System for monitoring a physiological parameter of a user

Information

  • Patent Grant
  • 11114188
  • Patent Number
    11,114,188
  • Date Filed
    Thursday, December 13, 2018
    6 years ago
  • Date Issued
    Tuesday, September 7, 2021
    3 years ago
Abstract
The present disclosure provides an electronic device that includes at least one sensor indicative of a physiological condition of a user, the at least one sensor worn by a patient. The electronic device can further include a location determination module configured to determine a location of a patient. The electronic device can receive a measured information from the sensor and determine if the physiological condition of the user indicates an urgent medical need. When the physiological condition of the user indicates an urgent medical need, the electronic device can contact emergency services and access and contact one or more of a contact in an electronic address book associated with the processing system. The electronic device can provide a location of the user based on information determined by the location determination module.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.


BACKGROUND
Field

The present disclosure relates to the field of patient monitoring devices. More specifically, the disclosure relates to portable and handheld personal health organizers that are adapted to be coupled with patient monitors that measure physiological characteristics such as blood glucose level, total hemoglobin, SpO2, methemoglobin, carboxyhemoglobin, and the like.


Description of the Related Art

Caregivers often employ patient monitoring systems or devices, such as pulse oximeters, capnographs, blood pressure cuffs, and the like, for convenient spot checking and even continuous monitoring of physiological characteristics of a patient. Patient monitoring systems generally include one or more sensors applied to a patient, a monitoring device, and one or more cables connecting the one or more sensors to the monitoring device.


Portability of these monitoring systems is advantageous for a number of reasons. For example, portable devices provide the patient with mobility and provide the caregiver the option of including the monitoring device when transporting patients from one setting to another. Also, caregivers often transport patients from an ambulance to a hospital emergency room, and between surgical, intensive care, and recovery settings. As another example, portable devices can also provide the patient the capability of using the monitoring systems at home or the office.


An example of a patient monitoring device is a glucometer, which is used in a procedure for measuring glucose concentration in the blood. Glucometers are a key element of home blood glucose monitoring by people with diabetes mellitus or prone to hypoglycemia. A glucometer typically provides a numerical readout of the patient's glucose level. Other monitor devices may measure physiological characteristics such as total hemoglobin, SpO2, methemoglobin, carboxyhemoglobin, etc.


For many conventional patient monitoring devices such as pulse oximeters or glucometers, separate monitoring devices may be needed to measure the oxygen and glucose level saturations. Viewing and analyzing different physiological characteristics would also require separate devices. Moreover, conventional patient monitoring devices are limited to the specialized functions provided by the individual devices, which often include limited data analysis or synchronization capabilities.


SUMMARY OF THE DISCLOSURE

Embodiments of the present disclosure provide a portable health organizer that enables patients and healthcare personnel to manage health data, and in particular, physiological reading data from one or more health data collection devices such as a glucometer or pulse oximeter. In an embodiment, the personal health organizer is a dedicated portable device that is adapted to retrieve reading data from a health data collection device, which is a noninvasive device in an embodiment and an invasive device in another embodiment.


In another embodiment, the personal health organizer is a software module/platform that is configured to be executed on a general purpose computing device such as a personal computer, a laptop, a mobile phone, a mobile computer, and a wristwatch computer. The general purpose computer device is directed by the personal health organizer software module/platform to collect or receive data from either an invasive or non-invasive health data collection device. Another embodiment is a personal health organizer device that includes an integrated health data collection module that is configured to receive physiological data reading from a sensor. The personal health organizer can measure various physiological reading data invasively or non-invasively through a sensor connected through a sensor port in an embodiment.


In an embodiment, the personal health organizer provides seamless integration of the reading data with the patient's existing medical data and with a number of software applications that help a patient manages his or her health. For example, the physiological reading data, e.g., blood glucose, total hemoglobin, SpO2, methemoglobin, carboxyhemoglobin, can be tracked over a time period so the patient is reminded to take medication and/or perform a new reading. The reminders can be customized or calculated based on prior medical history and/or personal information such as age and gender stored in the personal health organizer. As another example, the reading data can also be forwarded to healthcare providers such as physicians and pharmacies so they can provide feedback to the patient. The personal health organizer can also trigger alerts if the reading data indicate an abnormal level that requires medical attention.


In addition to the forgoing, embodiments of the present disclosure also provide electronic medical record (EMR) integration in conjunction with support for medical record synchronization across networked locations (e.g. via a cloud computing network). Medical data (including reading data and other patient-entered data such as medication schedule and activity/food in-take logs) from the personal health organizer device are automatically synchronized with the corresponding records located at a remote entity (e.g. in a centralized EMR storage or at the healthcare providers' data storage). For example, newly obtained reading data can be synchronized with a shared, synchronized calendar so that both the physician and the patient user can adjust an appointment if the reading requires a change in the appointment schedule. As another example, prescription information can be synchronized so that reimbursements can be handled automatically when the user finishes a current prescription and purchases a new refill. In another example, the personal health organizer can initiate the prescription refill process after verifying drug interaction and consent of the user and the physician.


In other embodiments, the personal health organizer includes an accelerometer that detects user motion and the motion can assist in the collection of and/or display of medical/reading data. For example, the accelerometer can detect a user's intent to use the device via touch/motion and automatically start the collection of data when the user places his or her finger into a sensor associated with a health collection data device. In another example, the personal health organizer can begin health data collection once the user places his or her finger into a sensor associated with a health collection data device and/or provides a gesture via a touch-screen input associated with the personal health organizer. In yet another example, the personal health organizer begins the data collection when the user places a finger into the sensor. The LEDs and photo diodes in the sensor can detect the presence of the finger and initiate data collection. The presence of a finger can be determined, for example, by determining when there is a significant reduction in detected light. Such a reduction in detected light can indicate the presence of a finger and start the data collection process.


