System for melting solid metal

Information

  • Patent Grant
  • 11850657
  • Patent Number
    11,850,657
  • Date Filed
    Tuesday, April 12, 2022
    2 years ago
  • Date Issued
    Tuesday, December 26, 2023
    4 months ago
Abstract
A scrap melting system and method includes a vessel that is configured to retain molten metal and a raised surface about the level of molten metal in the vessel. Solid metal is placed on the raised surface and molten metal from the vessel is moved upward from the vessel and across the raised surface to melt at least some of the solid metal. The molten metal is preferably raised from the vessel to the raised surface by a molten metal pumping device or system. The molten metal moves from the raised surface and into a vessel or launder.
Description
BACKGROUND OF THE INVENTION

As used herein, the term “molten metal” means any metal or combination of metals in liquid form, such as aluminum, copper, iron, zinc and alloys thereof. The term “gas” means any gas or combination of gases, including argon, nitrogen, chlorine, fluorine, Freon, and helium, which are released into molten metal.


Known molten-metal pumps include a pump base (also called a housing or casing), one or more inlets (an inlet being an opening in the housing to allow molten metal to enter a pump chamber), a pump chamber of any suitable configuration, which is an open area formed within the housing, and a discharge, which is a channel or conduit of any structure or type communicating with the pump chamber (in an axial pump the chamber and discharge may be the same structure or different areas of the same structure) leading from the pump chamber to an outlet, which is an opening formed in the exterior of the housing through which molten metal exits the casing. An impeller, also called a rotor, is mounted in the pump chamber and is connected to a drive system. The drive shaft is typically an impeller shaft connected to one end of a motor shaft, the other end of the drive shaft being connected to an impeller. Often, the impeller (or rotor) shaft is comprised of graphite and/or ceramic, the motor shaft is comprised of steel, and the two are connected by a coupling. As the motor turns the drive shaft, the drive shaft turns the impeller and the impeller pushes molten metal out of the pump chamber, through the discharge, out of the outlet and into the molten metal bath. Most molten metal pumps are gravity fed, wherein gravity forces molten metal through the inlet and into the pump chamber as the impeller pushes molten metal out of the pump chamber. Other molten metal pumps do not include a base or support posts and are sized to fit into a structure by which molten metal is pumped. Most pumps have a metal platform, or super structure, that is either supported by a plurality of support posts attached to the pump base, or unsupported if there is no base. The motor is positioned on the superstructure, if a superstructure is used.


This application incorporates by reference the portions of the following publications that are not inconsistent with this disclosure: U.S. Pat. No. 4,598,899, issued Jul. 8, 1986, to Paul V. Cooper, U.S. Pat. No. 5,203,681, issued Apr. 20, 1993, to Paul V. Cooper, U.S. Pat. No. 5,308,045, issued May 3, 1994, by Paul V. Cooper, U.S. Pat. No. 5,662,725, issued Sep. 2, 1997, by Paul V. Cooper, U.S. Pat. No. 5,678,807, issued Oct. 21, 1997, by Paul V. Cooper, U.S. Pat. No. 6,027,685, issued Feb. 22, 2000, by Paul V. Cooper, U.S. Pat. No. 6,124,523, issued Sep. 26, 2000, by Paul V. Cooper, U.S. Pat. No. 6,303,074, issued Oct. 16, 2001, by Paul V. Cooper, U.S. Pat. No. 6,689,310, issued Feb. 10, 2004, by Paul V. Cooper, U.S. Pat. No. 6,723,276, issued Apr. 20, 2004, by Paul V. Cooper, U.S. Pat. No. 7,402,276, issued Jul. 22, 2008, by Paul V. Cooper, U.S. Pat. No. 7,507,367, issued Mar. 24, 2009, by Paul V. Cooper, U.S. Pat. No. 7,906,068, issued Mar. 15, 2011, by Paul V. Cooper, U.S. Pat. No. 8,075,837, issued Dec. 13, 2011, by Paul V. Cooper, U.S. Pat. No. 8,110,141, issued Feb. 7, 2012, by Paul V. Cooper, U.S. Pat. No. 8,178,037, issued May 15, 2012, by Paul V. Cooper, U.S. Pat. No. 8,361,379, issued Jan. 29, 2013, by Paul V. Cooper, U.S. Pat. No. 8,366,993, issued Feb. 5, 2013, by Paul V. Cooper, U.S. Pat. No. 8,409,495, issued Apr. 2, 2013, by Paul V. Cooper, U.S. Pat. No. 8,440,135, issued May 15, 2013, by Paul V. Cooper, U.S. Pat. No. 8,444,911, issued May 21, 2013, by Paul V. Cooper, U.S. Pat. No. 8,475,708, issued Jul. 2, 2013, by Paul V. Cooper, U.S. patent application Ser. No. 12/895,796, filed Sep. 30, 2010, by Paul V. Cooper, U.S. patent application Ser. No. 12/877,988, filed Sep. 8, 2010, by Paul V. Cooper, U.S. patent application Ser. No. 12/853,238, filed Aug. 9, 2010, by Paul V. Cooper, U.S. patent application Ser. No. 12/880,027, filed Sep. 10, 2010, by Paul V. Cooper, U.S. patent application Ser. No. 13/752,312, filed Jan. 28, 2013, by Paul V. Cooper, U.S. patent application Ser. No. 13/756,468, filed Jan. 31, 2013, by Paul V. Cooper, U.S. patent application Ser. No. 13/791,889, filed Mar. 8, 2013, by Paul V. Cooper, U.S. patent application Ser. No. 13/791,952, filed Mar. 9, 2013, by Paul V. Cooper, U.S. patent application Ser. No. 13/841,594, filed Mar. 15, 2013, by Paul V. Cooper, and U.S. patent application Ser. No. 14/027,237, filed Sep. 15, 2013, by Paul V. Cooper, U.S. Pat. No. 8,535,603 entitled ROTARY DEGASSER AND ROTOR THEREFOR, U.S. Pat. No. 8,613,884 entitled LAUNDER TRANSFER INSERT AND SYSTEM, U.S. Pat. No. 8,714,914 entitled MOLTEN METAL PUMP FILTER, U.S. Pat. No. 8,753,563 entitled SYSTEM AND METHOD FOR DEGASSING MOLTEN METAL, U.S. Pat. No. 9,011,761 entitled LADLE WITH TRANSFER CONDUIT, U.S. Pat. No. 9,017,597 entitled TRANSFERRING MOLTEN METAL USING NON-GRAVITY ASSIST LAUNDER, U.S. Pat. No. 9,034,244 entitled GAS-TRANSFER FOOT, U.S. Pat. No. 9,080,577 entitled SHAFT AND POST TENSIONING DEVICE, U.S. Pat. No. 9,108,244 entitled IMMERSION HEATHER FOR MOLTEN METAL, U.S. Pat. No. 9,156,087 entitled MOLTEN METAL TRANSFER SYSTEM AND ROTOR, U.S. Pat. No. 9,205,490 entitled TRANSFER WELL SYSTEM AND METHOD FOR MAKING SAME, U.S. Pat. No. 9,328,615 entitled ROTARY DEGASSERS AND COMPONENTS THEREFOR, U.S. Pat. No. 9,377,028 entitled TENSIONING DEVICE EXTENDING BEYOND COMPONENT, U.S. Pat. No. 9,382,599 entitled ROTARY DEGASSER AND ROTOR THEREFOR, U.S. Pat. No. 9,383,140 entitled TRANSFERRING MOLTEN METAL FROM ONE STRUCTURE TO ANOTHER, U.S. Pat. No. 9,409,232 entitled MOLTEN METAL TRANSFER VESSEL AND METHOD OF CONSTRUCTION, U.S. Pat. No. 9,410,744 entitled VESSEL TRANSFER INSERT AND SYSTEM, U.S. Pat. No. 9,422,942 entitled TENSION DEVICE WITH INTERNAL PASSAGE, U.S. Pat. No. 9,435,343 entitled GAS-TRANSFER FOOT, U.S. Pat. No. 9,464,636 entitled TENSION DEVICE GRAPHITE COMPONENT USED IN MOLTEN METAL, U.S. Pat. No. 9,470,239 THREADED TENSIONING DEVICE, U.S. Pat. No. 9,481,035 entitled IMMERSION HEATER FOR MOLTEN METAL, U.S. Pat. No. 9,482,469 entitled VESSEL TRANSFER INSERT AND SYSTEM, U.S. Pat. No. 9,506,129 entitled ROTARY DEGASSER AND ROTOR THEREFOR, U.S. Pat. No. 9,566,645 entitled MOLTEN METAL TRANSFER SYSTEM AND ROTOR, U.S. Pat. No. 9,581,388 entitled VESSEL TRANSFER INSERT AND SYSTEM, U.S. Pat. No. 9,587,883 entitled LADLE WITH TRANSFER CONDUIT, U.S. Pat. No. 9,643,247 entitled MOLTEN METAL TRANSFER AND DEGASSING SYSTEM, U.S. Pat. No. 9,657,578 entitled ROTARY DEGASSERS AND COMPONENTS THEREFOR, U.S. Pat. No. 9,855,600 entitled MOLTEN METAL TRANSFER SYSTEM AND ROTOR, U.S. Pat. No. 9,862,026 entitled METHOD OF FORMING TRANSFER WELL, U.S. Pat. No. 9,903,383 entitled MOLTEN METAL ROTOR WITH HARDENED TOP, U.S. Pat. No. 9,909,808 entitled SYSTEM AND METHOD FOR DEGASSING MOLTEN METAL, U.S. Pat. No. 9,925,587 entitled METHOD OF TRANSFERRING MOLTEN METAL FROM A VESSEL, entitled U.S. Pat. No. 9,982,945 MOLTEN METAL TRANSFER VESSEL AND METHOD OF CONSTRUCTION, U.S. Pat. No. 10,052,688 entitled TRANSFER PUMP LAUNDER SYSTEM, U.S. Pat. No. 10,072,891 entitled TRANSFERRING MOLTEN METAL USING NON-GRAVITY ASSIST LAUNDER, U.S. Pat. No. 10,126,058 entitled MOLTEN METAL TRANSFERRING VESSEL, U.S. Pat. No. 10,126,059 entitled CONTROLLED MOLTEN METAL FLOW FROM TRANSFER VESSEL, U.S. Pat. No. 10,138,892 entitled ROTOR AND ROTOR SHAFT FOR MOLTEN METAL, U.S. Pat. No. 10,195,664 entitled MULTI-STAGE IMPELLER FOR MOLTEN METAL, U.S. Pat. No. 10,267,314 entitled TENSIONED SUPPORT SHAFT AND OTHER MOLTEN METAL DEVICES, U.S. Pat. No. 10,274,256 entitled VESSEL TRANSFER SYSTEMS AND DEVICES, U.S. Pat. No. 10,302,361 entitled TRANSFER VESSEL FOR MOLTEN METAL PUMPING DEVICE, U.S. Pat. No. 10,309,725 entitled IMMERSION HEATER FOR MOLTEN METAL, U.S. Pat. No. 10,307,821 entitled TRANSFER PUMP LAUNDER SYSTEM, U.S. Pat. No. 10,322,451 entitled TRANSFER PUMP LAUNDER SYSTEM, U.S. Pat. No. 10,345,045 entitled VESSEL TRANSFER INSERT AND SYSTEM, U.S. Pat. No. 10,352,620 entitled TRANSFERRING MOLTEN METAL FROM ONE STRUCTURE TO ANOTHER, U.S. Pat. No. 10,428,821 entitled QUICK SUBMERGENCE MOLTEN METAL PUMP, U.S. Pat. No. 10,458,708 entitled TRANSFERRING MOLTEN METAL FROM ONE STRUCTURE TO ANOTHER, U.S. Pat. No. 10,465,688 entitled COUPLING AND ROTOR SHAFT FOR MOLTEN METAL DEVICES, U.S. Pat. No. 10,562,097 entitled MOLTEN METAL TRANSFER SYSTEM AND ROTOR, U.S. Pat. No. 10,570,745 entitled ROTARY DEGASSERS AND COMPONENTS THEREFOR, U.S. Pat. No. 10,641,279 entitled MOLTEN METAL ROTOR WITH HARDENED TIP, U.S. Pat. No. 10,641,270 entitled TENSIONED SUPPORT SHAFT AND OTHER MOLTEN METAL DEVICES, and U.S. patent application Ser. Nos. 16/877,267, 16/877,364, 16/877,296, 16/877,332, and 16/877,219, entitled MOLTEN METAL CONTROLLED FLOW LAUNDER, MOLTEN METAL TRANSFER SYSTEM AND METHOD, SYSTEM AND METHOD TO FEED MOLD WITH MOLTEN METAL, SMART MOLTEN METAL PUMP, and METHOD FOR MELTING SOLID METAL, which were filed on May 18, 2020.


