The present invention relates to data processing and transmission in wire-lined communication systems. More specifically, it relates to multi-input multi-output (MIMO) equalization in multi-channel transceivers with TH precoding.
Many wire-line multi-channel communication systems, such as digital subscribe line (DSL) systems and gigabit/multi-gigabit Ethernet systems suffer from inter-symbol interference (ISI) and cross-talk interferences, such as echo, near-end crosstalk (NEXT), and far-end crosstalk (FEXT). Traditionally, equalization is individually performed at each channel to combat ISI, and noise cancellation technique is applied at the receiver side to mitigate the effect of echo, NEXT and FEXT interference. However, it is noticed that FEXT inherently contains information of the signals transmitted from the far end transmitters, and it is important to exploit this information in FEXT to facilitate signal recovery rather than simply cancel it as noise. Hence, a new joint equalization scheme which can efficiently deal with ISI and also make use of information in FEXT to achieve better performance is needed in a high-speed design of the multi-channel DSP transceiver.
Fully utilizing FEXT information in a high-speed design of the multi-channel DSP transceiver is not trivial. One prior art (See, Keshab K. Parhi, and Yongru Gu, “System and method for MIMO equalization for DSP transceivers”, U.S. Pat. No. 7,561,633, filed on Jul. 14, 2009) proposed to use a typical MIMO-DFE structure to jointly deal with both FEXT and ISI in 10GBASE-T (See, J. Chen, Y. Gu and K. K. Parhi, “MIMO Equalization and Cancellation for 10GBASE-T,” in Proc. of 2006 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, pp. 637-640, May 2006). Although the advantage of the MIMO equalization technique has been demonstrated, the main drawback is that the MIMO-DFE architecture suffered from the error propagation problem, which degrades system performance significantly when input SNR is very low. In addition, the feedback loops inside the MIMO-DFE architecture limit their high-speed implementation in a DSP transceiver. To eliminate the problem of error propagation in real applications, another prior art proposed to apply Tomlinson-Harashima Precoder (THP) into MIMO equalization, and simply implemented the MIMO-DFE part at the transmitter side to pre-equalize the cross-channel interferences, i.e., a straight-forward MIMO-THP equalization scheme (See, Y. Chien, Y. Tu, H. Tsao, and W. Mao, “Equalization and interference cancellation with MIMO THP for 10GBASE-T,” in 2007 IEEE Workshop on Signal Processing Systems, pp. 95-100, 2007). However, the resulting MIMO-THP architecture is not supported in the 10GBASE-T standard, where only four separate TH precoders are required at each channel. In addition, the high-speed implementation of a MIMO-TH precoder is very difficult.
To solve these problems, a new equalization scheme which combined the general MIMO equalization technique with the TH precoding technique was proposed in one of our previous inventions (See, Keshab K. Parhi, and Yongru Gu, “System and method for MIMO equalization for DSP transceivers”, U.S. Pat. No. 7,561,633, filed on Jul. 14, 2009), where the proposed method inherited the advantage of MIMO equalization and also alleviated the error propagation problem such that a better SNR performance could be achieved. In addition, the proposed architecture complied with current 10GBASE-T standard and could be applied into the real application of a 10GBASE-T DSP transceiver design. However, the partial MIMO-DFE structure used in the proposed design to combat the residual post-cursor FEXT still has cross-feedback filters, which limit their high speed implementation. Moreover, due to effect of the TH precoding, the inputs to these feedback filters are not finite numbers any more, which will further increase the hardware implementation cost.
What is needed is a new design methodology and an implementation method for efficiently dealing with both ISI and FEXT crosstalk in a multi-channel system such that the limitations of the existing schemes can be overcome and a high-speed implementation of the proposed scheme with low complexity can be achieved in a DSP transceiver design.
The present invention describes an equalization scheme which combines the general MIMO equalization technique with the TH precoding technique to jointly deal with both ISI and FEXT interferences, and develops a new MIMO-THP architecture which is compliant with current 10GBASE-T standard and suitable for high-speed implementation in a multi-channel data transmission system.
In accordance with the present invention, relying on the fact that FEXT inherently contains information about the symbols transmitted from far end transmitters, FEXT is treated as signal rather than noise, and a new equalization scheme is proposed by combining the MIMO equalization technique and TH precoding technique to jointly deal with both ISI and FEXT. Different from the conventional MIMO-DFE structure, an equalization structure is applied with four separate THPs at the transmitter side and a MIMO-FFE structure at the receiver side to jointly deal with ISI and pre-cursor FEXT. Thus, the proposed design inherits both advantages of MIMO equalization and TH precoding. Unlike the previous invention, a partial MIMO-FFE structure rather than a partial MIMO-FBE structure is proposed to be used to combat the residual post-cursor FEXT. Thus, the feedback loops in previous invention can be completely removed such that the resulting design can be easily pipelined and can be used in high speed applications. Furthermore, a modified design is also developed to reduce the hardware complexity of the partial MIMO-FFE.
Further embodiments, features, and advantages of the present invention, as well as the structure and operation of the various embodiments of the present invention are described in detail below with reference to accompanying drawings.
The present invention is described with reference to the accompanying figures. The accompanying figure, which are incorporated herein, form part of the specification, illustrate the present invention and, together with the description, further serve to explain the principles of the invention and to enable a person skilled in the relevant art to make and use the invention.
Table 1 lists the performance comparison for different designs in terms of average decision-point (DP) SNR at the steady state.