In other embodiments, the personal health organizer includes a number of health education and gaming modules designed to educate the user on health management and motivate the user toward a healthier lifestyle. The educational and gaming content can be customized based on the user's current reading data. For example, a tree icon indicative of the user's health can be displayed on the personal health organizer, with the health of the tree corresponding to the recent readings obtained directly by the personal health organizer through a connected sensor or through an associated health data collection device.


For purposes of summarizing the invention, certain aspects, advantages and novel features of the invention have been described herein. Of course, it is to be understood that not necessarily all such aspects, advantages or features will be embodied in any particular embodiment of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

A general architecture that implements the various features of the invention will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate embodiments of the invention and not to limit the scope of the invention. Throughout the drawings, reference numbers are re-used to indicate correspondence between referenced elements.



FIGS. 1A and 1B illustrate an embodiment of a personal health organizer.



FIGS. 2A and 2B illustrate another embodiment of a personal health organizer.



FIGS. 3A and 3B illustrate yet another embodiment of a personal health organizer.



FIG. 4 is a block diagram that illustrates the components of a personal health organizer in accordance with one embodiment.



FIG. 5 is a block diagram that illustrates the modules of a personal health organizer in accordance with one embodiment.



FIG. 6A is a flow diagram that illustrates various methods performed by the personal health organizer in accordance with one or more embodiments.



FIG. 6B illustrates the transfer and synchronization of reading data and medical data in accordance with one embodiment.



FIG. 7 illustrates a sample handheld monitor and an exemplary noninvasive optical sensor of a health data collection device in accordance with one embodiment.



FIG. 8 is a block diagram of an example health data collection device capable of noninvasively measuring one or more blood analytes in a monitored patient, according to an embodiment of the disclosure.





DETAILED DESCRIPTION OF PREFERRED AND ALTERNATIVE EMBODIMENTS

Embodiments of the invention will now be described with reference to the accompanying figures, wherein like numerals refer to like elements throughout. The terminology used in the description presented herein is not intended to be interpreted in any limited or restrictive manner, simply because it is being utilized in conjunction with a detailed description of certain specific embodiments of the invention. Furthermore, embodiments of the invention can include several novel features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the inventions herein described.


Systems, methods, and computer-readable media are disclosed for obtaining and analyzing medical data from a medical device or a data server. More specifically, systems, methods, and computer readable media are disclosed for enabling a portable device to obtain and analyze medical data from a health data collection device, such as a glucometer.



FIGS. 1A-1B, 2A-2B, and 3A-3B illustrate three primary embodiments of the personal health organizer. First, FIGS. 1A and 1B depict a dedicated portable personal health organizer device that is configured to receive data from a health data collection device such as a glucometer. In an embodiment, the personal health organizer is configured to analyze data from the collection device, manage the collected data, and use the collected data to assist the patient in managing his or her personal healthcare. For example, the collected data can be used to schedule reminders for the patient to visit his or her physician or pharmacist. Second, FIGS. 2A and 2B depict a general purpose computing device configured to execute a personal health organizer software module, with the computing device further configured to receive data from a health data collection device such as a glucometer. The general purpose computing device can be a mobile computing device with its own operating system and software, and has installed upon it the personal health organizer software module configured to perform tasks that are substantially similar to those performed by the dedicated personal health organizer depicted in FIGS. 1A and 1B. Finally, FIGS. 3A and 3B depict a device that integrates a personal health organizer software module with a health data collection device module, with the collection device module coupled with hardware to perform tasks of health data collection such as those performed by a glucometer or other patient monitoring device described above. Each of these primary embodiments will be described in further detail below.


Personal Health Organizer as a Dedicated Portable Device



FIG. 1A shows a personal health organizer 110 as a device configured for analyzing data collected by a health data collection device 112. As shown in FIG. 1A, the personal health organizer 110 can be connected to the health data collection device 112 via a communications link 114. The communications link 114 can be a wired or wireless connection adapted to transfer data between the two devices. Examples of wired connections include USB, serial, and parallel and examples of wireless connections include Bluetooth®, Wi-Fi, WiMAX, Wireless USB, and ZIGBEE. In various embodiments, the health data collection device 112 is configured to collect physiological data from a patient invasively or non-invasively. The health data collection device 112 can be a glucometer, a pulse oximeter, monitor devices that measure total hemoglobin, SpO2, methemoglobin, carboxyhemoglobin, and the like. Example portable non-invasive monitoring devices are disclosed in co-pending U.S. patent application Ser. No. 12/534,827, filed Aug. 3, 2009, assigned to Masimo Labs of Irvine, Calif., the Assignee of the present application, the disclosure of which is incorporated herein by reference.


The personal health organizer 110 can comprise a computing system configured to perform functional tasks of various embodiments of the invention. For example, in an embodiment, the personal health organizer 110 accesses data collected by the health data collection device 112 or stored at a medical data server 120 connected via a network 124, which can include a LAN, WAN, or the Internet. The medical data server 120 and the personal health organizer 110 can be connected to the network via communications links 146 and 148, respectively, and the communications links can include wired or wireless connections. The medical data server 120 can be a conventional, preexisting data system operated by an entity such as a hospital or an insurance company.


In the embodiment depicted in FIG. 1B, the health data collection device 112 includes a finger clip sensor 116 connected to a monitor 118 via a cable. Moreover, the monitor 118 can advantageously includes electronic processing, signal processing, and data storage devices capable of receiving signal data from the sensor 116, processing the signal data to determine one or more output measurement values indicative of one or more physiological parameters of a monitored patient, and displaying the measurement values, trends of the measurement values, combinations of measurement values, and the like. Alternatively, in an embodiment, the personal health organizer 110 includes a sensor port that allows for a sensor such as the sensor 116 to be connected directly to the personal health organizer 110, and in that embodiment the personal health organizer 110 includes components and devices for processing the signal data from the sensor 116.