Three basic types of pumps for pumping molten metal, such as molten aluminum, are utilized: circulation pumps, transfer pumps and gas-release pumps. Circulation pumps are used to circulate the molten metal within a bath, thereby generally equalizing the temperature of the molten metal. Circulation pumps may be used in any vessel, such as in a reverbatory furnace having an external well. The well is usually an extension of the charging well, in which scrap metal is charged (i.e., added).


Standard transfer pumps are generally used to transfer molten metal from one structure to another structure such as a ladle or another furnace. A standard transfer pump has a riser tube connected to a pump discharge and supported by the superstructure. As molten metal is pumped it is pushed up the riser tube (sometimes called a metal-transfer conduit) and out of the riser tube, which generally has an elbow at its upper end, so molten metal is released into a different vessel from which the pump is positioned.


Gas-release pumps, such as gas-injection pumps, circulate molten metal while introducing a gas into the molten metal. In the purification of molten metals, particularly aluminum, it is frequently desired to remove dissolved gases such as hydrogen, or dissolved metals, such as magnesium. As is known by those skilled in the art, the removing of dissolved gas is known as “degassing” while the removal of magnesium is known as “demagging.” Gas-release pumps may be used for either of both of these purposes or for any other application for which it is desirable to introduce gas into molten metal.


Gas-release pumps generally include a gas-transfer conduit having a first end that is connected to a gas source and a second end submerged in the molten metal bath. Gas is introduced into the first end and is released from the second end into the molten metal. The gas may be released downstream of the pump chamber into either the pump discharge or a metal-transfer conduit extending from the discharge, or into a stream of molten metal exiting either the discharge or the metal-transfer conduit. Alternatively, gas may be released into the pump chamber or upstream of the pump chamber at a position where molten metal enters the pump chamber. The gas may also be released into any suitable location in a molten metal bath.


Molten metal pump casings and rotors often employ a bearing system comprising ceramic rings wherein there are one or more rings on the rotor that align with rings in the pump chamber (such as rings at the inlet and outlet) when the rotor is placed in the pump chamber. The purpose of the bearing system is to reduce damage to the soft, graphite components, particularly the rotor and pump base, during pump operation.


Generally, a degasser (also called a rotary degasser) includes (1) an impeller shaft having a first end, a second end and a passage for transferring gas, (2) an impeller, and (3) a drive source for rotating the impeller shaft and the impeller. The first end of the impeller shaft is connected to the drive source and to a gas source and the second end is connected to the impeller.


Generally a scrap melter includes an impeller affixed to an end of a drive shaft, and a drive source attached to the other end of the drive shaft for rotating the shaft and the impeller. The movement of the impeller draws molten metal and scrap metal downward into the molten metal bath in order to melt the scrap. A circulation pump is preferably used in conjunction with the scrap melter to circulate the molten metal in order to maintain a relatively constant temperature within the molten metal.


The materials forming the components that contact the molten metal bath should remain relatively stable in the bath. Structural refractory materials, such as graphite or ceramics, that are resistant to disintegration by corrosive attack from the molten metal may be used. As used herein “ceramics” or “ceramic” refers to any oxidized metal (including silicon) or carbon-based material, excluding graphite, or other ceramic material capable of being used in the environment of a molten metal bath. “Graphite” means any type of graphite, whether or not chemically treated. Graphite is particularly suitable for being formed into pump components because it is (a) soft and relatively easy to machine, (b) not as brittle as ceramics and less prone to breakage, and (c) less expensive than ceramics.


Ceramic, however, is more resistant to corrosion by molten aluminum than graphite. It would therefore be advantageous to develop vertical members used in a molten metal device that are comprised of ceramic, but less costly than solid ceramic members, and less prone to breakage than normal ceramic.


SUMMARY OF THE INVENTION

A scrap melting system and method includes a vessel that is configured to retain molten metal and a raised surface about the level of molten metal in the vessel. Solid metal is placed on the raised surface and molten metal from the vessel is moved upward from the vessel and across the raised surface to melt at least some of the metal. The molten metal is preferably raised from the vessel to the raised surface by a molten metal pumping device or system. The molten metal moves off of the raised surface and into a vessel of any suitable type, or launder. Any suitable method for moving molten metal onto the raised surface may be used, and the claims are not limited to the exemplary embodiments disclosed herein.


One exemplary embodiment of a system for transferring molten metal onto a raised surface comprises at least (1) a vessel for retaining molten metal, (2) a dividing wall (or overflow wall) within the vessel, the dividing wall having a height H1 and dividing the vessel into at least a first chamber and a second chamber, and (3) a molten metal pump in the vessel, preferably in the first chamber. The system may also include other devices and structures such as one or more of a launder, a third chamber, an additional vessel, a rotary degasser, one or more additional pumps, and a pump control system.


In one embodiment, the second chamber has a wall or opening with a height H2 that is lower than height H1 and the second chamber is juxtaposed the raised surface. The pump (either a transfer, circulation or gas-release pump) is submerged in the first chamber (preferably) and pumps molten metal from the first chamber past the dividing wall and into the second chamber causing the level of molten metal in the second chamber to rise. When the level of molten metal in the second chamber exceeds height H2, molten metal flows out of the second chamber and onto the raised surface onto which solid metal, such as scrap aluminum, has been placed. If a circulation pump, which is most preferred, or a gas-release pump is utilized, the molten metal would be pumped through the pump discharge and through an opening in the dividing wall wherein the opening is preferably completely below the surface of the molten metal in the first chamber.


In addition, preferably the pump used to transfer molten metal from the first chamber to the second chamber is a circulation pump (most preferred) or gas-release pump, preferably a variable speed pump. When utilizing such a pump there is an opening in the dividing wall beneath the level of molten metal in the first chamber during normal operation. The pump discharge communicates with, and may be received partially or totally in the opening. When the pump is operated it pumps molten metal through the opening and into the second chamber thereby raising the level in the second chamber until the level surpasses H2 and flows out of the second chamber.


Further, if the pump is a variable speed pump, which is preferred, a control system may be used to speed or slow the pump, either manually or automatically, as the amount of scrap to the melted, or remaining to be melted, varies.


Utilizing such a variable speed circulation pump or gas-release pump further reduces the chance of splashing and formation or dross, and reduces the chance of lags in which there is no molten metal being transferred or that could cause a device, such as a ladle, to be over filled. It leads to even and controlled transfer of molten metal from the vessel into another device or structure.


The problems with splashing or turbulence, or a difficult to control molten metal flow, are greatly reduced or eliminated by utilizing this system. Molten metal can be smoothly flowed across the raised surface and the level of molten metal raised or lowered as desired to melt the scrap on the raised surface. As solid metal is melted and becomes part of the molten (or liquid) metal, this melt (which includes the original molten metal and the melted, former solid metal) flows past the back, or second, side of the raised surface. From there the melt may enter any suitable structure, such as a launder, another vessel, or another chamber of the same vessel in which the molten metal pump and dividing wall are positioned. The melt may be degassed, such as by a rotary degasser, pumped, or demagged, such as by using a gas-release pump that releases chlorine gas into the melt.


Preferably, before or after the melt moves off the raised surface it is filtered to remove at least some solid particles. The filtering can be done by a grate positioned near or at the rear side of the raised surface. Solid particles that remain on the raised surface are removed, such as by using a steel arm that is lowered onto the raised surface and pulled across the surface to remove the solid particles.


