Embodiments of the invention relate generally to bias reference circuits and, more particularly, to a system for matched and isolated bias references.
Radio receivers and transmitters integrate together low noise amplifiers, mixers, RF oscillators, filters, variable gain amplifiers, and high-power driver amplifiers. Each system operates over a wide dynamic range and requires extensive isolation.
In practice, inadequate isolation due to circuit or layout coupling limits the achievable dynamic range. Circuit coupling can occur through circuits shared by multiple components, such as reference circuits, as these circuits offer only limited isolation. For example, strong signals processed by low noise amplifiers, RF Oscillators, and PA drivers can affect common bias sources. It would therefore be advantageous to have reference circuits that are isolated from other system components.
In summary, the present invention relates to a system and method for providing matched and isolated references. In one exemplary embodiment, a network is provided wherein multiple bias sources are substantially matched and isolated.
In one aspect the present invention is directed to a reference current generator which includes a primary reference generator operative to produce a first reference current. The reference current generator further includes a duplicate reference generator operative to produce a second reference current. An adjustment circuit coupled to the primary reference generator and the duplicate reference generator is configured such that the first reference current is substantially matched to and isolated from the second reference current.
In another aspect the present invention relates to a method for generating matched current references. The method includes generating a primary reference current in response to a reference voltage. A comparison voltage is produced based upon a comparison of the reference voltage and a mirrored voltage related to the primary reference current. The method further includes adjusting a value of a digital control word in accordance with the comparison voltage. A compensation voltage is provided based upon the digital control word. A duplicate reference current is then adjusted in accordance with the compensation voltage so as to match the duplicate reference current to the primary reference current.
The foregoing aspects of the embodiments described herein will become more readily apparent by reference to the following detailed description when taken in conjunction with the accompanying drawings wherein:
The receiver 110 comprises a low noise amplifier 130, down-converting mixers 132, frequency synthesizer (PLL and RF oscillator) 134, variable gain amplifiers (VGAs) 136, filters 140, and A/D converters 142. The transmitter 120 includes D/A converters 150, filters 152, a direct I/Q modulator 154, frequency synthesizer 158, RF variable gain amplifiers 160, and PA driver amplifier 162. In general, these circuits receive bias signals from reference circuits (not shown) designed to optimize performance. Accordingly, the reference circuits may emphasize precision, matching, and/or specify a certain temperature behavior. Ideally, the reference circuits resemble current sources with infinite output impedance or voltage sources with zero source impedance.
V
REF
=V
REF1
+V
gs
where VREF1 is a precision voltage source (e.g., such as a bandgap generator), and Vgs is the gate-source voltage of the MOS transistor N1. The real impedances presented by each reference are given by;
rout1=(1+gmR1)ro+R1
where rout1 is the impedance of the current source, gm is the transconductance and ro is the output resistance of transistor N1, rout2 is the impedance of the voltage reference, and rop is the output resistance and Aop the gain of the operational amplifier. Note that the impedance of the current source rout1 decreases at high frequencies as gm falls. Similarly, the gain of the operational amplifier also decreases at high frequencies, increasing rout2.
The real impedances of the reference circuits adversely affect the circuit elements driven by them by causing a bias change to occur as these circuit elements draw signal current. Specifically, the bias changes according to:
VREF→VREF−iradiorout2
where iradio represents the signal current drawn from the reference circuit by the radio circuits. This effect consequently couples together radio circuits that share the same reference circuit and thereby limits isolation and dynamic range.
A bandgap circuit generates a precise and temperature stable voltage, making it suitable for generating the VREF voltage. It also means that the reference current IREF shares the same characteristics as resistor R1. This is important since integrated resistors typically show excellent matching but poor accuracy. Fortunately, a variety of circuits can be designed to take advantage of the excellent matching property while they minimize the impact of poor accuracy. However, many radio circuits operating at RF frequencies use inductive elements and therefore require precise bias settings. This is only possible with a precise resistor, which may only be available as an external element. Furthermore, at these frequencies, both gm and Aop fall, making the reference impedances far from ideal.
Isolated references are needed for RF circuits to operate properly. One approach to achieving such isolation involves designing multiple references with separate external resistors. However, this is generally not practical since the result would consume more power and use additional device pins.