The monitor 118 can also include other components, such as a speaker, a power button, removable storage or memory (e.g., a flash card slot), an AC or DC power port, and one or more network interfaces, such as a universal serial bus (USB) interface, an Ethernet port, or a wireless port. These interfaces and ports can be used by the monitor 118 in one embodiment to communicate with the sensor 116 via a communication link 104, which may include various types of communication protocols and links as described above with respect to the communication link 114. For example, the monitor 118 can include a display that can indicate a measurement for glucose, for example, in mg/dL. Other analytes and forms of display can also appear on the monitor 118.


In addition, although a single sensor with a single monitor 118 is shown, different combinations of sensors and device pairings can be implemented. For example, multiple sensors can be provided for a plurality of differing patient types or measurement sites or even patient fingers. The sensor 116 can also connect to the monitor 118 wirelessly. Alternatively, the sensor 116 and the monitor 118 can be integrated into a single unit. A skilled artisan would appreciate that many other monitoring device configurations can be used as well.


Personal Health Organizer as a Software Module



FIG. 2A depicts another embodiment with a personal health organizer software module 132 executed on a general purpose computing device 126, with the computing device 126 coupled with the health data collection device 112 via a communications link 128. The communications link 128 can be a wired or wireless connection adapted to transfer data between the two devices. The personal health organizer module 132 can be an executable program on an operating system of a device such as a mobile phone, a personal digital assistant, a portable music player, an electronic book reader, a netbook, a TV media center, and a laptop or desktop computer. For example, the personal health organizer module 132 can be an application that is executed on the operating system of a mobile phone such as the iPhone manufactured by Apple, Inc., a Blackberry device manufactured by Research In Motion, Inc., the Pre manufactured by Palm, Inc, or a mobile device manufactured by HTC, Nokia, or Motorola, etc. In an embodiment, the personal health organizer software module 132 is configured to perform tasks that are substantially similar to those performed by the dedicated personal health organizer depicted in FIG. 1A. In an embodiment, the computing device 126 is connected to the network 124 via a communications link 122, which can be a wired or wireless connection. As with FIG. 1A, the computing device 126 can be connected to the medical data server 120 via the network 124.


As shown in FIG. 2B, the general computing device 126 can be coupled with the health data collection device 112, with the monitor 118 and sensor 116 as described above. In the embodiments shown in FIGS. 1A, 1B, 2A, and 2B, the communication and/or I/O interfaces of the health data collection device 112 can be used to connect to personal health organizer 110 or 126. For example, the USB interface could be used to connect the monitor 118 to a USB port of the personal health organizer 110 or 126. As another example, the wireless port of the health data collection device 112 could be used to communicate with the personal health organizer via a wireless link, such as an RF or infrared link or a Bluetooth® link. A skilled artisan will appreciate that a variety of other configurations and communication mechanisms are possible. For example, in an embodiment, general purpose computer device 126 includes a sensor port that allows for a sensor such as the sensor 116 to be connected directly to the general purpose computer device 126, and in that embodiment the general purpose computer device 126 includes components and devices for processing the signal data from the sensor 116. In another embodiment, the sensor 116 can be connected wirelessly to the general purpose computer device 126 through one or more known wireless connection protocols such as Bluetooth®. A skilled artisan will also appreciate that connecting the monitor 118 to the personal health organizer can allow the personal health organizer to collect, store, or analyze the output measurement values produced by the monitor 118.


Integrated Device with Personal Health Organizer and Health Data Collection Modules



FIG. 3A depicts another embodiment with a personal health organizer software module 132 executed on a computing device 130 that is integrated with a health data collection device module 134. In an embodiment, the health data collection device module 134 is configured to collect physiological data such as glucose reading and other physiological parameters. In an embodiment, the health data collection device module 134 includes components and devices for processing the signal data from the sensor 116. As shown in FIG. 3B, the integrated device 130 can include a monitor display and a sensor 116. The monitor display can provide for display for both the personal health organizer software module 132 and the health data collection device module 134. In an embodiment, the sensor 116 can be further integrated into the integrated device 130. In another embodiment, the wire connecting the sensor 116 to the integrated device 130 can be retractable or detachable so that the sensor 116 can be housed within the integrated device 130 or elsewhere when the sensor 116 is not in use. In the detachable embodiment, the integrated device 130 includes a sensor port that allows for the sensor 116 to be connected directly to the integrated device 130 through one or more known connection/communication protocols including USB and Ethernet. The sensor 116 can also connect wirelessly to the integrated device 130.


In one or more embodiments, the personal health organizer 110, 126 or 130 can be covered by a water-proof case (e.g. a case that can withstand water pressure up to 300M in depth). In an embodiment, the sensor 116 is either detached from the personal health organizer device or integrated into the personal health organizer within the water-proof case. The case can allow, for example, divers to use the personal health organizer under water.


Although a single personal health organizer is depicted in FIGS. 1A-3B, many different personal health organizers, monitoring devices, or sensors that operate as described above can be provided. In addition, multiple distinct healthcare entities and systems can communicate with a personal health organizer and its associated monitoring device and/or sensor. This can include corporate two-way interaction of data hubs such as Google Health, Microsoft Health Vault, and hubs maintained by WellPoint or other insurers. One skilled in the art will appreciate that any number of patients or healthcare professionals can be provided access to the personal health organizer 110, 126, or 130 or the data server 120.


Personal Health Organizer Components—General



FIG. 4 illustrates in more detail components of an example personal health organizer 110, general computing device 126 (with a personal health organizer module 132) or integrated device 130 in accordance with various embodiments (hereinafter referred to as “personal health organizer”). In an embodiment, the components are divided into required components and optional components. In FIG. 4, the required components are illustrated in blocks with continuous lines while the optional components are illustrated in blocks with dotted lines.


