et al. | Aug 2002 | B1 |
6438752 | McClard | Aug 2002 | B1 |
6441482 | Foster | Aug 2002 | B1 |
6446045 | Stone et al. | Sep 2002 | B1 |
6483930 | Musgrave et al. | Nov 2002 | B1 |
6484936 | Nicoll et al. | Nov 2002 | B1 |
6490443 | Freeny, Jr. | Dec 2002 | B1 |
6493669 | Curry et al. | Dec 2002 | B1 |
6494363 | Roger et al. | Dec 2002 | B1 |
6503163 | Van Sant et al. | Jan 2003 | B1 |
6505193 | Musgrave et al. | Jan 2003 | B1 |
6506078 | Mori et al. | Jan 2003 | B1 |
6508397 | Do | Jan 2003 | B1 |
6516078 | Yang et al. | Feb 2003 | B1 |
6516087 | Camus | Feb 2003 | B1 |
6516416 | Gregg et al. | Feb 2003 | B2 |
6522772 | Morrison et al. | Feb 2003 | B1 |
6523165 | Liu et al. | Feb 2003 | B2 |
6526160 | Ito | Feb 2003 | B1 |
6532298 | Cambier et al. | Mar 2003 | B1 |
6540392 | Braithwaite | Apr 2003 | B1 |
6542624 | Oda | Apr 2003 | B1 |
6546121 | Oda | Apr 2003 | B1 |
6553494 | Glass | Apr 2003 | B1 |
6580356 | Alt et al. | Jun 2003 | B1 |
6591001 | Oda et al. | Jul 2003 | B1 |
6591064 | Higashiyama et al. | Jul 2003 | B2 |
6594377 | Kim et al. | Jul 2003 | B1 |
6594399 | Camus et al. | Jul 2003 | B1 |
6598971 | Cleveland | Jul 2003 | B2 |
6600878 | Pregara | Jul 2003 | B2 |
6614919 | Suzaki et al. | Sep 2003 | B1 |
6652099 | Chae et al. | Nov 2003 | B2 |
6674367 | Sweatte | Jan 2004 | B2 |
6687389 | McCartney et al. | Feb 2004 | B2 |
6690997 | Rivalto | Feb 2004 | B2 |
6708176 | Strunk et al. | Mar 2004 | B2 |
6709734 | Higashi et al. | Mar 2004 | B2 |
6711562 | Ross et al. | Mar 2004 | B1 |
6714665 | Hanna et al. | Mar 2004 | B1 |
6718049 | Pavlidis et al. | Apr 2004 | B2 |
6718050 | Yamamoto | Apr 2004 | B1 |
6718665 | Hess et al. | Apr 2004 | B2 |
6732278 | Baird, III et al. | May 2004 | B2 |
6734783 | Anbai | May 2004 | B1 |
6745520 | Puskaric et al. | Jun 2004 | B2 |
6750435 | Ford | Jun 2004 | B2 |
6751733 | Nakamura et al. | Jun 2004 | B1 |
6753919 | Daugman | Jun 2004 | B1 |
6754640 | Bozeman | Jun 2004 | B2 |
6760467 | Min et al. | Jul 2004 | B1 |
6765470 | Shinzaki | Jul 2004 | B2 |
6766041 | Golden et al. | Jul 2004 | B2 |
6775774 | Harper | Aug 2004 | B1 |
6785406 | Kamada | Aug 2004 | B1 |
6792134 | Chen et al. | Sep 2004 | B2 |
6793134 | Clark | Sep 2004 | B2 |
6819219 | Bolle et al. | Nov 2004 | B1 |
6829370 | Pavlidis et al. | Dec 2004 | B1 |
6832044 | Doi et al. | Dec 2004 | B2 |
6836554 | Bolle et al. | Dec 2004 | B1 |
6837436 | Swartz et al. | Jan 2005 | B2 |
6845879 | Park | Jan 2005 | B2 |
6853444 | Haddad | Feb 2005 | B2 |
6867683 | Calvesio et al. | Mar 2005 | B2 |
6873960 | Wood et al. | Mar 2005 | B1 |
6896187 | Stockhammer | May 2005 | B2 |
6905411 | Nguyen et al. | Jun 2005 | B2 |
6920237 | Chen et al. | Jul 2005 | B2 |
6930707 | Bates et al. | Aug 2005 | B2 |
6934849 | Kramer et al. | Aug 2005 | B2 |
6950139 | Fujinawa | Sep 2005 | B2 |
6954738 | Wang et al. | Oct 2005 | B2 |
6957341 | Rice et al. | Oct 2005 | B2 |
6964666 | Jackson | Nov 2005 | B2 |
6968457 | Tam | Nov 2005 | B2 |
6972797 | Izumi | Dec 2005 | B2 |
6992562 | Fuks et al. | Jan 2006 | B2 |
6992717 | Hatano | Jan 2006 | B2 |
7003669 | Monk | Feb 2006 | B2 |
7017359 | Kim et al. | Mar 2006 | B2 |
7030351 | Wasserman et al. | Apr 2006 | B2 |
7031539 | Tisse et al. | Apr 2006 | B2 |
7043056 | Edwards et al. | May 2006 | B2 |
7053948 | Konishi | May 2006 | B2 |
7058209 | Chen et al. | Jun 2006 | B2 |
7071971 | Elberbaum | Jul 2006 | B2 |
7076087 | Wakiyama | Jul 2006 | B2 |
7084904 | Liu et al. | Aug 2006 | B2 |
7092555 | Lee et al. | Aug 2006 | B2 |
7095901 | Lee et al. | Aug 2006 | B2 |
7100818 | Swaine | Sep 2006 | B2 |
7113170 | Lauper et al. | Sep 2006 | B2 |
7114080 | Rahman et al. | Sep 2006 | B2 |
7120607 | Bolle et al. | Oct 2006 | B2 |
7125335 | Rowe | Oct 2006 | B2 |
7130452 | Bolle et al. | Oct 2006 | B2 |
7130453 | Kondo et al. | Oct 2006 | B2 |
7135980 | Moore et al. | Nov 2006 | B2 |
7136581 | Fujii | Nov 2006 | B2 |
7145457 | Spitz et al. | Dec 2006 | B2 |
7146027 | Kim et al. | Dec 2006 | B2 |
