This disclosure relates to engineered shoring post systems where cross-bracing is assembled to vertical shoring posts to carry horizontal loads developed in the load being carried, as well as to provide lateral support for a plurality of vertical shoring posts. Often a shoring plan calls for a single beam to span and be fixed to several adjacent vertical shoring posts. The cross bracing may be called for attachment to at least one shoring post at a height that necessitates a ladder being used by the crew that is installing the shoring system.
A first representative embodiment of the disclosure is provided. The embodiment includes a system for laterally supporting a vertical shoring post. The system includes a head and a jaw assembly, the jaw assembly movably mounted to the head, the head configured for selective engagement with a shoring post, and the jaw assembly configured for engagement with a beam that provides lateral support to the shoring post. The head comprises first and second arms that extend in the same general direction and when engaging the shoring post the first and second arms are disposed upon opposite sides of the shoring post. The jaw assembly includes a fixed jaw and a movable jaw, the moving member pivotably connected to the fixed jaw, wherein the fixed jaw and movable jaws are configured to receive an end of the beam therebetween.
A second representative embodiment of the disclosure is provided. The embodiment includes a system for shoring. The system includes first and second shoring posts configured to be disposed vertically to vertically support a load, the first and second shoring posts configured to be disposed adjacent to each other with a space therebetween. A head and jaw assembly are provided. The head is configured to engage a portion of the first shoring post and engage a portion of the second shoring post to provide lateral support to the first and second shoring posts. The jaw assembly includes a fixed jaw and a movable jaw that is pivotably connected to the fixed jaw with a pinned connection, wherein the jaw assembly is configured to retain an end of a beam therebetween. The head includes opposed first and second arms, each of the first and second arms have extended ends, wherein space is defined between the first and second arms, wherein the head is configured to engage the first shoring post such that the shoring post extends within the space. When the shoring post extends within the space between the first and second arms and contacts one or both of the first and second arms, a centerline of the beam extends through the first shoring post. Wherein the beam extending from the jaw assembly extends an outer surface of the second shoring post, wherein a line through the center of the beam at an end portion within the jaws assembly extends through the shoring post.
A third representative embodiment of the disclosure is provided. The embodiment includes a method of installing a plurality of shoring posts. The method includes the steps of installing first and second vertical shoring posts to a desired height for shoring load above the respective first and second shoring posts; inserting an end of a beam into a jaw assembly, the jaw assembly comprising a fixed jaw and a movable jaw that is pivotably attached to the fixed jaw, wherein the fixed and movable jaws are configured to accept the end of the beam therebetween and the movable jaw is biased toward engagement with the end of the beam, the jaw assembly pivotably mounted to a head; manipulating the beam such that the head substantially horizontally approaches a portion of the first vertical shoring post to dispose the vertical shoring post into a space between first and second arms that define the head; and fixing the beam with respect to the second shoring post.
Advantages of the present disclosure will become more apparent to those skilled in the art from the following description of the preferred embodiments of the disclosure that have been shown and described by way of illustration. As will be realized, the disclosed subject matter is capable of other and different embodiments, and its details are capable of modification in various respects. Accordingly, the drawings and description are to be regarded as illustrative in nature and not as restrictive.
Turning now to
The system 10 is provided to allow for cross-members or beams 40 to be rigidly connected to two or more adjacent shoring posts 20 to provide for lateral stability between adjacent shoring posts, and such that the cross-members or beams are disposed to carry a portion of the vertical load disposed upon the shoring posts 20. Cross-members or beams 40 are often called for in an engineered shoring plan to account for horizontal loads and also to provide rigidity to a shoring system as needed due to changing environmental factors (wind, the weight of workers and construction equipment being carried by the shoring system and the like) that may affect the shoring system. Cross-members or beams 40 are typically disposed between and rigidly connected to multiple adjacent shoring posts 20, with temporary clamps, such as wedge clamps (e.g. 40,
Often when beams 40 are installed between multiple vertical shoring posts, the beam 40 is connected to a first post at a height that is above 7-8 feet, which typically requires the assembly team that is setting up the engineered shoring system to use a ladder or scissor lift to attach the beam to the first post, often at a height of 7-20 feet above the surface that the first shoring post rests upon.
The system 10 includes a connection device 100 that allows for a beam to be rigidly mounted to a shoring post 20 (e.g. shoring post 20a of
The head 120 includes first and second arms 122, 124 that are spaced from each other to establish a void 129 therebetween. The void is configured to allow for the shoring post 20 to be received within the void 129, such that the first and second arms are disposed on opposite sides of the shoring post 20. The first and second arms 122, 124 may each have an extended end portion 122a, 124a and a connected end portion 122b, 124b. The connected end portions 122b, 124b may be directly connected to each other, or in some embodiments, the connected end portions 122b, 124b may be connected to opposite ends of a central portion 126.