As illustrated in FIG. 4, various embodiments of the personal health organizer include one or more of the following components: one or more computer processor(s) 202, a storage 204, a display/touch panel 206, and an interface 208. One or more of these components can be connected together via a system bus 210. In an embodiment, the storage 204 includes (1) data storage such as a hard disk and/or removable media such as a flash drive, and/or (2) memory storage such as RAM or ROM. The processor(s) 202 can process signals received from a sensor such as the sensor 116 shown in FIGS. 1B, 2B, and 3B and derive physiological readings such as blood glucose level or other parameters from the signals. The storage 204 can include instructions or data for performing one or more methods disclosed herein. In one or more embodiments, the storage 204 includes a media card reader interface that accepts a media card such as an SD card, a microSD card, a memory stick, a CF card and the like. The portable media card can be used to store patient information and enable the personal health organizer device to be shared, with the settings and data for the individual user stored in the user's media card. The personal health organizer can also include a biometric identification module (such as a vein pattern or finger print scanner) 246 to distinguish one user from another or provide security for information stored.


In an embodiment, a personal health organizer computing platform/module 300 and related modules (shown in FIG. 5) are stored in storage 204 and executed on the processor 202. Additionally, the personal health organizer can access information including patient medical and reading data stored in storage 204 in performing methods disclosed herein.


The interface 208 can include an input 234, which can in turn include wired and wireless input connections in accordance with various protocols such USB, serial, parallel, SATA, Firewire (IEEE 1394), Bluetooth®, Wi-Fi, WiMAX, Wireless USB, ZIGBEE, etc. Although interface 208 is shown as a simple interface, multiple interfaces could be used. For example, the interface can include one or more commonly available input/output (I/O) interfaces that provide a communication interface to various external devices, connected via a wired, wireless, or combination of wired and wireless, communication link. In addition, sensor interface 224 can double as a wired interface to other connection types.


The input 234 can also accept input from an input device such as a keyboard, a mouse, a speech recognition device, a touch screen device and/or other data entering devices. In an embodiment, the user inputs information through the touch screen functionality integrated into the display/touch panel 206. The input 234 can be connected to the health data collection device 112, other medical devices, other computing devices, etc. to collect medical and/or physiological reading data that is to be processed, analyzed, and/or communicated.


In an embodiment, the interface 208 also includes a network interface 240 that can receive information over any type of network, such as a telephony-based network (e.g., PBX or POTS), a local area network (LAN), a wide area network (WAN), a dedicated intranet, and/or the Internet. The network interface 240 can include a wired interface such as an Ethernet interface or a wireless interface such as Wi-Fi or WiMAX.


The personal health organizer can be adapted to provide output information to an output 232, with the information output through wired and wireless connections in accordance with various protocols such USB, serial, parallel, SATA, Firewire, Bluetooth®, Wi-Fi, WiMAX, Wireless USB, ZIGBEE, etc. Information can also be output to an external display 228 and/or a printer 230.


As further described below, the personal health organizer can use the stored patient information to generate reports, alerts, and the like for healthcare providers. The personal health organizer can then output the medical information via the output 232 and/or send the medical information through via the network 124.


The storage 204 can store personal data associated with patients connected to the personal health organizer, such as name, address, telephone number, driver's license number, social security number, credit card account number, checking account number, age, gender, ethnicity, etc. Sensitive or personal data may be stored in an encrypted format and/or not stored on the personal health organizer. In an embodiment, the user is provided with data storage and security options and can configure the device as desired. In an embodiment, information stored on the device can be remotely wiped, for example, if the device is lost or stolen. The storage 204 can preferably also include records of reports generated for the healthcare providers (when a provider is the user) or patients, alerts generated for the healthcare providers or patients, patients associated with the healthcare providers, and requests made by the healthcare providers or patients. The storage 204 can also include the healthcare provider's or patient's membership identification (“ID”) and password. The information to be stored in the storage 204 can be entered, obtained, or transmitted using the touch screen enabled display 206, the input and output 232 and 234, and/or the network interface 240.


The personal health organizer in an embodiment includes one or more of: a media decoder/encoder/player 218 for playing back music and media, a phone 226, a built-in video/still capability camera 214, a barcode interface 220, a magnetic compass/accelerometer 216, a sensor interface 224, a glucose strip reader 222, a biometric identification module (such as a retinal, vein pattern, or finger-print scanner) 246, and an audio component 244. The media player 218 can play back media such as music and video via a media center software displayed on the display 206. The camera 214 can support a document scanner that allows user to input documents and forms from healthcare providers or insurance companies. In an embodiment, the camera is paired with an optical character recognition module so that scanned medical forms can be converted into data that can be uploaded for synchronization at a server in a network (e.g. a cloud computing network) or stored on the personal health organizer device. The scanner can also enable the user to fill out a medical form and send the completed form to a healthcare provider or an insurance company. User can also photograph or scan the bar code of prescriptions and food packaging to obtain information on drug and nutrition.


The sensor interface 224 can be used to connect to a health data collection device and/or a sensor such as the sensor 116 shown in FIGS. 1A-3B to obtain reading data from the device or sensor. The glucose strip reader 222 can be used to read/scan glucose strips and obtain reading data from the strips. The barcode interface 220 can be used for distinguishing patient records in a hospital setting.