Consider signal transmission path over a typical multiple channel environment shown in
To utilize FEXT information and improve the system performance, MIMO equalization technique was proposed in a typical 10GBASE-T system. First, a typical 10GBASE-T transmission channel over four pairs of UTP was modeled as two 4×4 MIMO channels as shown in
for j=1, . . . , 4. where denotes convolution.
By grouping symbols from four received channels at time k into a column vector y(k)[y1(k)y2(k)y3(k)y4(k)]F, EQ. (1) could be expressed as
where Hτ and Gp represented 4×4 τth far end channel coefficient matrix and pth near end channel coefficient matrix, respectively. The signals x(k−τ) and z(k−τ) corresponded to far end transmitted column vector and near end transmitted column vector at time index k−τ, respectively. By stacking Nf successive channel output vector samples, EQ. (2) could be expressed as in matrix form
where y(k+Nf−1:k) was a column vector with dimension 4Nf×1, and it was defined as
y(k+Nf−1:k)[yT(k+Nf−1) . . . yT(k)]T. EQ. (4)
Similar definitions were applied to x(k+Nf−1:k−v), z(k+Nf−1:k−l), and n(k+Nf−1:k). In addition, matrix H and matrix G were both block Toeplitz matrices with dimension Nf×(Nf+v) and Nf×(Nf+l), respectively.
Although the MIMO-DFE based equalization scheme has been proven to be effective on utilizing FEXT, one problem associated with MIMO-DFE architecture is the catastrophic error propagation, which degrades equalization performance significantly when SNR gain at the decision point is very low. In addition, the feedback loops inside the MIMO-DFE architecture limit their high speed implementation. Recently, TH precoding has been proposed to be used in 10GBASE-T because it can eliminate error propagation and allow use of capacity-achieving channel codes, such as low-density parity-check (LDPC) codes, in a natural way. Therefore, it is of great interest to combine the MIMO equalization technique with the TH precoding technique to develop a practical equalization scheme which is suitable for high speed application and also compatible with the 10GBASE-T standard.
To describe the proposed design, the TH precoder is briefly introduced. The TH precoder was first proposed by Tomlinson and Harashima in 1971 (See, M. Tomlinson, “New automatic equalizer employing modulo arithmetic,” Electron. Lett., vol. 7, pp. 138-139, March 1971; and H. Harashima and H. Miyakawa, “Matched-transmission technique for channels with intersymbol interference,” IEEE Trans. Commun., vol. 20, pp. 774-780, August 1972). It has similar structure as a traditional DFE, except that the decision device in the DFE is replaced with a modulo device in the TH precoder as shown in
where B(z) is a causal FIR filter in the TH precoder feedback path. From (7), it is seen that a TH precoder can be viewed as an IIR filter with the input equal to the sum of the original TH precoder and a finite level compensation signal, i.e., x(k)+v(k). The transmitted signal x(k) can be recovered from the output of the fifth by performing a modulo operation as shown in
To develop a transceiver architecture complying with the IEEE 802.3an standard while maintaining the same system performance as the design in
From
Compared with the proposed design in previous invention (See, Keshab K. Parhi, and Yongru Gu, “System and method for MIMO equalization for DSP transceivers”, U.S. Pat. No. 7,561,633, filed on Jul. 14, 2009), the main difference is that the partial MIMO-FBE filter in the receiver is changed to be the partial MIMO-FFE filter, which has no cross-feedback filters and is easy for high-speed implementation. The performance of the proposed design can be evaluated in terms of average decision-point SNR (DP-SNR) over multiple pairs (See, N. Al-Dhahir and A. H. Sayed, “The finite-length mulit-input multi-output MMSE-DFE,” IEEE Trans. Signal Processing, vol. 48, pp. 2921-2936, October 2000), and the average (DP-SNR) can be calculated as:
where Rtt is the (L+N1)×(L+N1) auto-correlation matrix of signal ti(k), and Ree,min is the minimum decision error auto-correlation with dimension 4×4.
after {tilde over (d)}i(k) is removed such that all units in the receiver do not contain any feedback loops. Thus, pipelining techniques can be easily applied to speed up the operation (See, e.g., K. K. Parhi, VLSI Digital Signal Processing System Design and Implementation, John Wiley & Son, Inc., New York, 1999). It is also noticed that {tilde over (d)}i(k) has only finite number of values, and the feed-forward filter with input {tilde over (d)}i(k) can be efficiently implemented by applying techniques such as pre-computation and look-ahead. It may be noted that the designs in
Finally, some simulation results are presented to evaluate the proposed designs.
Table 1 gives the performance comparison for different designs. In this table, each design is evaluated based on Cat-6 measured channel models with different lengths: 100 m, 75 m, and 55 m respectively. The analytical result (a) is also listed to be compared with the simulation result (b) for each design. Consider the results in the traditional MIMO-DFE structure (
A new equalization scheme is proposed by combining the MIMO equalization technique and TH precoding technique to deal with both ISI and FEXT. Different with the existing works, the proposed designs inherit the advantage of MIMO equalization and also alleviate the error propagation. In addition, they comply with the 10GBASE-T standard and are also suitable for high speed application because feedback loops in the receiver are completely removed so that pipelining techniques can be easily applied.
It will be understood by those skilled in the art that various changes in form and details can be made therein without departing from the spirit and scope of the invention as defined in the appended claims. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
This application claims the benefit of U.S. Provisional Application No. 61/274,904, filed on Aug. 24, 2009, the entire content of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61274904 | Aug 2009 | US |