The present application claims priority to Application No. 10-2014-0042851, filed in the Republic of Korea on Apr. 10, 2014, which is expressly incorporated herein in its entirety by reference thereto.
The present invention relates to a system for measuring the orthogonality of a stage and to a method for positioning a stage home using the same. More particularly, the present invention relates to a system for measuring the orthogonality of a stage and detecting a variation of the orthogonality through measuring in real time each of the axes constituting the orthogonality of the stage by an incremental feedback device for driving the stage and an absolute feedback device for measuring the position of each of the axes constituting the orthogonality of the stage, and to a method for quickly and accurately positioning the stage home by using the system.
Referring to
However, while operating the gantry structure type stage, a problem occurring in the rigidity of the mechanical fastening or an external influence may cause a variation in the orthogonality of the X-axis and Y-axis, which variation serves as an error significantly affecting the result of a production process or apparatus using the gantry structure type stage.
Conventionally, the measurement of an error in the orthogonality of the stage has been achieved by calculating the difference between the two values that are obtained by measuring the length of a diagonal by two laser interferometers. However, this method requires much time and cost, and may cause installation and measurement errors of the laser interferometer depending on the worker. Moreover, it is difficult to employ this method while operating the stage.
Meanwhile, the accuracy and speed of positioning the stage home are important considerations for precisely controlling the position of a production apparatus including the stage and improving the production speed.
However, when positioning a stage home conventionally, the home sensor or index may cause a lowering of the precision of the positioning. In this case, the speed of moving the stage home must be lowered, thus suffering a drawback of increasing the time for positioning the stage home.
Example embodiments of the present invention provide a system for measuring in real time the orthogonality of the stage so as to detect a problem during the operation of a production apparatus including the stage, and furthermore for quickly and accurately positioning the stage home.
According to an example embodiment of the present invention, a system for measuring the orthogonality of a stage includes: a first and a second X-axial drive feedback device respectively mounted in a pair of guides respectively arranged in both sides of the stage for measuring and providing a displacement for changing the X-axial position of the stage; a Y-axial drive feedback device mounted in a crossbeam of the stage for measuring and providing a displacement for changing the Y-axial position of the stage; a first and a second X-axial absolute feedback device each mounted at a position in both ends of the crossbeam where the crossbeam intersects with the pair of guides for measuring and providing the position of each of the axes constituting the orthogonality of the stage; and a control unit for controlling the displacement of the stage and detecting a variation of the orthogonality of the stage according to a feedback received from the first and the second X-axial drive feedback device, the Y-axial drive feedback device, and the first and the second X-axial absolute feedback device.
According to an example embodiment of the present invention, a method for positioning a stage home by a system for measuring the orthogonality of the stage includes: moving the stage up to a limit sensor provided at the ends of guides on both sides of the stage by using the incremental feedback device; and moving the stage up to a position provided with a home sensor of the stage by using the absolute feedback device.
Thus, provided are a system for measuring the orthogonality of a stage and detecting a variation of the orthogonality through measuring in real time each of the axes constituting the orthogonality of the stage by an incremental feedback device for driving the stage and an absolute feedback device for measuring the position of each of the axes constituting the orthogonality of the stage, and a method for positioning the stage home by using the system.
Further features and aspects of example embodiments of the present invention are described in more detail below with reference to the appended Figures.
Hereinafter will be more specifically described example embodiments of the present invention with reference to the attached drawings. The same reference numerals are used for the parts with a similar function throughout the attached drawings.
In addition, the expression that a part is connected to another part in the specification means a direct connection between them and/or an indirect connection via another element between them.
Referring to
The first and the second X-axial drive feedback devices 211, 212 are mounted in respective guides 111, 112 arranged on both sides of the stage to change the X-axial position of the stage, and the Y-axial feedback device 213 is mounted in a crossbeam 120 to change the Y-axial position of the stage, which feedback devices may include an incremental encoder.
The incremental encoder of the first and the second X-axial drive feedback devices 211, 212 and the Y-axial feedback device 213 can only provide a positional variation, namely, the amount of displacement from the initial position, but not the absolute value of the present position. Hence, if the control unit 230 or the amplifier receiving feedback from the incremental encoder has been turned off, the value of the present position cannot be obtained even if it is turned on again.
The first and the second X-axial absolute feedback devices 221, 222 are respectively mounted at the positions in both ends of the crossbeam 120 where the crossbeam 120 intersects with the guides 111, 112, to measure the position of each of the axes constituting the orthogonality of the stage, which feedback devices may include an absolute encoder.
The absolute encoder constituting the first and the second X-axial feedback devices 221, 222 may provide the absolute value of the present position, and therefore, even if the control unit 230 or the amplifier receiving feedback from the absolute encoder is turned on again after having been turned off, the absolute value of the present position may be obtained.
The control unit 230 controls the displacement of the stage and detects a variation of the orthogonality of the stage according to a feedback received from the first and the second X-axial drive feedback devices 211, 212, the Y-axial drive feedback device 213, and the first and the second X-axial absolute feedback devices 221, 222, which control unit includes a microprocessor for calculating and controlling.
The control unit 230 may provide the absolute value of the present position of the stage even if the power is turned off during operation of the stage, because it receives feedback from both incremental encoder and absolute encoder. Hence, the control unit 230 may calculate in real time a variation of the orthogonality of the stage based on the orthogonality measured initially at the time of assembling the stage as shown in
In addition, the control unit 230 may use a variation of the orthogonality for diagnosing, monitoring, and analyzing problems of the system, or provide it to an external instrument to this end.
Referring to
Referring to
Example embodiments of the present invention may precisely detect in real time a variation of the orthogonality of the stage during operation of the stage so as to discover in advance an error of the stage and to provide data for correcting the error.
In addition, the absolute value of the home position of the stage may be measured so as to improve the speed, precision, and stability of positioning the stage home.
Also, both incremental feedback devices and absolute feedback devices are employed so as to use the absolute feedback device of higher cost and lower precision least, thereby decreasing the production cost and improving the precision of controlling.
It should be understood that present invention is not limited by the above-described example embodiments and the attached drawings. Instead, substitutions, modifications, and/or alterations may be made without departing from the spirit and scope hereof.
Number | Date | Country | Kind |
---|---|---|---|
10-2014-0042851 | Apr 2014 | KR | national |