The personal health organizer can also include a GPS receiver component 212, which can determine the location of the personal health organizer. The GPS receiver component 212 can include a digital GPS receiver that can determine the location of the personal health organizer by determining coordinates, such as latitude, longitude, altimeter, etc. using conventional methods know in the art. In the case of an emergency associated with a user of the personal health organizer, emergency services or address book contacts can be contacted and location information of the user can be given by the personal health organizer using information provided by the GPS receiver component 212. In addition, the personal health organizer can be adapted to locate and discover nearby healthcare facilities and/or computing devices. For instance, the personal health organizer can determine its location as discussed above, and from knowing its location it could determine the closest hospital or pharmacy, etc. The personal health organizer can also determine what medical devices, equipment, monitors, and/or other computing devices are located near it, for example, by using the broadcast IDs of these devices (e.g. Wi-Fi SSIDs).


In an embodiment, the magnetic compass/accelerometer component 216 enables a virtual reality capability. For example, a panoramic photo can be viewed on the display 206 by tilting/rotating the device, where the device updates the current viewing angle of the picture using the 3D acceleration vector from the accelerometer and the direction from the magnetic compass. In an embodiment, other accelerometer-related features include an orientation aware graphic user interface (GUI) on the display 206, whereby the GUI adjusts according to the physical orientation of the personal health organizer device. In another embodiment, the GUI provides a hospital navigational feature that can assist a user with navigating or routing through a hospital, for example, using a virtual reality depiction of the hospital. In addition, the display 206 can be configured so that a “Portrait View” is used to display numbers and a “Horizontal/Landscape” view is used to view full screen trended data (e.g. readings tracked over a period of time). Both view options can be overridden in the control menu of the personal health organizer device. While in the “trend view,” in an embodiment, the user can slide the trend timeline along a horizontal axis shake of the device, which can be taken to be a user generated gesture interaction with the device. In another embodiment, the user can rapidly shake the personal health organizer device and press the power button shortly to clear the trend that is being viewed. In another embodiment, the user can control or access the scroll menu with a vertical axis shake. An icon can be displayed to show a 2D bubble level and/or a 3D bubble level to give the user feedback that the device is being used in a good orientation for use.


In yet another embodiment, while the personal health organizer device is in an “Exercise Activity Flag Mode,” the physical movement of the user is measured and correlated with the user's pulse rate, with the pulse being measured by the personal health organizer or a sensor strapped to the exercising user, in order to rate the user's physical activity.


In other embodiments, the accelerometer can be used so that a three-axis tilt of the device can adjust the perspective view of numerical 3D objects, and a three-axis tilt of the device can adjust the perspective view of the graph for more information. In other embodiments, a steady rapid shake of the device can be reflected in the falling apart of screen information on the display 206 and a prompt to notify the user that heavy vibration is detected. Rapid shaking of the device during an alarm clock notification can snooze the alarm.


The personal health organizer can include a device history log in which a user voluntarily provides access to log data so the manufacturer of the personal health organizer device can determine usage frequencies of various features. The log can be anonymized so that personal medical data is blacked out, blocked, or not provided.


Personal Health Organizer Components—Accessibility Features


The personal health organizer can also include software and/or hardware support (e.g. the audio component 244) for providing a user interface for visually impaired users, including speech and command recognition. In an embodiment, the personal health organizer provides haptic (touch-based) feedback. The feedback can be provided in addition to the audible voice and tonal feedback of the device (e.g. having a vibration notification on each screen interaction to assist the user in navigating the screens).


One embodiment of the personal health organizer includes an “auto-start” feature in which, after power on, the motion sensor and sensor 116 detects if a finger is placed and held steady for a time period (e.g. two seconds) at the sensor 116. If so, the device starts the measurement and can optionally upload the result to a server. In an embodiment, the auto-start feature can be paired with audible instructions, sent via the audio component 244, to assist the user in using the device in auto-start mode.


Modules of the Personal Health Organizer


In one or more embodiments, the personal health organizer device includes one or more modules as shown in FIG. 5. As shown, the personal health organizer device includes a medical and/or physiological data input software module 310 that supports and/or controls the receipt of medical or physiological reading data from the health data collection device 112, for example. In addition, a sensor interface module 306 can be included in the personal health organizer device to interface with various sensors. For example, in the embodiment depicted in FIGS. 3A and 3B, where the health data collection functionality is integrated into the personal health organizer device, the personal health organizer includes the sensor interface module 306 to interface with the attached sensor 116.


In an embodiment, the personal health organizer or personal health organizer module further includes a personal health organizer software platform 300 on which one or more of the following modules can be executed. In another embodiment, the modules can be executed on an operating system on a computing device apart from the personal health organizer platform 300. The modules include a network computing support module 302, a communications I/O interface module 304, an electronic medical data integration module 322, a gaming module 324, a medical data analysis module 326, a medical information and education module 328, a device security module 342, and a medical data display module 344. These modules are further described as follows.


Medical Data Analysis Module


The medical data analysis module 326, by way of example, can be used to receive medical or physiological data from the health data collection device 112 and/or the sensor 116. For example, the medical data analysis module 326 can be used to receive the measurement outputs from the monitor 118 in FIGS. 1B and 2B. As another example, the medical data analysis module 326 can be used to receive data from the sensor 116 in FIG. 3B. The medical data analysis module 326 can then analyze the data received from the sensor 116 to determine reading data and/or measurement values similar to those determined by the monitor 118.


After receiving or determining the reading data, the medical data analysis module 326 can perform analysis on the reading data. For example, the medical data analysis module 326 can determine both pre-prandial and post-prandial peak glucose levels. This analysis can help healthcare professionals know when and how to titrate medications, especially for patients who are on an insulin sliding scale coverage. As another example, the medical data analysis module 326 can determine the mean glucose levels (daily, weekly, or monthly, etc.). The medical data analysis module 326 can also determine the correlation between the hemoglobin A1c and the glucose levels over a period of time, e.g., a two to three month period. This can show how well controlled the patient's blood sugar level is based on the glucose readings from the glucometer. These functions described can be performed by the medical data analysis module 326, a sub-module, and/or a separate program on the personal health organizer.