Although one specific system is disclosed herein for raising molten metal to flow across the raised surface, and suitable system, method, or device may be utilized to move molten metal across the raised surface with little splashing or turbulence, and to evenly control the flow across the entire raised surface on which the solid metal is positioned.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional side view of a system according to this disclosure for melting solid metal on a raised surface.



FIG. 1A is a cross-sectional side view of a system according to this disclosure for melting solid metal on a raised surface and that includes one or more side walls.



FIG. 2 is the system of FIG. 1 showing the level of molten metal in the furnace being increased.



FIG. 2A shows the system of FIG. 1 with side walls on the raised surface that help contain the molten metal.



FIG. 2B shows the system of FIGS. 1 and 2 and displays how heights H1 and H2 are determined.



FIG. 3 is a top, partial cross-sectional view of the system of FIG. 2A.



FIG. 3A is a partial, cross-sectional side view of a system according to this disclosure.



FIG. 4 is a partial, cross-sectional side view of a system according to this disclosure that is utilized to fill a ladle.



FIG. 5 is a partial, cross-sectional side view of an alternate embodiment of the present disclosure.



FIG. 6 is a partial cross-sectional, side view of an embodiment of this disclosure.



FIG. 7 is a top, partial cross-sectional view of the embodiment of FIG. 6 with a pump.



FIG. 8 is a side, partial cross-sectional view of the system of FIG. 6.



FIG. 9 is a partial perspective, side view of a system according to this disclosure.



FIG. 10 is a cross-sectional, side view of an embodiment of this disclosure that further includes a launder.



FIG. 11 is a cross-sectional, side view of an embodiment of this disclosure that further includes an additional vessel or chamber.



FIG. 12 is a side, cross-sectional view of an alternate system of this disclosure that includes an additional vessel or chamber that has a molten metal pump.



FIG. 13 is a side, cross-sectional view of an alternate system of this disclosure that includes an additional vessel or chamber that has a rotary degasser.





DETAILED DESCRIPTION

Turning now to the Figures, where the purpose is to describe preferred embodiments of the invention and not to limit same, FIGS. 1-3A show a system 10 for moving molten metal M onto a raised surface 20 in order to melt solid metal, such as aluminum scrap. System 10 includes a furnace 1 that can retain molten metal M, which includes a holding furnace 1A, a vessel 12, a raised surface 20, and a pump 22. System 10 preferably has a vessel 12, a dividing wall 14 to separate vessel 12 into at least a first chamber 16 and a second chamber 18, and a device or structure, which may be pump 22, for generating a stream of molten metal from first chamber 16 into second chamber 18.


Using heating elements (not shown in the figures), furnace 1 is raised to a temperature sufficient to maintain the metal therein (usually aluminum or zinc) in a molten state. The level of molten metal M in holding furnace 1A and in at least part of vessel 12 changes as metal is added or removed to furnace 1A, as can be seen in FIGS. 2 and 11.


For explanation, furnace 1 includes a furnace wall 2 having an archway 3. Archway 3 allows molten metal M to flow into vessel 12 from holding furnace 1A. In this embodiment, furnace 1A and vessel 12 are in fluid communication, so when the level of molten metal in furnace 1A rises, the level also rises in at least part of vessel 12. It most preferably rises and falls in first chamber 16, described below, as the level of molten metal rises or falls in furnace 1A. This can be seen in FIGS. 2 and 11.


Dividing wall 14 separates vessel 12 into at least two chambers, a pump well (or first chamber) 16 and a skim well (or second chamber) 18, and any suitable structure for this purpose may be used as dividing wall 14. As shown in this embodiment, dividing wall 14 has an opening 14A and an optional overflow spillway 14B (best seen in FIG. 3), which is a notch or cut out in the upper edge of dividing wall 14. Overflow spillway 14B is any structure suitable to allow molten metal to flow from second chamber 18, past dividing wall 14, and into first chamber 16 and, if used, overflow spillway 14B may be positioned at any suitable location on wall 14. The purpose of optional overflow spillway 14B is to prevent molten metal from overflowing the second chamber 18, or a launder in communication with second chamber 18 (if a launder is used with the invention), by allowing molten metal in second chamber 18 to flow back into first chamber 16. Optional overflow spillway 14B would not be utilized during normal operation of system 10 and is to be used as a safeguard if the level of molten metal in second chamber 18 improperly rises to too high a level.


At least part of dividing wall 14 has a height H1 (best seen in FIG. 2A), which is the height at which, if exceeded by molten metal in second chamber 18, molten metal flows past the portion of dividing wall 14 at height H1 and back into first chamber 16. In the embodiment shown in FIGS. 1-3A, overflow spillway 14B has a height H1 and the rest of dividing wall 14 has a height greater than H1. Alternatively, dividing wall 14 may not have an overflow spillway, in which case all of dividing wall 14 could have a height H1, or dividing wall 14 may have an opening with a lower edge positioned at height H1, in which case molten metal could flow through the opening if the level of molten metal in second chamber 18 exceeded H1. H1 should exceed the highest level of molten metal in first chamber 16 during normal operation.


Second chamber 18 has a portion 18A, which has a height H2, wherein H2 is less than H1 (as can be best seen in FIG. 2A) so during normal operation molten metal pumped into second chamber 18 flows past wall 18A and out of second chamber 18 rather than flowing back over dividing wall 14 and into first chamber 16.


Dividing wall 14 may also have an opening 14A that is located at a depth such that opening 14A is submerged within the molten metal during normal usage, and opening 14A is preferably near or at the bottom of dividing wall 14. Opening 14A preferably has an area of between 6 in.2 and 24 in.2, but could be any suitable size. Further, dividing wall 14 need not have an opening if a transfer pump were used to transfer molten metal from first chamber 16, over the top of wall 14, and into second chamber 18 as described below.


Dividing wall 14 may also include more than one opening between first chamber 16 and second chamber 18 and opening 14A (or the more than one opening) could be positioned at any suitable location(s) in dividing wall 14 and be of any size(s) or shape(s) to enable molten metal to pass from first chamber 16 into second chamber 18.


Molten metal pump 22 may be any device or structure capable of pumping or otherwise conveying molten metal, and may be a transfer, circulation or gas-release pump. Pump 22 is preferably a circulation pump (most preferred) or gas-release pump that generates a flow of molten metal from first chamber 16 to second chamber 18 through opening 14A. Pump 22 generally includes a motor 24 surrounded by a cooling shroud 26, a superstructure 28, support posts 30 and a base 32. Some pumps that may be used with the invention are shown in U.S. Pat. Nos. 5,203,681, 6,123,523 and 6,354,964 to Cooper, and pending U.S. application Ser. No. 10/773,101 to Cooper. Molten metal pump 22 can be a constant speed pump, but is most preferably a variable speed pump. Its speed can be varied depending on the amount of molten metal in a structure such as a ladle or launder, as discussed below.


Utilizing system 10, as pump 22 pumps molten metal from first chamber 16 into second chamber 18, the level of molten metal in chamber 18 rises. When a pump with a discharge submerged in the molten metal bath, such as circulation pump or gas-release pump is utilized, there is essentially no turbulence or splashing during this process, which reduces the formation of dross and reduces safety hazards. The flow of molten metal is smooth and generally at an even flow rate.


A system according to this disclosure could also include one or more pumps in addition to pump 22, in which case the additional pump(s) may circulate molten metal within first chamber 16 and/or second chamber 18, or from chamber 16 to chamber 18, and/or may release gas into the molten metal first in first chamber 16 or second chamber 18. For example, first chamber 16 could include pump 22 and a second pump, such as a circulation pump or gas-release pump, to circulate and/or release gas into molten metal M.


If pump 22 is a circulation pump or gas-release pump, it is at least partially received in opening 14A in order to at least partially block opening 14A in order to maintain a relatively stable level of molten metal in second chamber 18 during normal operation and to allow the level in second chamber 18 to rise independently of the level in first chamber 16. Utilizing this system the movement of molten metal from one chamber to another and from the second chamber into a launder does not involve raising molten metal above the molten metal surface. As previously mentioned this alleviates problems with blockage forming (because of the molten metal cooling and solidifying), and with turbulence and splashing, which can cause dross formation and safety problems. As shown, part of base 32 (preferably the discharge portion of the base) is received in opening 14A. Further, pump 22 may communicate with another structure, such as a metal-transfer conduit, that leads to and is received partially or fully in opening 14A. Although it is preferred that the pump base, or communicating structure such as a metal-transfer conduit, be received in opening 14A, all that is necessary for the invention to function is that the operation of the pump increases and maintains the level of molten metal in second chamber 18 so that the molten metal ultimately moves out of chamber 18 and into another structure. For example, the base of pump 22 may be positioned so that its discharge is not received in opening 14A, but is close enough to opening 14A that the operation of the pump raises the level of molten metal in second chamber 18 independent of the level in chamber 16 and causes molten metal to move out of second chamber 18 and into another structure. A sealant, such as cement (which is known to those skilled in the art), may be used to seal base 32 into opening 14A, although it is preferred that a sealant not be used.


A system according to this disclosure could also be operated with a transfer pump, although a pump with a submerged discharge, such as a circulation pump or gas-release pump, is preferred since either would be less likely to create turbulence and dross in second chamber 18, and neither raises the molten metal above the surface of the molten metal bath nor has the other drawbacks associated with transfer pumps that have previously been described. If a transfer pump were used to move molten metal from first chamber 16, over dividing wall 14, and into second chamber 18, there would be no need for opening 14A in dividing wall 14, although an opening could still be provided and used in conjunction with an additional circulation or gas-release pump. As previously described, regardless of what type of pump is used to move molten metal from first chamber 16 to second chamber 18, molten metal would ultimately move out of chamber 18 and into a structure, such as ladle 52 or launder 20, when the level of molten metal in second chamber 18 exceeds H2.


Once pump 22 is turned off, the respective levels of molten metal level in chambers 16 and 18 essentially equalize. Alternatively, the speed of pump 22 could be reduced to a relatively low speed to keep the level of molten metal in second chamber 18 relatively constant but not exceed height H2. To move molten metal onto raised surface 20, pump 22 is simply turned on again and operated as described above.