7152085 | Tisse | Dec 2006 | B2 |
7155035 | Kondo et al. | Dec 2006 | B2 |
7169052 | Beaulieu | Jan 2007 | B2 |
7173348 | Voda et al. | Feb 2007 | B2 |
7174036 | Ohba | Feb 2007 | B2 |
7177449 | Russon et al. | Feb 2007 | B2 |
7181049 | Ike | Feb 2007 | B2 |
7183895 | Bazakos et al. | Feb 2007 | B2 |
7184577 | Chen et al. | Feb 2007 | B2 |
7187786 | Kee | Mar 2007 | B2 |
7191936 | Smith et al. | Mar 2007 | B2 |
7197166 | Jeng | Mar 2007 | B2 |
7197173 | Jones et al. | Mar 2007 | B2 |
7203343 | Manasse et al. | Apr 2007 | B2 |
7204425 | Mosher, Jr. et al. | Apr 2007 | B2 |
7206431 | Schuessler | Apr 2007 | B2 |
7215797 | Park | May 2007 | B2 |
7226164 | Abourizk et al. | Jun 2007 | B2 |
7239726 | Li | Jul 2007 | B2 |
7269737 | Robinson et al. | Sep 2007 | B2 |
7271839 | Lee et al. | Sep 2007 | B2 |
7272380 | Lee et al. | Sep 2007 | B2 |
7272385 | Mirouze et al. | Sep 2007 | B2 |
7277561 | Shin | Oct 2007 | B2 |
7277891 | Howard et al. | Oct 2007 | B2 |
7280984 | Phelan, III et al. | Oct 2007 | B2 |
7287021 | De Smet | Oct 2007 | B2 |
7298873 | Miller, Jr. et al. | Nov 2007 | B2 |
7298874 | Cho | Nov 2007 | B2 |
7305089 | Morikawa et al. | Dec 2007 | B2 |
7309126 | Mihashi et al. | Dec 2007 | B2 |
7312818 | Ooi et al. | Dec 2007 | B2 |
7313529 | Thompson | Dec 2007 | B2 |
7315233 | Yuhara | Jan 2008 | B2 |
7331667 | Grotehusmann et al. | Feb 2008 | B2 |
7333637 | Walfridsson | Feb 2008 | B2 |
7333798 | Hodge | Feb 2008 | B2 |
7336806 | Schonberg et al. | Feb 2008 | B2 |
7338167 | Zelvin et al. | Mar 2008 | B2 |
7346195 | Lauper et al. | Mar 2008 | B2 |
7346779 | Leeper | Mar 2008 | B2 |
7353399 | Ooi et al. | Apr 2008 | B2 |
7362210 | Bazakos et al. | Apr 2008 | B2 |
7362370 | Sakamoto et al. | Apr 2008 | B2 |
7362884 | Willis et al. | Apr 2008 | B2 |
7365771 | Kahn et al. | Apr 2008 | B2 |
7380938 | Chmielewski, Jr. et al. | Jun 2008 | B2 |
7391865 | Orsini et al. | Jun 2008 | B2 |
7404086 | Sands et al. | Jul 2008 | B2 |
7406184 | Wolff et al. | Jul 2008 | B2 |
7414648 | Imada | Aug 2008 | B2 |
7417682 | Kuwakino et al. | Aug 2008 | B2 |
7418115 | Northcott et al. | Aug 2008 | B2 |
7421097 | Hamza et al. | Sep 2008 | B2 |
7436986 | Caldwell | Oct 2008 | B2 |
7443441 | Hiraoka | Oct 2008 | B2 |
7447911 | Chou et al. | Nov 2008 | B2 |
7460693 | Loy et al. | Dec 2008 | B2 |
7466348 | Morikawa et al. | Dec 2008 | B2 |
7467809 | Breed et al. | Dec 2008 | B2 |
7471451 | Dent et al. | Dec 2008 | B2 |
7472283 | Angelo et al. | Dec 2008 | B2 |
7486806 | Azuma et al. | Feb 2009 | B2 |
7506172 | Bhakta | Mar 2009 | B2 |
7512254 | Volkommer et al. | Mar 2009 | B2 |
7518651 | Butterworth | Apr 2009 | B2 |
7537568 | Moehring | May 2009 | B2 |
7538326 | Johnson et al. | May 2009 | B2 |
7542945 | Thompson et al. | Jun 2009 | B2 |
7552333 | Wheeler et al. | Jun 2009 | B2 |
7580620 | Raskar et al. | Aug 2009 | B2 |
7593550 | Hamza | Sep 2009 | B2 |
7639846 | Yoda | Dec 2009 | B2 |
7722461 | Gatto et al. | May 2010 | B2 |
7751598 | Matey et al. | Jul 2010 | B2 |
7756301 | Hamza | Jul 2010 | B2 |
7756407 | Raskar | Jul 2010 | B2 |
7761453 | Hamza | Jul 2010 | B2 |
7777802 | Shinohara et al. | Aug 2010 | B2 |
7804982 | Howard et al. | Sep 2010 | B2 |
20010026632 | Tamai | Oct 2001 | A1 |
20010027116 | Baird | Oct 2001 | A1 |
20010047479 | Bromba et al. | Nov 2001 | A1 |
20010051924 | Uberti | Dec 2001 | A1 |
20020010857 | Karthik | Jan 2002 | A1 |
20020039433 | Shin | Apr 2002 | A1 |
20020040434 | Elliston et al. | Apr 2002 | A1 |
20020062280 | Zachariassen et al. | May 2002 | A1 |
20020112177 | Voltmer et al. | Aug 2002 | A1 |
20020142844 | Kerr | Oct 2002 | A1 |
20020150281 | Cho | Oct 2002 | A1 |
20020154794 | Cho | Oct 2002 | A1 |
20020158750 | Almalik | Oct 2002 | A1 |
20020175182 | Matthews | Nov 2002 | A1 |
20020186131 | Fettis | Dec 2002 | A1 |
20020191075 | Doi et al. | Dec 2002 | A1 |
20020191076 | Wada et al. | Dec 2002 | A1 |
20020194128 | Maritzen et al. | Dec 2002 | A1 |