Medical Data Analysis Module—Data Tracking


In addition to receiving medical data, the medical data analysis module 326 can be configured to send collected or stored medical data to interested parties using the network computing support module 302 and/or the communications I/O interface module 304. For example, the medical data analysis module 326 can send a digital copy of a user's entire medical record, proof of health insurance, etc. to interested parties, such as a physician office. Medical data including current and past readings, reading trends, analyses, medical records, insurance records, can be sent via email, text message, or any other communication medium/protocol to any interested party. Likewise, an interested party (e.g. doctor, insurance company) can also send the same type of data to the personal health organizer via email, text message, or any other communication medium/protocol and the attached/transmitted data can be integrated into the records kept on the personal health organizer.


The medical data analysis module 326 can further include one or more sub-modules or programs for tracking medical data, including reading data and/or data related patient activities and correlating the medical data with patient activities. For example, the medical data analysis module 326 can track daily food intake that can be downloaded via network 124. In that embodiment, the medical data analysis module 326 is used to receive input from a user, via the input 234 and/or the display/touch panel 206, indicating food taken throughout the day. Then the medical data analysis module 326 can store the input in the storage 204, analyze the input to determine trends, and/or generate reports based on the input. This can help the physician, dietician, or patient to improve or modify dietary strategies for glucose control. In an embodiment, trending data is displayed to the user in various graphical formats on the display 206 through the medical data display module 344.


As another example, the medical data analysis module 326 can track the glycemic index (GI), which describes the effect of carbohydrates on glucose level, and is sometimes used for medical nutrition therapy. In another embodiment, the medical data analysis module 326 can maintain a log of insulin injections given and/or received to show a patient's compliance with medications. The insulin injections can be input by the user into the personal health organizer via the user interface on the display 206 or input automatically with digital syringe. The medical data analysis module 326 can also generate hypoglycemia or hyperglycemia alerts. For example, when the received reading data indicates that blood glucose is too low or too high, the medical data analysis module 326 can alert the patient and prompt the patient to log any symptoms of hypoglycemia or hyperglycemia. Moreover, the medical data analysis module 326 can have threshold reading values and/or accompanying symptom checklists configurable by a physician or a patient, so that if blood glucose values are detrimentally low or high and/or certain accompanying symptoms appear, alerts will be automatically sent to the patient's physician or emergency medical personnel. Similarly, the medical data analysis module 326 can determine if a user has missed a reading and it can send alerts (via SMS, email, automated voice call, etc.) to a friend, family member, or a caretaker to check on the user.


Moreover, the medical data analysis module 326 can calculate the amount of insulin to be given based on the user's carbohydrate intake and glucose level post-prandial. This is helpful for patients who are on an insulin sliding scale coverage. Also, the medical data analysis module 326 can perform continuous blood glucose monitoring for patients in a hospital setting or in critical care.


The medical data analysis module 326 can also be configured to manage activity flags, based on data input by a user. The data input can, by way of example, include: exercise time and severity of exercise, insulin (basal bolus) dosage, medication taken, food (GI index, carbohydrates/proteins) consumed, weight tracking, pulse rate tracking, or CO tracking for smokers. In addition, the tracking can include custom flags for other user-defined activities.


In an embodiment, the medical data analysis module 326 works with the medical data display module 344 to provide visualization of health data tracking or trending. In an embodiment, the medical data display module 344 displays trended data for a user in a variety of graphical formats, for example, when rotated in a horizontal position. The trended data can contain continuous or spot readings of measureable parameters or user input for activity flags, as discussed above.


A skilled artisan would appreciate that the medical data analysis module 326 could be associated with different types of programs or applications installed by the user that can interface with the medical data analysis module 326. The functions described herein can also be performed by the medical data analysis module 326 alone, one or more sub-modules, and/or one or more separate modules/programs on the personal health organizer.


Network Computing Support Module and Electronic Medical Data Integration Module


In addition to analyzing reading data and providing the user with reminders, alerts, and other feedback to improve the user's health, the personal health organizer in an embodiment includes the electronic medical data record integration module 322 and/or the network computing support module 302 to assist in medical data synchronization. For example, the electronic medical data record integration module 322 can provide data backup and synchronization of medical results, contacts, and other user data (music, videos, etc.). The electronic medical data record integration module 322 can also be configured to enable synchronization of emails, text messages, and voice messages. The electronic medical data record integration module 322 and/or the network computing support module 302 can also be configured to synchronize patient data to centralized medical data servers such as Google Health, Microsoft Health Vault, etc.


The electronic medical data record integration module 322 can also enable non-patients such as physicians and family members of a primary patient user to synchronize patient data with different access privileges. For instance, an alias can be created to allow non-trusted sources to review patient data without personally identifiable information. The electronic medical data record integration module 322 can further enable a user to prove good health practices and compliance to receive special discounted rates or rate cuts from health insurance providers. In an embodiment, the electronic medical data record integration module 322 and/or the network computing support module 302 include an embedded web server that allows access to locally stored history, reading/medical data, data settings, and calendar, etc.


The electronic medical data record integration module 322 and the network computing support module 302 can be associated with a calendar program. The program can allow a user to synchronize the calendar of the personal health organizer with an online synchronized calendar such as Outlook, iCalendar, Google Calendar, Yahoo Calendar, etc. The calendar can also provide an alarm function, including a smart clock that can store or access times for scheduled tests and can determine, based on reading data, if more tests are needed (invasive or non-invasive). As another example, when a prescription is entered, the personal health organizer device in an embodiment tracks medication intake and provides reminders for taking the prescribed medication.