A system for melting scrap according to this disclosure includes a molten metal pump and a raised surface 20 on which solid metal S, such as scrap aluminum, can be positioned, wherein molten metal is flowed onto and across the raised surface 20 in order to melt at least some of the solid metal S. As described above, the pump 22 generates a flow of molten metal M from first chamber 16 into second chamber 18. When the level of molten metal M in second chamber 18 exceeds H2, the molten metal moves out of second chamber 18 and onto the raised surface 20 to melt scrap placed on surface 20. The level of molten metal M in the second chamber 18 rises until it flows onto raised surface 20, and flows along the raised surface 20 until it melts at least some of the solid metal S on the raised surface 20 melts. The amount of molten metal flowed across raised surface 20 can be varied based on any suitable factor, such as based on the amount of solid metal S on raised surface 20.


The raised surface 20 has a first side 20A adjacent the second chamber 18 and a second side 20B. Raised surface 20 can be the upper surface of a refractory block 23, which may be inside or outside of vessel 1. A refractory grate 75 is preferably positioned at, or just before or just after, second side 20B. The refractory grate 75 acts as a filter that blocks pieces of unmelted metal, such as pieces of iron or steel, from being mixed with the molten metal M and moving off of raised surface 20. Any suitable filter could be used for this purpose.


Preferably, before or after the melt moves off the raised surface 20 it is filtered to remove at least some solid particles. The filtering can be done by grate 75. Solid particles, such as iron or steel, that remain on the raised surface 20 are removed, such as by using a steel arm that is lowered onto the raised surface 20 and pulled across the raised surface 20 to remove the solid particles. The method of adding solid metal S and melting it can then be repeated.


The raised surface 20 may also include one or more side walls 29 (as shown, for example, in FIG. 1A) that help retain molten metal on the raised surface.


The molten metal M could pass from the raised surface 20 into another vessel or chamber 2000, or move into a launder 31 (as shown in FIG. 10) or any suitable structure.


Furthermore, molten metal can be moved across the raised surface 20 in any suitable manner, such as by using pumping and transfer devices incorporated by reference herein. The specific system described herein using a dividing wall, however, is most preferred because the flow of molten metal can be carefully controlled and spread over a large area, in order to cover the width of the raised surface 20 or a large portion of the width of the raised surface 20.


Although one specific system is disclosed herein for raising molten metal to flow across the raised surface, and suitable system, method, or device may be utilized to move molten metal across the raised surface with little splashing or turbulence, and to evenly control the flow across the entire raised surface on which the solid metal is positioned.


The problems with splashing or turbulence, or a difficult to control molten metal flow, are greatly reduced or eliminated by utilizing this system. Molten metal M can be smoothly flowed across the raised surface 20 and the level of molten metal M raised or lowered as desired to melt the solid metal S on the raised surface 20. As solid metal S is melted and becomes part of the molten (or liquid) metal, this melt (which includes the original molten metal and the melted, former solid metal) flows past the back, or second, side 20B of the raised surface 20. From there the melt may enter any suitable structure, such as a launder 31, another vessel, or another chamber of the same vessel, 2000 in which the molten metal pump and dividing wall are positioned. The melt may be degassed, such as by a rotary degasser, pumped, or demagged, such as by using a gas-release pump that releases chlorine gas into the melt.


As shown in FIG. 10, launder 31 is any structure or device for transferring molten metal from raised surface 20 to one or more structures, such as one or more ladles, molds (such as ingot molds) or other structures in which the molten metal is ultimately cast into a usable form, such as an ingot. Launder 31 may be either an open or enclosed channel, trough or conduit and may be of any suitable dimension or length, such as one to four feet long, or as much as 100 feet long or longer. Launder 31 may be completely horizontal or may slope gently upward or downward. Launder 31 may have one or more taps (not shown), i.e., small openings stopped by removable plugs. Each tap, when unstopped, allows molten metal to flow through the tap into a ladle, ingot mold, or other structure. Launder 31 may additionally or alternatively be serviced by robots or cast machines capable of removing molten metal M from launder 31.


Launder 31 has a first end 31A juxtaposed the second end 20B of raised surface 20 and a second end 31B that is opposite first end 31B. An optional stop may be included in a launder according to the invention. The stop, if used, is preferably juxtaposed the second end 31B of the launder. If launder 31 has a stop, the stop can be opened to allow molten metal to flow past end 31B, or closed to prevent molten metal from flowing past end 31B. The stop preferably has a height H3 greater than height H1 so that if launder 31 becomes too filled with molten metal, the molten metal would back up on raised surface 20, and spill back over dividing wall 14A (over spillway 14B, if used) rather than overflow raised surface 20 and launder 31.



FIG. 4 shows an alternate system 10′ that is in all respects the same as system 10 except that it has a shorter, downward, sloping surface 20′ for retaining solid metal to be melted, a wall 18A′ past which molten metal moves when it exits second chamber 18 and it fills a ladle 52.



FIG. 12 shows an alternate system 10 that is in all respects the same as system 10 except that it includes an optional second pump 1500 in a third chamber, or second vessel, 2000 having a basin 2012.



FIG. 13 shows an alternate system 10K that is in all respects the same as system 10 except that it includes an optional rotary degasser 110 in a third chamber, or second vessel, 2000 having a basin 2012.


Some non-limiting examples of this disclosure are as follows:


Example 1: A system for melting aluminum, the system comprising:

    • a vessel having a first chamber and a second chamber;
    • a raised surface juxtaposed the second chamber;
    • a molten metal pump in the first chamber;
    • a first dividing wall between the first chamber and second chamber, the first dividing wall having a first height, and an opening that is beneath the first height; and
    • a second dividing wall between the second chamber and the raised surface, the second dividing wall having a second height that is less that the first height; and


Example 2: The system of example 1 that further comprises a grate at a second side of the raised surface.


Example 3: The system of example 1, wherein the molten metal pump is a circulation pump.


Example 4: The system of example 1, wherein the molten metal pump is a gas-release pump.


Example 5: The system of example 1, wherein the opening is between 6 in2 and 24 in2.


Example 6: The system of example 1, wherein the molten metal pump has a pump housing and an outlet, and the outlet is positioned 6″ or less from the opening.


Example 7: The system of example 1, wherein a bracket is connected to the dividing wall and the bracket is also connected to the molten metal pump and configured to maintain the molten metal pump in position in the first chamber.


Example 8: The system of example 1, wherein the raised surface is comprised of ceramic.


Example 9: The system of example 1, wherein the raised surface is comprised of silicon carbide.


Example 10: The system of example 1, wherein there is no structure between the second chamber and the second dividing wall.


Example 11: The system of example 2, wherein the grate is comprised of ceramic.


Example 12: The system of example 11, wherein the grate is comprised of silicon carbide.


Example 13: The system of example 1, wherein the raised surface is flat.


Example 14: The system of example 1 that further includes a launder in fluid communication with the raised surface.


Example 15: The system of example 1 that includes a third chamber in communication with, and downstream of, the raised surface.


Example 16: The system of example 15, wherein there is no structure between the raised surface and the third chamber.


Example 17: The system of example 15 that includes a second molten metal pump in the third chamber.


Example 18: The system of example 7, wherein the dividing wall has an upper edge and the bracket is on the upper edge.


Example 19: The system of example 7, wherein the molten metal pump has a superstructure that is a metal platform, and the bracket is connected to the superstructure.


Example 20: The system of example 1, wherein the vessel that includes the first chamber and the second chamber is a reverbatory furnace.


Example 21: A system for melting aluminum, the system comprising:

    • a vessel configured to hold molten metal;
    • a raised surface juxtaposed the vessel;
    • a molten metal pump in the vessel and an uptake chamber leading to an outlet that is at or above the raised surface.


Example 22: The system of example 21 that further comprises a grate at a second side of the raised surface.


Example 23: The system of example 21, wherein the molten metal pump is a circulation pump.


Example 24: The system of example 21, wherein the molten metal pump is a gas-release pump.


Example 25: The system of example 21, wherein the opening is between 6 in2 and 24 in2.


Example 26: The system of example 21, wherein the molten metal pump has a housing and an outlet, and the outlet is positioned 6″ or less from the opening.


Example 27: The system of example 21, wherein a bracket is connected to the dividing wall and the bracket is also connected to the molten metal pump and configured to maintain the molten metal pump in position in the first chamber.


Example 28: The system of example 21, wherein the raised surface is comprised of ceramic.


Example 29: The system of example 21, wherein the raised surface is comprised of silicon carbide.


Example 30: The system of example 21, wherein there is no structure between the vessel and the dividing wall.


Example 31: The system of example 22, wherein the grate is comprised of ceramic.


Example 32: The system of example 31, wherein the grate is comprised of silicon carbide.


Example 33: The system of example 21, wherein the raised surface is flat.


Example 34: The system of example 21 that further includes a launder in fluid communication with the top surface.


Example 35: The system of example 21 that includes a chamber in communication with, and downstream of, the raised surface.


Example 36: The system of example 27, wherein there is no structure between the raised surface and the fourth chamber.


Example 37: The system of example 37 that includes a second molten metal pump in the chamber.


Example 38: The system of example 27, wherein the dividing wall has an upper edge and the bracket is on the upper edge.


Example 39: The system of example 27, wherein the molten metal pump has a superstructure that is a metal platform, and the bracket is connected to the superstructure.


Example 40: The system of example 1, wherein the pump is a variable speed pump.


Having thus described different embodiments of the invention, other variations and embodiments that do not depart from the spirit thereof will become apparent to those skilled in the art. The scope of the present invention is thus not limited to any particular embodiment, but is instead set forth in the appended claims and the legal equivalents thereof. Unless expressly stated in the written description or claims, the steps of any method recited in the claims may be performed in any order capable of yielding the desired product or result.