20020194131 | Dick | Dec 2002 | A1 |
20020198731 | Barnes et al. | Dec 2002 | A1 |
20030002714 | Wakiyama | Jan 2003 | A1 |
20030012413 | Kusakari et al. | Jan 2003 | A1 |
20030038173 | Blackson et al. | Feb 2003 | A1 |
20030046228 | Berney | Mar 2003 | A1 |
20030055689 | Block et al. | Mar 2003 | A1 |
20030055787 | Fujii | Mar 2003 | A1 |
20030065626 | Allen | Apr 2003 | A1 |
20030071743 | Seah et al. | Apr 2003 | A1 |
20030072475 | Tamori | Apr 2003 | A1 |
20030073499 | Reece | Apr 2003 | A1 |
20030074317 | Hofi | Apr 2003 | A1 |
20030074326 | Byers | Apr 2003 | A1 |
20030080194 | O'Hara et al. | May 2003 | A1 |
20030092489 | Veradej | May 2003 | A1 |
20030098776 | Friedli | May 2003 | A1 |
20030099379 | Monk et al. | May 2003 | A1 |
20030107097 | McArthur et al. | Jun 2003 | A1 |
20030107645 | Yoon | Jun 2003 | A1 |
20030115148 | Takhar | Jun 2003 | A1 |
20030116630 | Carey et al. | Jun 2003 | A1 |
20030118212 | Min et al. | Jun 2003 | A1 |
20030125054 | Garcia | Jul 2003 | A1 |
20030125057 | Pesola | Jul 2003 | A1 |
20030126560 | Kurapati et al. | Jul 2003 | A1 |
20030131245 | Linderman | Jul 2003 | A1 |
20030133597 | Moore et al. | Jul 2003 | A1 |
20030140235 | Immega et al. | Jul 2003 | A1 |
20030140928 | Bui et al. | Jul 2003 | A1 |
20030141411 | Pandya et al. | Jul 2003 | A1 |
20030149881 | Patel et al. | Aug 2003 | A1 |
20030152251 | Ike | Aug 2003 | A1 |
20030156741 | Lee et al. | Aug 2003 | A1 |
20030158762 | Wu | Aug 2003 | A1 |
20030158821 | Maia | Aug 2003 | A1 |
20030159051 | Hollnagel | Aug 2003 | A1 |
20030163739 | Armington et al. | Aug 2003 | A1 |
20030169334 | Braithwaite et al. | Sep 2003 | A1 |
20030174049 | Beigel et al. | Sep 2003 | A1 |
20030177051 | Driscoll et al. | Sep 2003 | A1 |
20030182151 | Taslitz | Sep 2003 | A1 |
20030182182 | Kocher | Sep 2003 | A1 |
20030189480 | Hamid | Oct 2003 | A1 |
20030189481 | Hamid | Oct 2003 | A1 |
20030191949 | Odagawa | Oct 2003 | A1 |
20030194112 | Lee | Oct 2003 | A1 |
20030210139 | Brooks et al. | Nov 2003 | A1 |
20030225711 | Paping | Dec 2003 | A1 |
20030236120 | Reece et al. | Dec 2003 | A1 |
20040002894 | Kocher | Jan 2004 | A1 |
20040005078 | Tillotson | Jan 2004 | A1 |
20040006553 | de Vries et al. | Jan 2004 | A1 |
20040010462 | Moon et al. | Jan 2004 | A1 |
20040025030 | Corbett-Clark et al. | Feb 2004 | A1 |
20040025053 | Hayward | Feb 2004 | A1 |
20040030930 | Nomura | Feb 2004 | A1 |
20040037450 | Bradski | Feb 2004 | A1 |
20040039914 | Barr et al. | Feb 2004 | A1 |
20040042641 | Jakubowski | Mar 2004 | A1 |
20040044627 | Russell et al. | Mar 2004 | A1 |
20040046640 | Jourdain et al. | Mar 2004 | A1 |
20040050924 | Mletzko et al. | Mar 2004 | A1 |
20040050930 | Rowe | Mar 2004 | A1 |
20040052405 | Walfridsson | Mar 2004 | A1 |
20040052418 | DeLean | Mar 2004 | A1 |
20040059590 | Mercredi et al. | Mar 2004 | A1 |
20040059953 | Purnell | Mar 2004 | A1 |
20040117636 | Cheng | Jun 2004 | A1 |
20040133804 | Smith et al. | Jul 2004 | A1 |
20040160518 | Park | Aug 2004 | A1 |
20040162870 | Matsuzaki et al. | Aug 2004 | A1 |
20040162984 | Freeman et al. | Aug 2004 | A1 |
20040172541 | Ando et al. | Sep 2004 | A1 |
20040193893 | Braithwaite et al. | Sep 2004 | A1 |
20040233038 | Beenau et al. | Nov 2004 | A1 |
20040252866 | Tisse et al. | Dec 2004 | A1 |
20040255168 | Murashita et al. | Dec 2004 | A1 |
20050008201 | Lee et al. | Jan 2005 | A1 |
20050012817 | Hampapur et al. | Jan 2005 | A1 |
20050029353 | Isemura et al. | Feb 2005 | A1 |
20050052566 | Kato | Mar 2005 | A1 |
20050055582 | Bazakos et al. | Mar 2005 | A1 |
20050063567 | Saitoh et al. | Mar 2005 | A1 |
20050084137 | Kim et al. | Apr 2005 | A1 |
20050084179 | Hanna et al. | Apr 2005 | A1 |
20050102502 | Sagen | May 2005 | A1 |
20050125258 | Yellin et al. | Jun 2005 | A1 |
20050129286 | Hekimian | Jun 2005 | A1 |
20050138385 | Friedli et al. | Jun 2005 | A1 |
20050138387 | Lam et al. | Jun 2005 | A1 |
20050146640 | Shibata | Jul 2005 | A1 |