In some embodiments, the first and second arms 122, 124 are rigid and are rigidly mounted with respect to each other. In some embodiments, the first and second arms 122, 124 may be mirror images of each other across a mirror plane that extends between the first and second arms 122, 124, while in other embodiments, the extended end portions 122a, 124a of the first and second arms 122, 124 may have different geometries and may extend a different distance, such as shown in
In some embodiments, the first and second arms 122, 124 are formed as a single monolithic member, with the arms directly extending from each other or in other embodiments extending from opposite ends of a central member 126, which is formed from the single monolithic member with the first and second arms 122, 124. In other embodiments, the arms (and central portion when provided) may be formed from multiple different components that are rigidly fixed together.
In other embodiments, the first and second arms 122, 124 may be movably mounted to each other, such as pivotable with respect to each other (or such as to a central portion). In this embodiment, the arms 122, 124 may be biased toward each other (specifically biased such that the extended ends 122a, 124a are urged toward each other), which can be overcome to urge the extended ends 122a, 124a away from each other with the shoring post 20 slid into the void 129 between the arms. In some embodiments, one or both of the extended ends 122a, 124a may have cam surfaces that contact the shoring post as the head is moved toward the shoring post, and the contact upon the cam surfaces urge the extended ends 122a, 124a of the arms away from each other to allow the post to slide into the void 129. This embodiment may be useful to provide an initial connection between the head 120 and the shoring post 20 before the beam 40 is fixed to neighboring posts, which urges contact between the head 120 and the post, as discussed below.
The first and second arms 122, 124 may be formed to receive a section of the shoring post 20, such as a shoring post extension 27, i.e. a section of a shoring post 20 that extends above the midplate and below the drop head nut 28, as depicted in
When installed, the head 120 may rest upon a horizontal surface or portion of the shoring post due to gravity, such as upon the bottom plate 26 of the head of the shoring post. When the beam 40 is fixed to the shoring post by way of the head 120 the forces extending between the shoring post 20 and the beam may be compressive or in tension, and these static loads are transferred between the shoring post 20 and the beam by way of the head 120.
The first and second arms 122, 124 may be configured such that the void 129 is shaped in the same manner and only a slightly larger cross-section than the cross-section of the portion of the shoring post 20 that will be disposed within the void 129. For example, where the shoring post 20 is circular, the inner surfaces of the first and second arms 122, 124 both have an arcuate geometry that closely matches the diameter of the shoring post 20. In embodiments where the head 120 further includes a central portion between the first and second arms 122, 124, the geometry of the collective inner surfaces of the first and second arms 122, 124 and the central portion 126 may be arcuate to match the diameter of the shoring post. In some embodiments the inner surface of the head 120 may have a geometry such that the head contacts a half of the circumference of the shoring post disposed therein, or in other embodiments, the inner surface of the head 120 may contact just slightly less than half of the circumference of the shoring post, such as about 160 to 179 degrees of circumference.
In embodiments where the head 120 connects with square or rectangular segments of shoring posts, the first and second arms 122, 124 may have a geometry that matches the geometry of the shoring post, such that the inner surface of the head (i.e. the arms and the central portion when provided) make surface to surface contact with all or a portion of three sides of the shoring post.
The extended ends 122a, 124a of the first and second arms 122, 124 establish an opening into the void 129 to allow the shoring post 20 to slide into and out of the void 129 as needed to install the head 120 onto the shoring post or remove the head 120 from the shoring post 20. The opening is dimensioned to be larger than the diameter of largest segment of the shoring post 20 that could be disposed within the void 129 (and for telescoping shoring posts, the segment of the shoring post with the largest diameter). In some embodiments, the opening is dimensioned to be larger than any portion of a shore or the drophead of a shore that could be intended to receive a cross-member. In embodiments where the head 120 may connect to square, rectangular, or oblong shoring posts, the opening into the void is larger than the largest horizontal projection of the shoring post 20 that would need to extend into the void 129 based upon the necessary orientation of the head 120 (and the jaws mechanism 140 and beam 40) with respect to the shoring post 20. For example, in embodiments where the shoring post is square, the opening should be at least just larger than the width of each face of the square post, such that the post can slide into and out of the void 129 easily.