Claims
  • 1. A system for melting aluminum, the system comprising: (a) a vessel that holds molten metal, wherein the vessel has a first side that includes a first side height;(b) a scrap melting structure comprising (i) a flat, raised surface comprised of ceramic and that has a first end juxtaposed the vessel and a second end opposite the first end, and (ii) side walls configured to support the flat, raised surface and maintain it at a position above the first side height, wherein the side walls include a first side wall that is juxtaposed the first side of the vessel;(c) a device positioned in the vessel, wherein the device is configured to move molten metal out of the vessel and onto the raised surface in order to melt solid metal positioned on the raised surface; and(d) an arm configured to be lowered onto the raised surface and to be pulled across the raised surface.
  • 2. The system of claim 1, wherein the raised surface is configured to have an arm lowered onto it and pulled across it.
  • 3. The system of claim 1, wherein the arm is comprised of steel.
  • 4. The system of claim 1 that further includes a grate at the second side of the raised surface.
  • 5. The system of claim 1, wherein the vessel comprises a first chamber and a second chamber.
  • 6. The system of claim 5 that further comprises a first dividing wall between the first chamber and second chamber, the first dividing wall having a first height, and an opening that is beneath the first height.
  • 7. The system of claim 5 that further comprises a molten metal pump in the first chamber.
  • 8. The system of claim 5 that further includes a third chamber juxtaposed the second end of the raised surface.
  • 9. The system of claim 8, wherein the third chamber holds molten metal having a surface and the raised surface is above the surface of the molten metal in the third chamber.
  • 10. The system of claim 7, wherein the molten metal pump is selected from the group consisting of: a gas-release pump, and a circulation pump.
  • 11. The system of claim 10, wherein the molten metal pump has a pump housing and an outlet, and the outlet is positioned 6″ or less from the opening.
  • 12. The system of claim 6, wherein a bracket is connected to a first dividing wall and the bracket is also connected to a molten metal pump and configured to maintain the molten metal pump in position in the first chamber.
  • 13. The system of claim 1, wherein the raised surface is comprised of silicon carbide.
  • 14. The system of claim 6 that further includes a second dividing wall with a second height that is less than the first height, and wherein there is no structure between the second chamber and the second dividing wall.
  • 15. The system of claim 4, wherein the grate is comprised of ceramic.
  • 16. The system of claim 8 that further includes a molten metal pump in the third chamber.
  • 17. The system of claim 8 that further includes a degasser in the third chamber, wherein the degasser is configured to release gas into molten metal.
  • 18. The system of claim 12, wherein the first dividing wall has an upper edge and the bracket is on the upper edge.
  • 19. The system of claim 7, wherein the a molten metal pump comprises a pump outlet, and a transfer chamber having a transfer inlet juxtaposed the outlet, a transfer outlet above the transfer inlet, and a transfer cavity between the transfer inlet and the transfer outlet, wherein the molten metal pump is configured so that molten metal exiting the pump outlet enters the transfer inlet and exits the transfer outlet.
  • 20. The system of claim 19, wherein the transfer outlet is above the raised surface.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims priority to U.S. patent application Ser. No. 16/877,182 filed May 18, 2020 and entitled “SYSTEM FOR MELTING SOLID METAL” (now U.S. Pat. No. 11,358,216) which claims priority to and incorporates by reference: (1) U.S. Provisional Patent Application Ser. No. 62/849,787 filed May 17, 2019 and entitled MOLTEN METAL PUMPS, COMPONENTS, SYSTEMS AND METHODS, and (2) U.S. Provisional Patent Application Ser. No. 62/852,846 filed May 24, 2019 and entitled SMART MOLTEN METAL PUMP. Each of the foregoing applications are incorporated by reference in their entirety.