20050151620 | Neumann | Jul 2005 | A1 |
20050152583 | Kondo et al. | Jul 2005 | A1 |
20050193212 | Yuhara | Sep 2005 | A1 |
20050199708 | Friedman | Sep 2005 | A1 |
20050206501 | Farhat | Sep 2005 | A1 |
20050206502 | Bernitz | Sep 2005 | A1 |
20050210267 | Sugano et al. | Sep 2005 | A1 |
20050210270 | Rohatgi et al. | Sep 2005 | A1 |
20050238214 | Matsuda et al. | Oct 2005 | A1 |
20050240778 | Saito | Oct 2005 | A1 |
20050248725 | Ikoma et al. | Nov 2005 | A1 |
20050249385 | Kondo et al. | Nov 2005 | A1 |
20050255840 | Markham | Nov 2005 | A1 |
20060093190 | Cheng et al. | May 2006 | A1 |
20060147094 | Yoo | Jul 2006 | A1 |
20060165266 | Hamza | Jul 2006 | A1 |
20060274919 | LoIacono et al. | Dec 2006 | A1 |
20070036397 | Hamza | Feb 2007 | A1 |
20070140531 | Hamza | Jun 2007 | A1 |
20070160266 | Jones et al. | Jul 2007 | A1 |
20070189582 | Hamza et al. | Aug 2007 | A1 |
20070206840 | Jacobson | Sep 2007 | A1 |
20070211924 | Hamza | Sep 2007 | A1 |
20070274570 | Hamza | Nov 2007 | A1 |
20070274571 | Hamza | Nov 2007 | A1 |
20070286590 | Terashima | Dec 2007 | A1 |
20080005578 | Shafir | Jan 2008 | A1 |
20080075334 | Determan et al. | Mar 2008 | A1 |
20080075441 | Jelinek et al. | Mar 2008 | A1 |
20080075445 | Whillock et al. | Mar 2008 | A1 |
20080104415 | Palti-Wasserman et al. | May 2008 | A1 |
20080148030 | Goffin | Jun 2008 | A1 |
20080211347 | Wright et al. | Sep 2008 | A1 |
20080252412 | Larsson et al. | Oct 2008 | A1 |
20080267456 | Anderson | Oct 2008 | A1 |
20090046899 | Northcott et al. | Feb 2009 | A1 |
20090092283 | Whillock et al. | Apr 2009 | A1 |
20090316993 | Brasnett et al. | Dec 2009 | A1 |
20100002913 | Hamza | Jan 2010 | A1 |
20100033677 | Jelinek | Feb 2010 | A1 |
20100034529 | Jelinek | Feb 2010 | A1 |
20100142765 | Hamza | Jun 2010 | A1 |
20100182440 | McCloskey | Jul 2010 | A1 |
20100239119 | Bazakos et al. | Sep 2010 | A1 |
20100315500 | Whillock et al. | Dec 2010 | A1 |
20100316263 | Hamza | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
0484076 | May 1992 | EP |
0593386 | Apr 1994 | EP |
0878780 | Nov 1998 | EP |
0899680 | Mar 1999 | EP |
0910986 | Apr 1999 | EP |
0962894 | Dec 1999 | EP |
1018297 | Jul 2000 | EP |
1024463 | Aug 2000 | EP |
1028398 | Aug 2000 | EP |
1041506 | Oct 2000 | EP |
1041523 | Oct 2000 | EP |
1126403 | Aug 2001 | EP |
1139270 | Oct 2001 | EP |
1237117 | Sep 2002 | EP |
1477925 | Nov 2004 | EP |
1635307 | Mar 2006 | EP |
2369205 | May 2002 | GB |
2371396 | Jul 2002 | GB |
2375913 | Nov 2002 | GB |
2402840 | Dec 2004 | GB |
2411980 | Sep 2005 | GB |
9161135 | Jun 1997 | JP |
9198545 | Jul 1997 | JP |
9201348 | Aug 1997 | JP |
9147233 | Sep 1997 | JP |
9234264 | Sep 1997 | JP |
9305765 | Nov 1997 | JP |
9319927 | Dec 1997 | JP |
10021392 | Jan 1998 | JP |
10040386 | Feb 1998 | JP |
10049728 | Feb 1998 | JP |
10137219 | May 1998 | JP |
10137221 | May 1998 | JP |
10137222 | May 1998 | JP |
10137223 | May 1998 | JP |
10248827 | Sep 1998 | JP |
10269183 | Oct 1998 | JP |
11047117 | Feb 1999 | JP |
11089820 | Apr 1999 | JP |
11200684 | Jul 1999 | JP |
11203478 | Jul 1999 | JP |
11213047 | Aug 1999 | JP |
11339037 | Dec 1999 | JP |
2000005149 | Jan 2000 | JP |
2000005150 | Jan 2000 | JP |
2000011163 | Jan 2000 | JP |
2000023946 | Jan 2000 | JP |
2000083930 | Mar 2000 | JP |
2000102510 | Apr 2000 | JP |
2000102524 | Apr 2000 | JP |
2000105830 | Apr 2000 | JP |
2000107156 | Apr 2000 | JP |
2000139878 | May 2000 | JP |
2000155863 | Jun 2000 | JP |
2000182050 | Jun 2000 | JP |
2000185031 | Jul 2000 | JP |
2000194972 | Jul 2000 | JP |
2000237167 | Sep 2000 | JP |
2000242788 | Sep 2000 | JP |
2000259817 | Sep 2000 | JP |
2000356059 | Dec 2000 | JP |
2000357232 | Dec 2000 | JP |
2001005948 | Jan 2001 | JP |
2001067399 | Mar 2001 | JP |
2001101429 | Apr 2001 | JP |
2001167275 | Jun 2001 | JP |
2001222661 | Aug 2001 | JP |
2001292981 | Oct 2001 | JP |
2001297177 | Oct 2001 | JP |
2001358987 | Dec 2001 | JP |
2002119477 | Apr 2002 | JP |
2002133415 | May 2002 | JP |