In some embodiments, one or both of the first and second arms 122, 124 may include a retention spring 139 that assists with proper alignment of the shoring post 20 within the void, and urges the shoring post 20 to contact the inner surfaces of the first and second arms 122, 124 and the central portion 126 when provided. The retention spring 139 may be a leaf spring that extends outward from the respective arm and has an extended position that narrows the opening into the void to a distance that is less than the diameter of a cylindrical shoring post, or less than the largest horizontal projection of the shoring post. The spring 139 is initially compressed as the head 120 is directed toward the shoring post 20 and passes between the distal end portions 122a, 124a of the arms. The shoring post 20 eventually passes the spring 139 to allow the spring to return to the expanded portion. The spring 139 provides some resistance to the head 120 moving away from the shoring post 20, which assists with maintaining the head 120 aligned with the shoring post as the beam 40 is manipulated to be fixed to the adjacent shoring posts, which as discussed below fixes the head 120 onto the shoring post due to the horizontal force of the beam 40 being applied to the shoring post 20 through the head 120.
When the shoring post 20 is disposed within the void 129 and the inner surface of the head 120 contacts the shoring post, the forces may be transferred between the head 120 and the shoring post 20 along a line (schematically shown as 120z in
The head 120 may include a flange 132 or other structures that extends therefrom that provides a structure that provide a connection with the jaws mechanism 140. In some embodiments, the flange 132 may extend horizontally from the head 120 in a direction that is perpendicular, or substantially perpendicular to an axis 122z through the first arm 122. The term “substantially” when used herein is defined to mean within a range of 5-10% plus or minus of the dimension or angle that is referenced therewith. In this embodiment, the alignment of the head 120 and the flange 132 controls the alignment of the beam 40 (as fixed to the jaw assembly 140) and the shoring post 20. In some embodiments, the flange 132 has an aperture that can receive a pin 182 that rotatably connects the head 120 to the jaws mechanism. In some embodiments, the pin 182 extends through an axis that is perpendicular to a longitudinal axis through the shoring post, such that the jaw mechanism 140 can pivot upward and downward with respect to the head 120.
The jaw assembly 140 is best depicted in
The movable jaw 162 may include two opposite side walls 164 that in some embodiments extend outside of the outer surface of the side walls 144 of the fixed jaw 142, while in other embodiments the side walls 164 may extend inboard of the side walls 144 of the fixed jaw 142. The side walls 164 may include apertures that are aligned with corresponding apertures on the side walls 144 to receive a pin 174 to allow for relative rotation of the movable jaw 162 with respect to the fixed jaw 142.
In some embodiments, the movable jaw 162 is biased toward a closed position (
In some embodiments, the movable jaw 162 may have one or more teeth 264 or one or more sets of teeth 264, which are configured to engage a surface of the beam 40 disposed therein. In other embodiments, the fixed jaw 142 may additionally or alternatively have one or more teeth or rows of teeth.
As shown in
In some embodiments, one or both of the jaws 142, 162 may include apertures (aperture 169 depicted in
With reference to
Next, the beam 40 is engaged with a portion of a first shoring post 20 (shoring post 20a in
The beam 40 is then manipulated to run the beam past the second shoring post 20 (20b in
In embodiments where the beam 40 will be fixed to third (and additional) shoring posts, the beam 40 is moved into engagement with the third shoring post (20c in
As best understood with reference to
In some embodiments, the alignment of the beam 40 between the jaw assembly 140 connected to the first shoring post 20a and past the outer surface of the second shoring post 20b necessitates that the beam 40 be bent, as shown in FIG. X with reference to a line 40z through the longitudinal axis of the end portion 42 of the beam not extending through the beam 40, let alone the center of the beam 40 as the beam passes by the second shoring post 20b. This bending of the beam 40 biases the beam 40 to transfer a force from the end portion 40a, through the jaw assembly 140 and to the head 120, which passes to the first shoring post 20a. This force causes the head 120 to be securely mounted to the first shoring post 20a and maintains the structural stability of the engineered shoring system as discussed above.
The system may be disassembled by removing the connection between the beams and the second/third shoring posts 20b, 20c, such as by removing the clamps that fix those components together. Once the beam is free of the second, third, etc. shoring posts, the user manipulates the beam 40 to force the head 120 to translate away from the first shoring post 20a in the horizontal direction opposite to direction Z (
Once the head 120 is slid free from the shoring post 20, the end 42 may be removed from the jaws assembly by rotating the movable jaw 162 away from engagement with the beam 40 (and removing any fasteners 190 from the beam 40 through the jaws. The system can then be reassembled in the future to prepare a new engineered shoring plan. In other embodiments, the head 120 may be maintained in connection with the beam 40 for future use.
While the preferred embodiments of the disclosed have been described, it should be understood that the invention is not so limited and modifications may be made without departing from the disclosure. The scope of the disclosure is defined by the appended claims, and all devices that come within the meaning of the claims, either literally or by equivalence, are intended to be embraced therein.