The reference network 300 of
Transistors P1 and P2 mirror current I1 to resistor R2, which adds to current ΔI1 generated by the D/A converter 340a to establish the voltage V2 given by;
V2=(I1+ΔI1)R2
The comparator 350 senses this voltage, compares it to the reference voltage VREF, and adjusts the digital register (REG) 360 that drives the D/A converter 340a until voltage V2 equals VREF. The current ΔI1 required to be produced by the D/A converter 340a depends on the relationship between resistors R1 and R2. If,
R2=R1(1+α)
then ΔI1 equals;
Note that the REG 360 also drives a second D/A converter 340b. The D/A converter 340b generates an output current ΔI2 that matches ΔI1 and feeds the duplicate reference circuit 320. The duplicate reference circuit 320 nominally generates a current I2 described by
where R3 matches resistor R2. Current ΔI2 alters the current pulled through transistor P3 such that;
I3=I2−ΔI2
which gets mirrored to the output. It follows then that;
which equals the original reference current. In this way a pair of effectively matched and isolated reference current sources Iout and I1 are made available for use by external circuits (not shown). Additional matched and isolated current references are possible by replicating operational amplifier OP2, transistors N2, P3-P4, resistor R3, and the D/A converter.
which scales to the output based on transistors N4 plus P5-P9, resistor R5, and switches S1-S4. Accordingly,
where m represents the combined gate width of selected transistors P6-P9 divided by the gate width of transistor P5. Adding transistor N4 and resistor R5 allows for a bi-directional output current Idoc. In the exemplary embodiment the value of this current with transistors P6-P9 selected is set to be one-half of the maximum scaled PMOS current (equal to mIbias) by appropriately sizing transistor N4 and resistor R5. Note that resistors R4-R5 must match sensing resistors R2 and R3 (see
Referring again to
Resistor R1 can be realized as an external or integrated element. This allows the reference circuit to generate precise and well-matched bias sources with specific temperature behavior. Note that any temperature sensitivity can be readily designed into the voltage reference (VREF).
The novel reference network produces multiple bias references that are both well matched and effectively completely isolated. Thus, embodiments of the reference network are suitable for in any type of circuit such as a receiver, transmitter, amplifier, or any other circuit that may utilize multiple bias references.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the invention. In other instances, well-known circuits and devices are shown in block diagram form in order to avoid unnecessary distraction from the underlying invention. Thus, the foregoing descriptions of specific embodiments of the present invention are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed; obviously many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the following Claims and their equivalents define the scope of the invention.
This application claims priority under 35 U.S.C. §119(e) to U.S. provisional application Ser. No. 60/677,912, entitled SYSTEM FOR MATCHED AND ISOLATED REFERENCES, filed May 5, 2005, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4263560 | Ricker | Apr 1981 | A |
4430627 | Machida | Feb 1984 | A |
4769588 | Panther | Sep 1988 | A |
4816772 | Klotz | Mar 1989 | A |
4926135 | Voorman | May 1990 | A |
4965531 | Riley | Oct 1990 | A |
5006818 | Koyama et al. | Apr 1991 | A |
5015968 | Podell et al. | May 1991 | A |
5030923 | Arai | Jul 1991 | A |
5289136 | DeVeirman et al. | Feb 1994 | A |
5331292 | Worden et al. | Jul 1994 | A |
5399990 | Miyake | Mar 1995 | A |
5491450 | Helms et al. | Feb 1996 | A |
5508660 | Gersbach et al. | Apr 1996 | A |
5548594 | Nakamura | Aug 1996 | A |
5561385 | Choi | Oct 1996 | A |
5581216 | Ruetz | Dec 1996 | A |
5625325 | Rotzoll et al. | Apr 1997 | A |
5631587 | Co et al. | May 1997 | A |