US Referenced Citations (746)
Number Name Date Kind
35604 Guild Jun 1862 A
116797 Barnhart Jul 1871 A
209219 Bookwalter Oct 1878 A
251104 Finch Dec 1881 A
307845 Curtis Nov 1884 A
364804 Cole Jun 1887 A
390319 Thomson Oct 1888 A
495760 Seitz Apr 1893 A
506572 Wagener Oct 1893 A
585188 Davis Jun 1897 A
757932 Jones Apr 1904 A
882477 Neumann Mar 1908 A
882478 Neumann Mar 1908 A
890319 Wells Jun 1908 A
898499 O'Donnell Sep 1908 A
909774 Flora Jan 1909 A
919194 Livingston Apr 1909 A
1037659 Rembert Sep 1912 A
1100475 Franckaerts Jun 1914 A
1170512 Chapman Feb 1916 A
1196758 Blair Sep 1916 A
1304068 Krogh May 1919 A
1331997 Neal Feb 1920 A
1185314 London Mar 1920 A
1377101 Sparling May 1921 A
1380798 Hansen et al. Jun 1921 A
1439365 Hazell Dec 1922 A
1454967 Gill May 1923 A
1470607 Hazell Oct 1923 A
1513875 Wilke Nov 1924 A
1518501 Gill Dec 1924 A
1522765 Wilke Jan 1925 A
1526851 Hall Feb 1925 A
1669668 Marshall May 1928 A
1673594 Schmidt Jun 1928 A
1697202 Nagle Jan 1929 A
1717969 Goodner Jun 1929 A
1718396 Wheeler Jun 1929 A
1896201 Sterner-Rainer Feb 1933 A
1988875 Saborio Jan 1935 A
2013455 Baxter Sep 1935 A
2035282 Schmeller, Sr. Mar 1936 A
2038221 Kagi Apr 1936 A
2075633 Anderegg Mar 1937 A
2090162 Tighe Aug 1937 A
2091677 Fredericks Aug 1937 A
2138814 Bressler Dec 1938 A
2173377 Schultz, Jr. et al. Sep 1939 A
2264740 Brown Dec 1941 A
2280979 Rocke Apr 1942 A
2290961 Heuer Jul 1942 A
2300688 Nagle Nov 1942 A
2304849 Ruthman Dec 1942 A
2368962 Blom Feb 1945 A
2383424 Stepanoff Aug 1945 A
2423655 Mars et al. Jul 1947 A
2488447 Tangen et al. Nov 1949 A
2493467 Sunnen Jan 1950 A
2515097 Schryber Jul 1950 A
2515478 Tooley et al. Jul 1950 A
2528208 Bonsack et al. Oct 1950 A
2528210 Stewart Oct 1950 A
2543633 Lamphere Feb 1951 A
2566892 Jacobs Apr 1951 A
2625720 Ross Jan 1953 A
2626086 Forrest Jan 1953 A
2676279 Wilson Apr 1954 A
2677609 Moore et al. Apr 1954 A
2698583 House et al. Jan 1955 A
2714354 Farrand Aug 1955 A
2762095 Pemetzrieder Sep 1956 A
2768587 Corneil Oct 1956 A
2775348 Williams Dec 1956 A
2779574 Schneider Jan 1957 A
2787873 Hadley Apr 1957 A
2808782 Thompson et al. Oct 1957 A
2809107 Russell Oct 1957 A
2821472 Peterson et al. Jan 1958 A
2824520 Bartels Feb 1958 A
2832292 Edwards Apr 1958 A
2839006 Mayo Jun 1958 A
2853019 Thornton Sep 1958 A
2865295 Nikolaus Dec 1958 A
2865618 Abell Dec 1958 A
2868132 Rittershofer Jan 1959 A
2901006 Andrews Aug 1959 A
2901677 Chessman et al. Aug 1959 A
2906632 Nickerson Sep 1959 A
2918876 Howe Dec 1959 A
2948524 Sweeney et al. Aug 1960 A
2958293 Pray, Jr. Nov 1960 A
2966345 Burgoon et al. Dec 1960 A
2966381 Menzel Dec 1960 A
2978885 Davison Apr 1961 A
2984524 Franzen May 1961 A
2987885 Hodge Jun 1961 A
3010402 King Nov 1961 A
3015190 Arbeit Jan 1962 A
3039864 Hess Jun 1962 A
3044408 Mellott Jul 1962 A
3048384 Sweeney et al. Aug 1962 A
3070393 Silverberg et al. Dec 1962 A
3092030 Wunder Jun 1963 A
3099870 Seeler Aug 1963 A
3128327 Upton Apr 1964 A
3130678 Chenault Apr 1964 A
3130679 Sence Apr 1964 A
3151565 Albertson et al. Oct 1964 A
3171357 Egger Mar 1965 A
3172850 Englesberg et al. Mar 1965 A
3203182 Pohl Aug 1965 A
3227547 Szekely Jan 1966 A
3244109 Barske Apr 1966 A
3251676 Johnson May 1966 A
3255702 Gehrm Jun 1966 A
3258283 Winberg et al. Jun 1966 A
3272619 Sweeney et al. Sep 1966 A
3289473 Louda Dec 1966 A
3291473 Sweeney et al. Dec 1966 A
3368805 Davey et al. Feb 1968 A
3374943 Cervenka Mar 1968 A
3400923 Howie et al. Sep 1968 A
3417929 Secrest et al. Dec 1968 A
3432336 Langrod et al. Mar 1969 A
3459133 Scheffler Aug 1969 A
3459346 Tinnes Aug 1969 A
3477383 Rawson et al. Nov 1969 A
3487805 Satterthwaite Jan 1970 A
3512762 Umbricht May 1970 A
3512788 Kilbane May 1970 A
3532445 Scheffler et al. Oct 1970 A
3561885 Lake Feb 1971 A
3575525 Fox et al. Apr 1971 A
3581767 Jackson Jun 1971 A
3612715 Yedidiah Oct 1971 A
3618917 Fredrikson et al. Nov 1971 A
3620716 Hess Nov 1971 A
3650730 Derham et al. Mar 1972 A
3689048 Foulard et al. Sep 1972 A
3715112 Carbonnel Feb 1973 A
3732032 Daneel May 1973 A
3737304 Blayden et al. Jun 1973 A
3737305 Blayden et al. Jun 1973 A
3743263 Szekely Jul 1973 A
3743500 Foulard et al. Jul 1973 A
3753690 Emley et al. Aug 1973 A
3759628 Kempf Sep 1973 A
3759635 Carter et al. Sep 1973 A
3767382 Bruno et al. Oct 1973 A
3776660 Anderson et al. Dec 1973 A
3785632 Kraemer et al. Jan 1974 A
3787143 Carbonnel et al. Jan 1974 A
3799522 Brant et al. Mar 1974 A
3799523 Seki Mar 1974 A
3807708 Jones Apr 1974 A
3814400 Seki Jun 1974 A
3824028 Zenkner et al. Jul 1974 A
3824042 Barnes et al. Jul 1974 A
3836280 Koch Sep 1974 A
3839019 Bruno et al. Oct 1974 A
3844972 Tully, Jr. et al. Oct 1974 A
3871872 Downing et al. Mar 1975 A
3873073 Baum et al. Mar 1975 A
3873305 Claxton et al. Mar 1975 A
3881039 Baldieri et al. Apr 1975 A
3886992 Maas et al. Jun 1975 A
3915594 Nesseth Oct 1975 A
3915694 Ando Oct 1975 A
3935003 Steinke et al. Jan 1976 A
3941588 Dremann Mar 1976 A
3941589 Norman et al. Mar 1976 A
3942473 Chodash Mar 1976 A
3954134 Maas et al. May 1976 A
3958979 Valdo May 1976 A
3958981 Forberg et al. May 1976 A
3961778 Carbonnel et al. Jun 1976 A
3966456 Ellenbaum et al. Jun 1976 A
3967286 Andersson et al. Jun 1976 A
3972709 Chin et al. Aug 1976 A
3973871 Hance Aug 1976 A
3984234 Claxton et al. Oct 1976 A
3985000 Hartz Oct 1976 A
3997336 van Linden et al. Dec 1976 A
4003560 Carbonnel Jan 1977 A
4008884 Fitzpatrick et al. Feb 1977 A
4018598 Markus Apr 1977 A
4043146 Stegherr et al. Aug 1977 A
4052199 Mangalick Oct 1977 A
4055390 Young Oct 1977 A
4063849 Modianos Dec 1977 A
4068965 Lichti Jan 1978 A
4073606 Eller Feb 1978 A
4091970 Komiyama et al. May 1978 A
4119141 Thut et al. Oct 1978 A
4125146 Muller Nov 1978 A
4126360 Miller et al. Nov 1978 A
4128415 van Linden et al. Dec 1978 A
4147474 Heimdal et al. Apr 1979 A
4169584 Mangalick Oct 1979 A
4191486 Pelton Mar 1980 A
4213742 Henshaw Jul 1980 A
4242039 Villard et al. Dec 1980 A
4244423 Thut et al. Jan 1981 A
4286985 van Linden et al. Sep 1981 A
4305214 Hurst Dec 1981 A
4322245 Claxton Mar 1982 A
4338062 Neal Jul 1982 A
4347041 Cooper Aug 1982 A
4351514 Koch Sep 1982 A
4355789 Dolzhenkov et al. Oct 1982 A
4356940 Ansorge Nov 1982 A
4360314 Pennell Nov 1982 A
4370096 Church Jan 1983 A
4372541 Bocourt et al. Feb 1983 A
4375937 Cooper Mar 1983 A
4389159 Sarvanne Jun 1983 A
4392888 Eckert et al. Jul 1983 A
4410299 Shimoyama Oct 1983 A
4419049 Gerboth et al. Dec 1983 A
4456424 Araoka Jun 1984 A
4470846 Dube Sep 1984 A
4474315 Gilbert et al. Oct 1984 A
4496393 Lustenberger Jan 1985 A
4504392 Groteke Mar 1985 A
4509979 Bauer Apr 1985 A
4537624 Tenhover et al. Aug 1985 A
4537625 Tenhover et al. Aug 1985 A
4545887 Amesen Oct 1985 A
4556419 Otsuka et al. Dec 1985 A
4557766 Tenhover et al. Dec 1985 A
4586845 Morris May 1986 A
4592700 Toguchi et al. Jun 1986 A
4594052 Niskanen Jun 1986 A
4596510 Arneth et al. Jun 1986 A
4598899 Cooper Jul 1986 A
4600222 Appling Jul 1986 A
4607825 Briolle et al. Aug 1986 A
4609442 Tenhover et al. Sep 1986 A
4611790 Otsuka et al. Sep 1986 A
4617232 Chandler et al. Oct 1986 A
4634105 Withers et al. Jan 1987 A
4640666 Sodergard Feb 1987 A
4655610 Al-Jaroudi Apr 1987 A
4669953 Gechwender Jun 1987 A
4673434 Withers et al. Jun 1987 A
4682585 Hiltebrandt Jul 1987 A
4684281 Patterson Aug 1987 A
4685822 Pelton Aug 1987 A
4696703 Henderson et al. Sep 1987 A
4701226 Henderson et al. Oct 1987 A
4702768 Areauz et al. Oct 1987 A
4714371 Cuse Dec 1987 A
4717540 McRae et al. Jan 1988 A
4739974 Mordue Apr 1988 A
4741664 Olmstead May 1988 A
4743428 McRae et al. May 1988 A
4747583 Gordon et al. May 1988 A
4767230 Leas, Jr. Aug 1988 A
4770701 Henderson et al. Sep 1988 A
4786230 Thut Nov 1988 A
4802656 Hudault et al. Feb 1989 A
4804168 Otsuka et al. Feb 1989 A
4810314 Henderson et al. Mar 1989 A
4822473 Arnesen Apr 1989 A
4834573 Asano et al. May 1989 A
4842227 Harrington et al. Jun 1989 A
4844425 Piras et al. Jul 1989 A
4851296 Tenhover et al. Jul 1989 A
4859413 Harris et al. Aug 1989 A
4860819 Moscoe et al. Aug 1989 A
4867638 Handtmann et al. Sep 1989 A
4884786 Gillespie Dec 1989 A
4898367 Cooper Feb 1990 A
4908060 Duenkelmann Mar 1990 A
4911726 Warkentin Mar 1990 A
4923770 Grasselli et al. May 1990 A
4930986 Cooper Jun 1990 A
4931091 Waite et al. Jun 1990 A
4940214 Gillespie Jul 1990 A