2002153444 | May 2002 | JP |
2002153445 | May 2002 | JP |
2002260071 | Sep 2002 | JP |
2002271689 | Sep 2002 | JP |
2002286650 | Oct 2002 | JP |
2002312772 | Oct 2002 | JP |
2002329204 | Nov 2002 | JP |
2003006628 | Jan 2003 | JP |
2003036434 | Feb 2003 | JP |
2003108720 | Apr 2003 | JP |
2003108983 | Apr 2003 | JP |
2003132355 | May 2003 | JP |
2003150942 | May 2003 | JP |
2003153880 | May 2003 | JP |
2003242125 | Aug 2003 | JP |
2003271565 | Sep 2003 | JP |
2003271940 | Sep 2003 | JP |
2003308522 | Oct 2003 | JP |
2003308523 | Oct 2003 | JP |
2003317102 | Nov 2003 | JP |
2003331265 | Nov 2003 | JP |
2004005167 | Jan 2004 | JP |
2004021406 | Jan 2004 | JP |
2004030334 | Jan 2004 | JP |
2004038305 | Feb 2004 | JP |
2004094575 | Mar 2004 | JP |
2004152046 | May 2004 | JP |
2004163356 | Jun 2004 | JP |
2004164483 | Jun 2004 | JP |
2004171350 | Jun 2004 | JP |
2004171602 | Jun 2004 | JP |
2004206444 | Jul 2004 | JP |
2004220376 | Aug 2004 | JP |
2004261515 | Sep 2004 | JP |
2004280221 | Oct 2004 | JP |
2004280547 | Oct 2004 | JP |
2004287621 | Oct 2004 | JP |
2004315127 | Nov 2004 | JP |
2004318248 | Nov 2004 | JP |
2005004524 | Jan 2005 | JP |
2005011207 | Jan 2005 | JP |
2005025577 | Jan 2005 | JP |
2005038257 | Feb 2005 | JP |
2005062990 | Mar 2005 | JP |
2005115961 | Apr 2005 | JP |
2005148883 | Jun 2005 | JP |
2005242677 | Sep 2005 | JP |
WO 9717674 | May 1997 | WO |
WO 9721188 | Jun 1997 | WO |
WO 9802083 | Jan 1998 | WO |
WO 9808439 | Mar 1998 | WO |
WO 9932317 | Jul 1999 | WO |
WO 9952422 | Oct 1999 | WO |
WO 9965175 | Dec 1999 | WO |
WO 0028484 | May 2000 | WO |
WO 0029986 | May 2000 | WO |
WO 0031677 | Jun 2000 | WO |
WO 0036605 | Jun 2000 | WO |
WO 0062239 | Oct 2000 | WO |
WO 0101329 | Jan 2001 | WO |
WO 0103100 | Jan 2001 | WO |
WO 0128476 | Apr 2001 | WO |
WO 0135348 | May 2001 | WO |
WO 0135349 | May 2001 | WO |
WO 0140982 | Jun 2001 | WO |
WO 0163994 | Aug 2001 | WO |
WO 0169490 | Sep 2001 | WO |
WO 0186599 | Nov 2001 | WO |
WO 0201451 | Jan 2002 | WO |
WO 0219030 | Mar 2002 | WO |
WO 0235452 | May 2002 | WO |
WO 0235480 | May 2002 | WO |
WO 02091735 | Nov 2002 | WO |
WO 02095657 | Nov 2002 | WO |
WO 03002387 | Jan 2003 | WO |
WO 03003910 | Jan 2003 | WO |
WO 03054777 | Jul 2003 | WO |
WO 03077077 | Sep 2003 | WO |
WO 2004029863 | Apr 2004 | WO |
WO 2004042646 | May 2004 | WO |
WO 2004055737 | Jul 2004 | WO |
WO 2004089214 | Oct 2004 | WO |
WO 2004097743 | Nov 2004 | WO |
WO 2005008567 | Jan 2005 | WO |
WO 2005013181 | Feb 2005 | WO |
WO 2005024698 | Mar 2005 | WO |
WO 2005024708 | Mar 2005 | WO |
WO 2005024709 | Mar 2005 | WO |
WO 2005029388 | Mar 2005 | WO |
WO 2005062235 | Jul 2005 | WO |
WO 2005069252 | Jul 2005 | WO |
WO 2005093510 | Oct 2005 | WO |
WO 2005093681 | Oct 2005 | WO |
WO 2005096962 | Oct 2005 | WO |
WO 2005098531 | Oct 2005 | WO |
WO 2005104704 | Nov 2005 | WO |
WO 2005109344 | Nov 2005 | WO |
WO 2006012645 | Feb 2006 | WO |
WO 2006023046 | Mar 2006 | WO |
WO 2006051462 | May 2006 | WO |
WO 2006063076 | Jun 2006 | WO |
WO 2006081209 | Aug 2006 | WO |
WO 2006081505 | Aug 2006 | WO |
WO 2007101269 | Sep 2007 | WO |
WO 2007101275 | Sep 2007 | WO |
WO 2007101276 | Sep 2007 | WO |
WO 2007103698 | Sep 2007 | WO |
WO 2007103701 | Sep 2007 | WO |
WO 2007103833 | Sep 2007 | WO |
WO 2007103834 | Sep 2007 | WO |
WO 2008016724 | Feb 2008 | WO |
WO 2008019168 | Feb 2008 | WO |
WO 2008019169 | Feb 2008 | WO |
WO 2008021584 | Feb 2008 | WO |
WO 2008031089 | Mar 2008 | WO |
WO 2008040026 | Apr 2008 | WO |
Entry |
---|
K R Park, Gaze detection by Wide and Narrow View Stereo Camera, CIARP 2004. |
AOptix Technologies, “Introducing the AOptix InSight 2 Meter Iris Recognition System,” 6 pages, 2010. |
Avcibas et al., “Steganalysis Using Image Quality Metrics,” IEEE Transactions on Image Processing, vol. 12, No. 2, pp. 221-229, Feb. 2003. |
Belhumeur et al., “Eigenfaces Vs. Fisherfaces: Recognition Using Class Specific Linear Projection,” 14 pages, prior to Jun. 11, 2010. |