5648744 | Prakash et al. | Jul 1997 | A |
5677646 | Entrikin | Oct 1997 | A |
5739730 | Rotzoll | Apr 1998 | A |
5767748 | Nakao | Jun 1998 | A |
5818303 | Oishi et al. | Oct 1998 | A |
5834987 | Dent | Nov 1998 | A |
5862465 | Ou | Jan 1999 | A |
5878101 | Aisaka | Mar 1999 | A |
5880631 | Sahota | Mar 1999 | A |
5939922 | Umeda | Aug 1999 | A |
5945855 | Momtaz | Aug 1999 | A |
5949286 | Jones | Sep 1999 | A |
5990740 | Groe | Nov 1999 | A |
5994959 | Ainsworth | Nov 1999 | A |
5999056 | Fong | Dec 1999 | A |
6011437 | Sutardja et al. | Jan 2000 | A |
6018651 | Bruckert et al. | Jan 2000 | A |
6031425 | Hasegawa | Feb 2000 | A |
6044124 | Monahan et al. | Mar 2000 | A |
6052035 | Nolan et al. | Apr 2000 | A |
6057739 | Crowley et al. | May 2000 | A |
6060935 | Shulman | May 2000 | A |
6091307 | Nelson | Jul 2000 | A |
6100767 | Sumi | Aug 2000 | A |
6114920 | Moon et al. | Sep 2000 | A |
6163207 | Kattner et al. | Dec 2000 | A |
6173011 | Rey et al. | Jan 2001 | B1 |
6191956 | Foreman | Feb 2001 | B1 |
6204728 | Hageraats | Mar 2001 | B1 |
6211737 | Fong | Apr 2001 | B1 |
6229374 | Tammone, Jr. | May 2001 | B1 |
6246289 | Pisati et al. | Jun 2001 | B1 |
6255889 | Branson | Jul 2001 | B1 |
6259321 | Song et al. | Jul 2001 | B1 |
6288609 | Brueske et al. | Sep 2001 | B1 |
6298093 | Genrich | Oct 2001 | B1 |
6304201 | Moreland et al. | Oct 2001 | B1 |
6333675 | Saito | Dec 2001 | B1 |
6370372 | Molnar et al. | Apr 2002 | B1 |
6392487 | Alexanian | May 2002 | B1 |
6404252 | Wilsch | Jun 2002 | B1 |
6476660 | Visocchi et al. | Nov 2002 | B1 |
6515553 | Filiol et al. | Feb 2003 | B1 |
6559717 | Lynn et al. | May 2003 | B1 |
6560448 | Baldwin et al. | May 2003 | B1 |
6571083 | Powell, II et al. | May 2003 | B1 |
6577190 | Kim | Jun 2003 | B2 |
6583671 | Chatwin | Jun 2003 | B2 |
6583675 | Gomez | Jun 2003 | B2 |
6639474 | Asikainen et al. | Oct 2003 | B2 |
6664865 | Groe et al. | Dec 2003 | B2 |
6683509 | Albon et al. | Jan 2004 | B2 |
6693977 | Katayama et al. | Feb 2004 | B2 |
6703887 | Groe | Mar 2004 | B2 |
6707715 | Michael et al. | Mar 2004 | B2 |
6711391 | Walker et al. | Mar 2004 | B1 |
6724235 | Costa et al. | Apr 2004 | B2 |
6734736 | Gharpurey | May 2004 | B2 |
6744319 | Kim | Jun 2004 | B2 |
6751272 | Burns et al. | Jun 2004 | B1 |
6753738 | Baird | Jun 2004 | B1 |
6763228 | Prentice et al. | Jul 2004 | B2 |
6774740 | Groe | Aug 2004 | B1 |
6777999 | Kanou et al. | Aug 2004 | B2 |
6781425 | Si | Aug 2004 | B2 |
6795843 | Groe | Sep 2004 | B1 |
6798290 | Groe et al. | Sep 2004 | B2 |
6801089 | Costa et al. | Oct 2004 | B2 |
6845139 | Gibbons | Jan 2005 | B2 |
6856205 | Groe | Feb 2005 | B1 |
6870411 | Shibahara et al. | Mar 2005 | B2 |
6891357 | Camara et al. | May 2005 | B2 |
6917719 | Chadwick | Jul 2005 | B2 |
6940356 | McDonald, II et al. | Sep 2005 | B2 |
6943600 | Craninckx | Sep 2005 | B2 |
6975687 | Jackson et al. | Dec 2005 | B2 |
6985703 | Groe et al. | Jan 2006 | B2 |
6990327 | Zheng et al. | Jan 2006 | B2 |
7015647 | Maede et al. | Mar 2006 | B2 |
7016232 | Lee et al. | Mar 2006 | B2 |
7062248 | Kuiri | Jun 2006 | B2 |
7065334 | Otaka et al. | Jun 2006 | B1 |
7088979 | Shenoy et al. | Aug 2006 | B1 |
7123102 | Uozumi et al. | Oct 2006 | B2 |
7142062 | Vaananen et al. | Nov 2006 | B2 |
7148764 | Kasahara et al. | Dec 2006 | B2 |
7171170 | Groe et al. | Jan 2007 | B2 |
7215215 | Hirano et al. | May 2007 | B2 |
20020071497 | Bengtsson et al. | Jun 2002 | A1 |
20020135428 | Gomez | Sep 2002 | A1 |
20020193009 | Reed | Dec 2002 | A1 |
20030078016 | Groe et al. | Apr 2003 | A1 |
20030092405 | Groe et al. | May 2003 | A1 |
20030118143 | Bellaouar et al. | Jun 2003 | A1 |
20030197564 | Humphreys et al. | Oct 2003 | A1 |
20040017852 | Reedman-White | Jan 2004 | A1 |
20040051590 | Perrott et al. | Mar 2004 | A1 |
20050093631 | Groe | May 2005 | A1 |
20050099232 | Groe et al. | May 2005 | A1 |
20060003720 | Lee et al. | Jan 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
60677912 | May 2005 | US |