4940384 Amra et al. Jul 1990 A
4954167 Cooper Sep 1990 A
4967827 Campbell Nov 1990 A
4973433 Gilbert et al. Nov 1990 A
4986736 Kajiwara et al. Jan 1991 A
5015518 Sasaki et al. May 1991 A
5025198 Mordue et al. Jun 1991 A
5028211 Mordue et al. Jul 1991 A
5029821 Bar-on et al. Jul 1991 A
5058654 Simmons Oct 1991 A
5078572 Amra et al. Jan 1992 A
5080715 Provencher et al. Jan 1992 A
5083753 Soofi Jan 1992 A
5088893 Gilbert et al. Feb 1992 A
5092821 Gilbert et al. Mar 1992 A
5098134 Monckton Mar 1992 A
5099554 Cooper Mar 1992 A
5114312 Stanislao May 1992 A
5126047 Martin et al. Jun 1992 A
5131632 Olson Jul 1992 A
5135202 Yamashita et al. Aug 1992 A
5143357 Gilbert et al. Sep 1992 A
5145322 Senior, Jr. et al. Sep 1992 A
5152631 Bauer Oct 1992 A
5154652 Ecklesdafer Oct 1992 A
5158440 Cooper et al. Oct 1992 A
5162858 Shoji et al. Nov 1992 A
5165858 Gilbert et al. Nov 1992 A
5177304 Nagel Jan 1993 A
5191154 Nagel Mar 1993 A
5192193 Cooper et al. Mar 1993 A
5202100 Nagel et al. Apr 1993 A
5203681 Cooper Apr 1993 A
5209641 Hoglund et al. May 1993 A
5215448 Cooper Jun 1993 A
5268020 Claxton Dec 1993 A
5286163 Amra et al. Feb 1994 A
5298233 Nagel Mar 1994 A
5301620 Nagel et al. Apr 1994 A
5303903 Butler et al. Apr 1994 A
5308045 Cooper May 1994 A
5310412 Gilbert et al. May 1994 A
5318360 Langer et al. Jun 1994 A
5322547 Nagel et al. Jun 1994 A
5324341 Nagel et al. Jun 1994 A
5330328 Cooper Jul 1994 A
5354940 Nagel Oct 1994 A
5358549 Nagel et al. Oct 1994 A
5358697 Nagel Oct 1994 A
5364078 Pelton Nov 1994 A
5369063 Gee et al. Nov 1994 A
5388633 Mercer, II et al. Feb 1995 A
5395405 Nagel et al. Mar 1995 A
5399074 Nose et al. Mar 1995 A
5407294 Giannini Apr 1995 A
5411240 Rapp et al. May 1995 A
5425410 Reynolds Jun 1995 A
5431551 Aquino et al. Jul 1995 A
5435982 Wilkinson Jul 1995 A
5436210 Wilkinson et al. Jul 1995 A
5443572 Wilkinson et al. Aug 1995 A
5454423 Tsuchida et al. Oct 1995 A
5468280 Areaux Nov 1995 A
5470201 Gilbert et al. Nov 1995 A
5484265 Horvath et al. Jan 1996 A
5489734 Nagel et al. Feb 1996 A
5491279 Robert et al. Feb 1996 A
5494382 Kloppers Feb 1996 A
5495746 Sigworth Mar 1996 A
5505143 Nagel Apr 1996 A
5505435 Laszlo Apr 1996 A
5509791 Turner Apr 1996 A
5511766 Vassilicos Apr 1996 A
5520422 Friedrich May 1996 A
5537940 Nagel et al. Jul 1996 A
5543558 Nagel et al. Aug 1996 A
5555822 Loewen et al. Sep 1996 A
5558501 Wang et al. Sep 1996 A
5558505 Mordue et al. Sep 1996 A
5571486 Robert et al. Nov 1996 A
5585532 Nagel Dec 1996 A
5586863 Gilbert et al. Dec 1996 A
5591243 Colussi et al. Jan 1997 A
5597289 Thut Jan 1997 A
5613245 Robert Mar 1997 A
5616167 Eckert Apr 1997 A
5622481 Thut Apr 1997 A
5629464 Bach et al. May 1997 A
5634770 Gilbert et al. Jun 1997 A
5640706 Nagel et al. Jun 1997 A
5640707 Nagel et al. Jun 1997 A
5640709 Nagel et al. Jun 1997 A
5655849 McEwen et al. Aug 1997 A
5660614 Waite et al. Aug 1997 A
5662725 Cooper Sep 1997 A
5676520 Thut Oct 1997 A
5678244 Shaw et al. Oct 1997 A
5678807 Cooper Oct 1997 A
5679132 Rauenzahn et al. Oct 1997 A
5685701 Chandler et al. Nov 1997 A
5690888 Robert Nov 1997 A
5695732 Sparks et al. Dec 1997 A
5716195 Thut Feb 1998 A
5717149 Nagel et al. Feb 1998 A
5718416 Flisakowski et al. Feb 1998 A
5735668 Klein Apr 1998 A
5735935 Areaux Apr 1998 A
5741422 Eichenmiller et al. Apr 1998 A
5744093 Davis Apr 1998 A
5744117 Wilkinson et al. Apr 1998 A
5745861 Bell et al. Apr 1998 A
5755847 Quayle May 1998 A
5758712 Pederson Jun 1998 A
5772324 Falk Jun 1998 A
5776420 Nagel Jul 1998 A
5785494 Vild et al. Jul 1998 A
5842832 Thut Dec 1998 A
5846481 Tilak Dec 1998 A
5858059 Abramovich et al. Jan 1999 A
5863314 Morando Jan 1999 A
5866095 McGeever et al. Feb 1999 A
5875385 Stephenson et al. Feb 1999 A
5935528 Stephenson et al. Aug 1999 A
5944496 Cooper Aug 1999 A
5947705 Mordue et al. Sep 1999 A
5948352 Jagt et al. Sep 1999 A
5951243 Cooper Sep 1999 A
5961285 Meneice et al. Oct 1999 A
5963580 Eckert Oct 1999 A
5992230 Scarpa et al. Nov 1999 A
5993726 Huang Nov 1999 A
5993728 Vild Nov 1999 A
6007313 Siegel Dec 1999 A
6019576 Thut Feb 2000 A
6027685 Cooper Feb 2000 A
6036745 Gilbert et al. Mar 2000 A
6074455 van Linden et al. Jun 2000 A
6082965 Morando Jul 2000 A
6093000 Cooper Jul 2000 A
6096109 Nagel et al. Aug 2000 A
6113154 Thut Sep 2000 A
6123523 Cooper Sep 2000 A
6152691 Thut Nov 2000 A
6168753 Morando Jan 2001 B1
6187096 Thut Feb 2001 B1
6199836 Rexford et al. Mar 2001 B1
6217823 Vild et al. Apr 2001 B1
6231639 Eichenmiller May 2001 B1
6250881 Mordue et al. Jun 2001 B1
6254340 Vild et al. Jul 2001 B1
6270717 Tremblay et al. Aug 2001 B1
6280157 Cooper Aug 2001 B1
6293759 Thut Sep 2001 B1
6303074 Cooper Oct 2001 B1
6345964 Cooper Feb 2002 B1
6354796 Morando Mar 2002 B1
6358467 Mordue Mar 2002 B1
6364930 Kos Apr 2002 B1
6371723 Grant et al. Apr 2002 B1
6398525 Cooper Jun 2002 B1
6439860 Greer Aug 2002 B1
6451247 Mordue et al. Sep 2002 B1
6457940 Lehman Oct 2002 B1
6457950 Cooper et al. Oct 2002 B1
6464458 Vild et al. Oct 2002 B2
6495948 Garrett, III Dec 2002 B1
6497559 Grant Dec 2002 B1
6500228 Klingensmith et al. Dec 2002 B1
6503292 Klingensmith et al. Jan 2003 B2
6524066 Thut Feb 2003 B2
6533535 Thut Mar 2003 B2
6551060 Mordue et al. Apr 2003 B2
6562286 Lehman May 2003 B1
6656415 Kos Dec 2003 B2
6679936 Quackenbush Jan 2004 B2
6689310 Cooper Feb 2004 B1
6709234 Gilbert et al. Mar 2004 B2
6723276 Cooper Apr 2004 B1
6805834 Thut Oct 2004 B2
6843640 Mordue et al. Jan 2005 B2
6848497 Sale et al. Feb 2005 B2
6869271 Gilbert et al. Mar 2005 B2
6869564 Gilbert et al. Mar 2005 B2
6881030 Thut Apr 2005 B2
6887424 Ohno et al. May 2005 B2
6887425 Mordue et al. May 2005 B2
6902696 Klingensmith et al. Jun 2005 B2
7037462 Klingensmith et al. May 2006 B2
7074361 Carolla et al. Jul 2006 B2
7083758 Tremblay Aug 2006 B2
7131482 Vincent et al. Nov 2006 B2
7157043 Neff Jan 2007 B2
7204954 Mizuno Apr 2007 B2
7273582 Mordue Sep 2007 B2
7279128 Kennedy et al. Oct 2007 B2
7326028 Morando Feb 2008 B2
7402276 Cooper Jul 2008 B2
7470392 Cooper Dec 2008 B2
7476357 Thut Jan 2009 B2
7481966 Mizuno Jan 2009 B2
7497988 Thut Mar 2009 B2
7507365 Thut Mar 2009 B2
7507367 Cooper Mar 2009 B2
7543605 Morando Jun 2009 B1
7731891 Cooper Jun 2010 B2
7771171 Mohr Aug 2010 B2
7841379 Evans Nov 2010 B1
7896617 Morando Mar 2011 B1
7906068 Cooper Mar 2011 B2
8075837 Cooper Dec 2011 B2
8110141 Cooper Feb 2012 B2
8137023 Greer Mar 2012 B2
8142145 Thut Mar 2012 B2
8178037 Cooper May 2012 B2
8328540 Wang Dec 2012 B2
8333921 Thut Dec 2012 B2
8337746 Cooper Dec 2012 B2
8361379 Cooper Jan 2013 B2
8366993 Cooper Feb 2013 B2
8409495 Cooper Apr 2013 B2
8440135 Cooper May 2013 B2
8444911 Cooper May 2013 B2
8449814 Cooper May 2013 B2
8475594 Bright et al. Jul 2013 B2
8475708 Cooper Jul 2013 B2
8480950 Jetten et al. Jul 2013 B2
8501084 Cooper Aug 2013 B2
8524146 Cooper Sep 2013 B2
8529828 Cooper Sep 2013 B2
8535603 Cooper Sep 2013 B2
8580218 Turenne et al. Nov 2013 B2
8613884 Cooper Dec 2013 B2
8714914 Cooper May 2014 B2
8753563 Cooper Jun 2014 B2
8840359 Vick et al. Sep 2014 B2
8899932 Tetkoskie et al. Dec 2014 B2
8915830 March et al. Dec 2014 B2
8920680 Mao Dec 2014 B2
9011761 Cooper Apr 2015 B2
9017597 Cooper Apr 2015 B2
9034244 Cooper May 2015 B2
9057376 Thut Jun 2015 B2
9074601 Thut Jul 2015 B1
9080577 Cooper Jul 2015 B2
9108224 Schererz et al. Aug 2015 B2
9108244 Cooper Aug 2015 B2
9156087 Cooper Oct 2015 B2
9193532 March et al. Nov 2015 B2
9205490 Cooper Dec 2015 B2
9234520 Morando Jan 2016 B2
9273376 Lutes et al. Mar 2016 B2
9328615 Cooper May 2016 B2
9377028 Cooper Jun 2016 B2
9382599 Cooper Jul 2016 B2
9383140 Cooper Jul 2016 B2
9409232 Cooper Aug 2016 B2
9410744 Cooper Aug 2016 B2
9422942 Cooper Aug 2016 B2
9435343 Cooper Sep 2016 B2
9464636 Cooper Oct 2016 B2
9470239 Cooper Oct 2016 B2
9476644 Howitt et al. Oct 2016 B2
9481035 Cooper Nov 2016 B2
9481918 Vild et al. Nov 2016 B2
9482469 Cooper Nov 2016 B2
9494366 Thut Nov 2016 B1
9506129 Cooper Nov 2016 B2
9506346 Bright et al. Nov 2016 B2
9566645 Cooper Feb 2017 B2
9581388 Cooper Feb 2017 B2
9587883 Cooper Mar 2017 B2
9657578 Cooper May 2017 B2
9855600 Cooper Jan 2018 B2
9862026 Cooper Jan 2018 B2
9903383 Cooper Feb 2018 B2
9909808 Cooper Mar 2018 B2
9920767 Klain et al. Mar 2018 B2
9925587 Cooper Mar 2018 B2
9951777 Morando et al. Apr 2018 B2