Bentley et al., “Multidimensional Binary Search Trees Used for Associative Searching,” Communications of the ACM, vol. 18, No. 9, pp. 509-517, Sep. 1975. |
Blackman et al., “Chapter 9, Multiple Sensor Tracking: Issues and Methods,” Design and Analysis of Modern Tracking Systems, Artech House, pp. 595-659, 1999. |
Boles, “A Security System Based on Human Iris Identification Using Wavelet Transform,” IEEE First International Conference on Knowledge-Based Intelligent Electronic Systems, May 21-23, Adelaide, Australia, pp. 533-541, 1997. |
Bonney et al., “Iris Pattern Extraction Using Bit Planes and Standard Deviations,” IEEE, pp. 582-586, 2004. |
Brasnett et al., “A Robust Visual Identifier Using the Trace Transform,” 6 pages, prior to Jun. 11, 2010. |
Buades et al., “A Review of Image Denoising Algorithms, with a New One,” Multiscale Modeling & Simulation, vol. 4, No. 2, pp. 490-530, 2005. |
Camus et al., “Reliable and Fast Eye Finding in Close-up Images,” IEEE, pp. 389-394, 2002. |
Carson et al., “Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, No. 8, pp. 1026-1038, Aug. 2002. |
Chen et al., “Localized Iris Image Quality Using 2-D Wavelets,” LNCS vol. 3832, pp. 373-381, 2005. |
Chow et al., “Towards a System for Automatic Facial Feature Detection,” Pattern Recognition vol. 26, No. 12, pp. 1739-1755, 1993. |
U.S. Appl. No. 12/792,498, filed Jun. 2, 2010. |
U.S. Appl. No. 12/875,372, filed Sep. 3, 2010. |
Cui et al., “A Fast and Robust Iris Localization Method Based on Texture Segmentation,” 8 pages, 2004. |
Cui et al., “An Appearance-Based Method for Iris Detection,” 6 pages, 2004. |
Cui et al., “An Iris Detection Method Based on Structure Information,” Advances in Biometric Person Authentication, International Workshop on Biometric Recognition Systems, IWBRS 2005, Beijing China, 10 pages, Oct. 22-23, 2005. |
Cui et al., “An Iris Image Synthesis Method Based on PCA and Super-Resolution,” IEEE Computer Society, Proceedings of the 17th International Conference on Pattern Recognition, 6 pages, Aug. 23-26, 2004. |
Cui et al., “An Iris Recognition Algorithm Using Local Extreme Points,” Biometric Authentication, First International Conference, ICBA 2004, Hong Kong, China, 10 pages, Jul. 15-17, 2004. |
Cula et al., “Bidirectional Imaging and Modeling of Skin Texture,” Proceedings of Texture 2003, 6 pages, Oct. 17, 2003. |
Cula et al., “Bidirectional Imaging and Modeling of Skin Texture,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 12, pp. 2148-2159, 2004. |
Cula et al., “Compact Representation of Bidirectional Texture Functions,” Proceedings of IEEE Computer Societ Conference on Computer Vision and Pattern Recognition 2001, 8 pages, 2001. |
Cula et al., “Skin Texture Modeling,” International Journal of Computer Vision 2004, 34 pages, 2004. |
Dabov et al., “Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering,” IEEE Transactions on Image Processing, vol. 16, No. 8, pp. 2080-2095, Aug. 2007. |
Dabov et al., “Image Restoration by Spars 3D Transform Collaborative Filtering,” SPIE vol. 6812 681207-1, 12 pages, 2008. |
Daugman, “Results From 200 Billion Iris Cross-Comparisons,” University of Cambridge Computer Laboratory, Technical Report, No. 635, 8 pages, Jun. 2005. |
Daugman, “High Confidence Visual Recognition of Persons by a Test of Statistical Independence,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, No. 11, pp. 1148-1161, 1993. |
Daugman, “How Iris Recognition Works,” IEEE 2002 International Conference on Image Processing, vol. I of III, 6 pages, Sep. 22-25, 2002. |
Daugman, “Probing the Uniqueness and Randomness of Iris Codes: Results from 200 Billion Iris Pair Comparisons,” Proceedings of the IEEE vol. 94, No. 11, pp. 1928-1935, Nov. 2006. |
Du et al., “A One-Dimensional Approach for Iris Identification,” 11 pages, prior to Jan. 25, 2006. |
Fooprateepsiri et al., “A Highly Robust Method for Face Authentication,” IEEE 2009 First Asian Conference on Intelligent Information and Database Systems, pp. 380-385, 2009. |