In addition, the electronic medical data record integration module 322 can be configured such that the personal health organizer can be used by multiple users. For example, each user's data can be tracked separately on the same device. As a result, for instance, one family would only have to buy one device for spot checking, and family members can login via a password or a biometric identification system as further described below. As another example, an endocrinologist office could purchase patient licenses and store the data of patients the office spot-checks, with the patient records separated by identification tags and protected via the security features described herein. A skilled artisan would appreciate that the users' medical data (including insurance information) could be stored separately on the personal health organizer or a remote system, e.g., an Electronic Medical Record (EMR) server located on a remote computing network (e.g. cloud computing network).


In an embodiment, the medical data stored on the personal health organizer can be retrieved by an EMS or a first responder through the use of a Rad 57 or similar device. A physician can also perform data retrieval using a similar device. In another embodiment, the electronic medical data record integration module 322 can be configured to manage medical expenses and reimbursements. The electronic medical data record integration module 322 can be used to track health items purchased by the user and synchronize the items with a medical expense account. The purchased items can also be compared by a comparison shopper module/program for best prices and alternative products. The purchase history information can also be sent to insurance companies for reimbursement of co-pay overages, for example.


In another embodiment, the network computing support module 302 can be configured to provide reminders to the user if the personal health organizer is not with the user. For example, the user can call the personal health organizer via phone or send an email or text message with a particular question regarding appointment times, medication intake schedule, etc. In an embodiment, the personal health organizer or a data server with synchronized medical data records within a remote computing network (e.g. cloud computing network) provides answers to the particular questions sent.


Since diabetic patients are likely users of the personal health organizer and diabetes can sometimes lead to vision impairment, in an embodiment the electronic medical data record integration module 322 is configured to synchronize eye care prescription requirement dates and vision check-ups on a calendar. In an embodiment, the personal health organizer includes software for testing the user's vision on the device to determine if a new prescription is needed. The testing software can include Ishihara plates and distance charts displayed on the display 206, with the displayed testing materials sized according to an arm's length testing distance.


In yet another embodiment, the electronic medical data record integration module 322 is configured to coordinate prescription. For example, once a user's physician verbally mentions a prescription, the personal health organizer can acoustically identify the drug term and search for generic alternatives. Once the physician agrees to the drug (either the branded drug or the suggested generic alternative), the electronic medical data record integration module 322 is configured in an embodiment to locate a closest pharmacy (using the built-in GPS and/or triangulation software based on cell tower location) with the best price and provides contact information of the pharmacy to the user. It can also provide the pharmacy information to a remote computing network (e.g. cloud computing network) for data synchronization or send it directly to the user's physician so that he or she can submit an electronic prescription.


Various embodiments of the personal health organizer also provide for exchange of medical data and related information via email. For example, while a caregiver is taking a reading or measurement of a patient with the personal health organizer, the caregiver can ask the patient whether or how the patient would like to receive information relating to the measurement, and if the patient prefers email or text messages, the email or text message format. The caregiver can input these communication preferences and send an email or text message to the patient at the point of measurement. In one embodiment, an email of the reading or measurement is automatically sent to the patient upon the completion of measurement process. In another embodiment, the email is sent later at the direction of the caregiver user or at a time configured by the caregiver user. The email or text message could also be routed to additional supervising caregivers, medical records personnel or files, others in the health providing mechanism for a particular patient, or the like. In some embodiments, federal, state, local, caregiver facility rulemaking bodies may place requirements on the distribution and/or content of the information, including, for example, the level of permission required for certain types of data based on, for example, the content thereof. In those instances, the personal health organizer may advantageously ask the caregiver at the point of measurement to acquire the appropriate permissions, or withhold sending the email or text message until such permissions are processed, authenticated, verified, or otherwise checked and approved or the like. In other embodiments, the personal health organizer may review the available permissions and appropriate rule authorities and determine the format and content of the email or text message that is available for sending. For example, the personal health organizer may include less information, less detailed information, different groupings of medical and/or personal information based on a particular patient's permissions and/or applicable medical data disclosure rules. Other forms of electronic communications can also be used, for example, information can be posted to a website, such as a private blog. Information can also be sent through various other information posting websites such as, for example, Twitter™.


None, some, or all of the information relating to patient interactions with the personal health organizer can be sent electronically. For example, emails may be sent to those patients (e.g. an outpatient) that may take measurements on their own or have them taken by a non-professional caregiver such a family member. Emails, text messages, or other electronic communications can also include reminders, requests for data, advice based on data obtained, or any other similar personal or medical information.


Electronic Medical Data Integration Processes



FIGS. 6A and 6B show methods for integrating medical data records in accordance with embodiments disclosed herein. At block 352, in an embodiment, a signal indicative of the patient physiological reading is received and/or detected at a sensor of the personal health organizer (or an associated health data collection device). At block 354, the personal health organizer (or an associated health data collection device) can process the signal to derive or calculate reading data (e.g. derive blood glucose level based on signal received). At the block 360, the reading data can be stored locally (e.g. in the storage 204) along with other medical data of the patient user. At block 362, the personal health organizer can use the reading data to customize local content at the personal health organizer, including games and educational materials. At block 364, the personal health organizer can use the reading data to generate health reminders and/or recommendations that are personalized for the patient user.


At block 356, the reading data can be forwarded to a remote electronic medical storage. In an embodiment, related medical data can be forwarded with the reading data as well. At block 372, the records kept at a centralized medical data storage can be synchronized with the forwarded reading data and/or related medical data. At block 374, the forwarded reading data and/or medical data can be used to generate alerts to healthcare providers. At block 376, the records kept at healthcare providers can be synchronized with the forwarded reading data and/or medical data. The healthcare providers can use the forwarded data to generate feedback such as alerts, data updates, and diagnoses, which are received at the personal health organizer at block 358 in accordance with an embodiment.