9970442 Tipton May 2018 B2
9982945 Cooper May 2018 B2
10052688 Cooper Aug 2018 B2
10072897 Cooper Sep 2018 B2
10126058 Cooper Nov 2018 B2
10126059 Cooper Nov 2018 B2
10138892 Cooper Nov 2018 B2
10195664 Cooper et al. Feb 2019 B2
10267314 Cooper Apr 2019 B2
10274256 Cooper Apr 2019 B2
10302361 Cooper May 2019 B2
10307821 Cooper Jun 2019 B2
10309725 Cooper Jun 2019 B2
10322451 Cooper Jun 2019 B2
10345045 Cooper Jul 2019 B2
10352620 Cooper Jul 2019 B2
10428821 Cooper Oct 2019 B2
10458708 Cooper Oct 2019 B2
10465688 Cooper Nov 2019 B2
10562097 Cooper Feb 2020 B2
10570745 Cooper Feb 2020 B2
10641270 Cooper May 2020 B2
10641279 Cooper May 2020 B2
10675679 Cooper Jun 2020 B2
11020798 Cooper Jun 2021 B2
11098719 Cooper Aug 2021 B2
11098720 Cooper Aug 2021 B2
11103920 Cooper Aug 2021 B2
11130173 Cooper Sep 2021 B2
11149747 Cooper Oct 2021 B2
11167345 Cooper Nov 2021 B2
11185916 Cooper Nov 2021 B2
11286939 Cooper Mar 2022 B2
11358216 Cooper Jun 2022 B2
11358217 Cooper Jun 2022 B2
11391293 Cooper Jul 2022 B2
11519414 Cooper Dec 2022 B2
20010000465 Thut Apr 2001 A1
20020089099 Denning Jul 2002 A1
20020146313 Thut Oct 2002 A1
20020185790 Kilgensmith Dec 2002 A1
20020185794 Vincent Dec 2002 A1
20030047850 Areaux Mar 2003 A1
20030075844 Mordue et al. Apr 2003 A1
20030082052 Gilbert et al. May 2003 A1
20030151176 Ohno Aug 2003 A1
20030201583 Klingensmith Oct 2003 A1
20040050525 Kennedy et al. Mar 2004 A1
20040076533 Cooper Apr 2004 A1
20040115079 Cooper Jun 2004 A1
20040262825 Cooper Dec 2004 A1
20050013713 Cooper Jan 2005 A1
20050013714 Cooper Jan 2005 A1
20050013715 Cooper Jan 2005 A1
20050053499 Cooper Mar 2005 A1
20050077730 Thut Apr 2005 A1
20050116398 Tremblay Jun 2005 A1
20060180963 Thut Aug 2006 A1
20070253807 Cooper Nov 2007 A1
20080163999 Hymas et al. Jul 2008 A1
20080202644 Grassi et al. Aug 2008 A1
20080211147 Cooper Sep 2008 A1
20080213111 Cooper Sep 2008 A1
20080230966 Cooper Sep 2008 A1
20080253905 Morando et al. Oct 2008 A1
20080304970 Cooper Dec 2008 A1
20080314548 Cooper Dec 2008 A1
20090054167 Cooper Feb 2009 A1
20090269191 Cooper Oct 2009 A1
20100104415 Morando Apr 2010 A1
20100200354 Yagi et al. Aug 2010 A1
20110133374 Cooper Jun 2011 A1
20110140318 Reeves et al. Jun 2011 A1
20110140319 Cooper Jun 2011 A1
20110142603 Cooper Jun 2011 A1
20110142606 Cooper Jun 2011 A1
20110148012 Cooper Jun 2011 A1
20110163486 Cooper Jul 2011 A1
20110210232 Cooper Sep 2011 A1
20110220771 Cooper Sep 2011 A1
20110227338 Pollack Sep 2011 A1
20110303706 Cooper Dec 2011 A1
20120003099 Tetkoskie Jan 2012 A1
20120163959 Morando Jun 2012 A1
20130105102 Cooper May 2013 A1
20130142625 Cooper Jun 2013 A1
20130214014 Cooper Aug 2013 A1
20130224038 Tetkoskie et al. Aug 2013 A1
20130292426 Cooper Nov 2013 A1
20130292427 Cooper Nov 2013 A1
20130299524 Cooper Nov 2013 A1
20130299525 Cooper Nov 2013 A1
20130306687 Cooper Nov 2013 A1
20130334744 Tremblay Dec 2013 A1
20130343904 Cooper Dec 2013 A1
20140008849 Cooper Jan 2014 A1
20140041252 Vild et al. Feb 2014 A1
20140044520 Tipton Feb 2014 A1
20140083253 Lutes et al. Mar 2014 A1
20140210144 Torres et al. Jul 2014 A1
20140232048 Howitt et al. Aug 2014 A1
20140252697 Rauch Sep 2014 A1
20140252701 Cooper Sep 2014 A1
20140261800 Cooper Sep 2014 A1
20140263482 Cooper Sep 2014 A1
20140265068 Cooper Sep 2014 A1
20140271219 Cooper Sep 2014 A1
20140363309 Henderson et al. Dec 2014 A1
20150069679 Henderson et al. Mar 2015 A1
20150184311 Turenne Jul 2015 A1
20150192364 Cooper Jul 2015 A1
20150217369 Cooper Aug 2015 A1
20150219111 Cooper Aug 2015 A1
20150219112 Cooper Aug 2015 A1
20150219113 Cooper Aug 2015 A1
20150219114 Cooper Aug 2015 A1
20150224574 Cooper Aug 2015 A1
20150252807 Cooper Sep 2015 A1
20150285557 Cooper Oct 2015 A1
20150285558 Cooper Oct 2015 A1
20150323256 Cooper Nov 2015 A1
20150328682 Cooper Nov 2015 A1
20150328683 Cooper Nov 2015 A1
20160031007 Cooper Feb 2016 A1
20160040265 Cooper Feb 2016 A1
20160047602 Cooper Feb 2016 A1
20160053762 Cooper Feb 2016 A1
20160053814 Cooper Feb 2016 A1
20160082507 Cooper Mar 2016 A1
20160089718 Cooper Mar 2016 A1
20160091251 Cooper Mar 2016 A1
20160116216 Schlicht et al. Apr 2016 A1
20160221855 Retorick et al. Aug 2016 A1
20160250686 Cooper Sep 2016 A1
20160265535 Cooper Sep 2016 A1
20160305711 Cooper Oct 2016 A1
20160320129 Cooper Nov 2016 A1
20160320130 Cooper Nov 2016 A1
20160320131 Cooper Nov 2016 A1
20160346836 Henderson et al. Dec 2016 A1
20160348973 Cooper Dec 2016 A1
20160348974 Cooper Dec 2016 A1
20160348975 Cooper Dec 2016 A1
20170037852 Bright et al. Feb 2017 A1
20170038146 Cooper Feb 2017 A1
20170045298 Cooper Feb 2017 A1
20170056973 Tremblay et al. Mar 2017 A1
20170082368 Cooper Mar 2017 A1
20170106435 Vincent Apr 2017 A1
20170106441 Vincent Apr 2017 A1
20170130298 Teranishi et al. May 2017 A1
20170167793 Cooper et al. Jun 2017 A1
20170198721 Cooper Jul 2017 A1
20170219289 Williams et al. Aug 2017 A1
20170241713 Henderson et al. Aug 2017 A1
20170246681 Tipton et al. Aug 2017 A1
20170276430 Cooper Sep 2017 A1
20180058465 Cooper Mar 2018 A1
20180111189 Cooper Apr 2018 A1
20180178281 Cooper Jun 2018 A1
20180195513 Cooper Jul 2018 A1
20180311726 Cooper Nov 2018 A1
20190032675 Cooper Jan 2019 A1
20190270134 Cooper Sep 2019 A1
20190293089 Cooper Sep 2019 A1
20190351481 Tetkoskie Nov 2019 A1
20190360491 Cooper Nov 2019 A1
20190360492 Cooper Nov 2019 A1
20190368494 Cooper Dec 2019 A1
20200130050 Cooper Apr 2020 A1
20200130051 Cooper Apr 2020 A1
20200130052 Cooper Apr 2020 A1
20200130053 Cooper Apr 2020 A1
20200130054 Cooper Apr 2020 A1
20200182247 Cooper Jun 2020 A1
20200182248 Cooper Jun 2020 A1
20200256350 Cooper Aug 2020 A1
20200360988 Fontana Nov 2020 A1
20200360989 Cooper Nov 2020 A1
20200360990 Cooper Nov 2020 A1
20200362865 Cooper Nov 2020 A1
20210199115 Cooper Jul 2021 A1
20210254622 Cooper Aug 2021 A1
20220080498 Cooper Mar 2022 A1
20220193764 Cooper Jun 2022 A1
20220213895 Cooper Jul 2022 A1
20220381246 Cooper Dec 2022 A1
20230001474 Cooper Jan 2023 A1
Foreign Referenced Citations (40)
Number Date Country
683469 Mar 1964 CA
2115929 Aug 1992 CA
2244251 Jun 1998 CA
2305865 Feb 2000 CA
2176475 Jul 2005 CA
2924572 Apr 2015 CA
392268 Sep 1965 CH
102943761 Feb 2013 CN
1800446 Dec 1969 DE
19541093 May 1997 DE
19614350 Oct 1997 DE
102006051814 Jul 2008 DE
168250 Jan 1986 EP
665378 Aug 1995 EP
1019635 Jun 2006 EP
543607 Mar 1942 GB
942648 Nov 1963 GB
1185314 Mar 1970 GB
1575991 Oct 1980 GB
212260 Jan 1984 GB
2193257 Feb 1988 GB
2217784 Mar 1989 GB
2289919 Dec 1995 GB
58048796 Mar 1983 JP
63104773 May 1988 JP
11-270799 Oct 1999 JP
5112837 Jan 2013 JP
227385 Apr 2005 MX
90756 Jan 1959 NO
416401 Feb 1974 SU
773312 Oct 1980 SU
199808990 Mar 1998 WO
199825031 Jun 1998 WO
200009889 Feb 2000 WO
2002012147 Feb 2002 WO
2004029307 Apr 2004 WO
2010147932 Dec 2010 WO
2014055082 Apr 2014 WO
2014150503 Sep 2014 WO
2014185971 Nov 2014 WO
Non-Patent Literature Citations (7)
Entry
“Response to Final Office Action and Request for Continued Examination for U.S. Appl. No. 09/275,627,” including Declarations of Haynes and Johnson, Apr. 16, 2001.
Document No. 504217: Excerpts from “Pyrotek Inc.'s Motion for Summary Judgment of Invalidity and Unenforceability of U.S. Pat. No. 7,402,276,” Oct. 2, 2009.
Document No. 505026: Excerpts from “MMEI's Response to Pyrotek's Motion for Summary Judgment of Invalidity or Enforceability of U.S. Pat. No. 7,402,276,” Oct. 9, 2009.
Document No. 507689: Excerpts from “MMEI's Pre-Hearing Brief and Supplemental Motion for Summary Judgment of Infringement of Claims 3, 4, 15, 17-20, 26, 28 and 29 of the '074 Patent and Motion for Reconsideration of the Validity of Claims 7-9 of the '276 Patent,” Nov. 4, 2009.
Document No. 517158: Excerpts from “Reasoned Award,” Feb. 19, 2010.
Document No. 525055: Excerpts from “Molten Metal Equipment Innovations, Inc.'s Reply Brief in Support of Application to Confirm Arbitration Award and Opposition to Motion to Vacate,” May 12, 2010.
USPTO; Notice of Reissue Examination Certificate dated Aug. 27, 2001 in U.S. Appl. No. 90/005,910.
Related Publications (1)
Number Date Country
20220234099 A1 Jul 2022 US
Provisional Applications (2)
Number Date Country
62852846 May 2019 US
62849787 May 2019 US
Continuations (1)
Number Date Country
Parent 16877182 May 2020 US
Child 17719274 US