Fooprateepsiri et al., “Face Verification Base-On Hausdorff-Shape Context,” IEEE 2009 Asia Conference on Informatics in Control, Automation and Robotics, pp. 240-244, 2009. |
Forstner et al., “A Metric for Covariance Matrices,” 16 pages, prior to Jun. 11, 2010. |
Gan et al., “Applications of Wavelet Packets Decomposition in Iris Recognition,” LNCS vol. 3832, pp. 443-449, 2005. |
Guo et al., “A System for Automatic Iris Capturing,” Mitsubishi Electric Research Laboratories, Inc., 10 pages, 2005. |
Guo, “Face, Expression, and Iris Recognition Using Learning-Based Approaches,” 132 pages, 2006. |
Hampapur et al., “Smart Surveillance: Applications, Technologies and Implications,” IEEE, 6 pages, Dec. 15-18, 2003. |
Hamza et al., “Standoff Iris Recognition Usin Non-Iterative Polar Based Segmentation,” Proceedings of SPIE vol. 6944, 8 pages, 2008. |
Hanna et al., “A System for Non-Intrusive Human Iris Acquisition and Identification,” IAPR Workshop on Machine Vision Applications, pp. 200-203, Nov. 12-14, 1996. |
http://en.wikipedia.org/wiki/Radon—transform, “Radon Transform,” 5 pages, printed May 14, 2010. |
http://www.newscientisttech.com/article/dn11110-invention-covert-iris-sc, “Invention: Covert Iris Scanner,” 3 pages, printed Feb. 8, 2007. |
Huang et al., “Iris Model Based on Local Orientation Description,” 5 pages, prior to Jan. 25, 2006. |
Huang et al., “An Efficient Iris Recognition System,” IEEE Proceedings of the First International Conference on Machine Learning and Cybernetics, Beijing, pp. 450-454, Nov. 4-5, 2002. |
Ivins et al., “A Deformable Model of the Human Iris for Measuring Small Three-Dimensional Eye Movements,” Machine Vision and Applications, vol. 11, pp. 42-51, 1998. |
Jalaja et al., “Texture Element Feature Characterizations for CBIR,” IEEE, pp. 733-736, 2005. |
Kadyrov et al., “The Trace Transform and Its Applications,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, No. 8, pp. 811-828, Aug. 2001. |
Kadyrov et al., “The Trace Transform as a Tool to Invariant Feature Construction,” 3 pages, prior to Jun. 11, 2010. |
Kalka et al., “Image Quality Assessment for Iris Biometric,” Proc. of SPIE vol. 6202 62020D, 11 pages, 2006. |
Kang et al., “Improved Dual Action Contour for Iris Recognition,” 10 pages, prior to Jun. 11, 2010. |
Kawaguchi et al., “Detection of Eyes from Human Faces by Hough Transform and Separability Filter,” IEEE, 4 pages, 2000. |
Ko et al., “Monitoring and Reporting of Fingerprint Image Quality and Match Accuracy for a Large User Application,” IEEE Computer Society, Proceedings of the 33rd Applied Imagery Pattern Recognition Workshop, 6 pages, 2004. |
Kong et al., “Detecting Eyelash and Reflection for Accurate Iris Segmentation,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 17, No. 6, pp. 1025-1034, 2003. |
Lau et al., “Finding a Small Number of Regions in an Image Using Low-Level Features,” Pattern Recognition 35, pp. 2323-2339, 2002. |
Li et al., “Appearance Modeling Using a Geometric Transform,” IEEE Transactions on Image Processing, 17 pages, 2008. |
Li et al., “Appearance Modeling Using a Geometric Transform,” Journal Preparation for IEEE Transactions on Image Processing, 30 pages, Nov. 5, 2006. |
Ma et al., “Personal Identification Based on Iris Texture Analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, No. 12, pp. 1519-1533, Dec. 2003. |
Ma et al., “Local Intensity Variation Analysis for Iris Recognition,” Pattern Recognition, vol. 37, pp. 1287-1298, 2004. |
Ma et al., “Video Sequence Querying Using Clustering of Objects' Appearance Models,” Advances in Visual Computing Third Annual Symposium, ISVC 2007, 14 pages, 2007. |
Masek, “Recognition of Human Iris Patterns for Biometric Identification,” 61 pages, 2003. |
Maurer et al., “Tracking and Learning Graphs and Pose on Image Sequences of Faces,” IEEE Computer Society Press, International Conference on Automatic Face and Gesture Recognition, pp. 176-181, Oct. 14-16, 1996. |
Monro et al., “DCT-Based Iris Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, No. 4, Apr. 2007. |
Noh et al., “A Novel Method to Extract Features for Iris Recognition System,” AVBPA 2003, LNCS 2688, pp. 862-868, 2003. |
Ojala et al., “Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, No. 7, 18 pages, Jul. 2002. |
Oppenheim et al, “The Importance of Phase in Signals,” Proceedings of the IEEE, vol. 69, No. 5, pp. 529-541, 1981. |
Pamudurthy et al., “Dynamic Approach for Face Recognition Using Digital Image Skin Correlation,” Audio and Video Based Person Authentication 5th International Conference, AVBPA 2005, Hilton Rye Town, NY, USA, 11 pages, Jul. 20-22, 2005. |
Petrou et al., “The Trace Transform in a Nutshell,” 9 pages, prior to Jun. 11, 2010. |
Phillips et al., “FRVT 2006 and ICE 2006 Large-Scale Results,” 56 pages, Mar. 2007. |
Porikli et al., “Covariance Tracking Using Model Update Based on Means on Riemannian Manifolds,” 8 pages, prior to Jun. 11, 2010. |
Proenca et al., “Toward Noncooperative Iris Recognition: A Classification Approach Using Multiple Signatures,” IEEE Transactions on Patern Analysis and Machine Intellingence, vol. 29, No. 4, pp. 607-612, Apr. 2007. |
Ratha et al., “A Real-Time Matching System for Large Fingerprint Databases,” IEEE Transactions on Pattern Analysis, and Machine Intelligence, vol. 18, No. 8, pp. 799-812, Aug. 1996. |
Ross et al., “Segmenting Non-Ideal Irises Using Geodesic Active Contours,” IEEE 2006 Biometrics Symposium, 3 pages, 2006. |
Shapiro et al., “Pages 556-559 in Book Entitled Computer Vision,” Prentice Hall, prior to Jun. 11, 2010. |
Sony, “Network Color Camera, SNC-RZ30N (NTSC),” 6 pages, Aug. 2002. |
Stillman et al., “A System for Tracking and Recognizing Multiple People with Multiple Cameras,” 6 pages, Aug. 1998. |
Sun et al., “Robust Encoding of Local Ordinal Measures: A General Framework of Iris Recognition,” 13 pages, prior to Jan. 25, 2006. |
Sun Et al., “Iris Recognition Based on Non-local Comparisons,” Sinobiometrics 2004, LNCS 3338, pp. 67-77, 2004. |
Suzaki et al., “A Horse Identification System Using Biometrics,” Systems and Computer in Japan, vol. 32, No. 14, pp. 12-23, 2001. |
Trucco et al., “Robust Iris Location in Close-up Images of the Eye,” Pattern Anal. Applic. vol. 8, pp. 247-255, 2005. |
Turan et al., “Trace Transform Based Invariant Object Recognition System,” 4 pages, prior to Jun. 11, 2010. |
Turk et al., “Eigenfaces for Recognition,” Journal of Cognitive Neuroscience, vol. 3, No. 1, 16 pages, 1991. |
Wang et al, “Image Quality Assessment: From Error Visibility to Structural Similarity,” IEEE Transactions on Image Processing, vol. 13, No. 4, pp. 600-612, Apr. 2004. |
Wang et al., “A Universal Image Quality Index,” IEEE Signal Processing Letters, vol. 9, No. 3, pp. 81-84, Mar. 2002. |
Wang et al., “Local Phase Coherence and the Perception of Blur,” Advances in Nueral Information Processing Systems 16, pp. 1435-1442, 2004. |
Wang et al., “Recent Developments in Human Motion Analysis,” Pattern Recognition, vol. 36, pp. 585-601, 2003. |
Wei et al., “Robust and Fast Assessment of Iris Image Quality,” LNCS vol. 3832, pp. 464-471, 2005. |
Zhao et al., “Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, No. 6, pp. 915-928, Jun. 2007. |
Zhi-Hui et al., “Research Iris Serial Images Quality Assessment Method Based on HVS,” Proceedings of SPIE, vol. 6034, 6 pages, 2006. |
Freeboy, “Adaptive Optics Speeds Up Airport Immigration,” Optics.org/ole, 2 pages, Jan. 2009. |
http://www.imagine-eyes.com/content/view/100/115/, “INOVEO—Ultra-High Resolution Retinal Imaging with Adaptive Optics,” 2 pages, printed Feb. 22, 2010. |
Number | Date | Country | |
---|---|---|---|
20110187845 A1 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
60778770 | Mar 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11382373 | May 2006 | US |
Child | 13077821 | US |