The synchronization of data records is further illustrated in FIG. 6B, where a patient 420 is shown to provide reading data to a personal health organizer 402, which in turns forwards the reading data and/or other related medical data of the patient 420 to a network 124. The network 124 can include a remote computing network (e.g. cloud computing network) comprising of LANs, WANs, and the Internet. The reading data can be relayed to healthcare providers 404, who can provide feedback such as alerts, reminders, and/or diagnoses to the personal health organizer 402 via the network 124. The healthcare providers 404 can also synchronize their records based on the forwarded reading data (and/or related medical data) and in turn provide synchronized and/or updated medical data back to the personal health organizer 402. Similarly, the reading data (and/or related medical data) can be forwarded to the electronic medical record storage 406 via the network, and the electronic medical record storage 406 can synchronize its records based on the forwarded reading data (and/or related medical data) and in turn provide synchronized and/or updated medical data back to the personal health organizer 402 via the network. The returned results from the healthcare providers 404 and/or the electronic medical record storage 406 can be displayed back to the patient 420 and/or used by the personal health organizer for other purposes such as completing financial costs and deductions to users' medical expense accounts.


Gaming Module


In an embodiment, the personal health organizer includes a gaming module 324 that includes and/or supports a variety of health-related games. For example, the gaming module 324 can allow the user to purchase or download games associated with health training on the disease and written to motivate the emotional state of the user. As another example, the gaming module 324 can provide a game that provides a customizable digital pet for children to disassociate from the disease but learn how to care for the digital pet and themselves. The digital pet can include interchangeable configuration data that relate to the appearance of the pet. As a further example, the gaming module 324 can display a screen saver that displays a tree either in good or failing condition depending on a user's ability to live successfully with diabetes. For example, a user with a small number of doctor visits, missed insulin injections, bad food choices, and few exercise activities can be shown a withering tree. Conversely, a user who maintains few spikes and drops can be shown a healthy, vibrant tree. In another embodiment, the gaming module 324 can provide an interactive game based on training/flash cards and tests. The cards and tests can be based on device usage, health condition/standing, disease knowledge, latest news findings on cures, etc. The testing and training can be synchronized over Internet to allow friend and group competition and participation.


The gaming module 324 can also be associated with a running companion module. The module can be used to synchronize training records for a user based on the user's shoe type or needs. The module could further be adapted to work with the accelerometer to function as a pedometer or perform some other assessment of movement. A skilled artisan would appreciate that the gaming module 324 could use measurements from the pedometer or other assessments of travel to deduce the required shoe type for a user or life span of a particular shoe. For example, the gaming module 324 can determine based on distance traveled, the best shoe type for a user or the life span of the shoe the user has been using. The gaming module 324 can utilize the accelerometer 216 in the personal health organizer to enhance the gaming experience.


External Reading from Additional Health Data Collection Devices


Embodiments of the personal health organizer include a sensor interface module 306 that is adapted to connect to sensors for measuring physiological readings of a user. In an embodiment, the personal health organizer includes the communications I/O interface module 304 that is configured to interface with various health data collection devices and to obtain reading data from those devices. For example, the personal health organizer can connect to an insulin pump to obtain performance and historical record of pump behavior and dosing. In an embodiment, the personal health organizer connects via the Bluetooth® protocol (e.g. Near Field Connect (NFC) Bluetooth 2.1 +EDR) or any other short range wireless connection protocol. In another example, the personal health organizer device can connect to a kidney urine test (sensor), which is a separate sensor adapted to scan the litmus urine test to check protein level in the blood and kidney function. This urine test reading data can be tracked along with other reading and/or patient medical data by the one or more of the modules disclosed herein, e.g., medical data analysis module 326, to detect whether changes have occurred. The detected changes can be correlated with other medical data such as medication schedules to determine whether the changes have occurred as a result of new medication or progression of disease and damage to organs.


In an embodiment, the personal health organizer is adapted to obtain reading from a weight scale (e.g. specific brands of electronics scales) to gather weight reading. In another embodiment, an optional thin pad sensor or digital scale tennis shoes can connect via a long cable or wirelessly to the personal health organizer device via, e.g., the interface component 208 shown in FIG. 4. The user stands on connected pad and the weight data is input into the medical data record of the user as kept by the personal health organizer or sent to a remote computing network (e.g. cloud computing network) for medical data synchronization.


In another embodiment, the personal health organizer is adapted to connect to a sleep sensor, which includes a finger or a toe adhesive sensor that records data to a solid state drive. The recorded data can then be downloaded to the personal health organizer device the next morning to obtain hours of reading data recorded while the user was asleep. The connection to the sleep sensor can be wireless, e.g., the personal health organizer device can near field connect (NFC) to the sensor. Optionally, the sleep sensor can include a component that sends reading data in real time to the personal health organizer device (e.g. via Bluetooth® 2.1 +EDR (300′ range)), and instructs the personal health organizer to contact medical personnel or an emergency contact if the reading data indicates a urgent medical need.


In other embodiments, sensors and/or devices measuring physiological parameters such as Glucose, PR, CO, SpO2, Cholesterol, LDL, HDL, SpHb, Hemoglobin A1C, SpHet, SpMet, oxygen content, bilirubin, etc. can be connected to the personal health organizer device. In an embodiment, the interface 208 includes a universal interface that is adapted to connect to various kinds of home used medical equipment such as blood pressure measuring devices, body temperature thermometers, etc. In other embodiments, the personal health device connects these external health data collection devices through one or more wired or wireless connections as discussed above in conjunction with the interface 208 shown in FIG. 4.


Medical Information and Education—Rankings and Reviews


The personal health organizer can also include a medical information and education module 328 that provides healthcare-related information. For example, the medical information and education module 328 can download and provide endocrinologist rankings, hospital rankings, ophthalmologist rankings, podiatrist rankings, surgeon rankings, etc. Endocrinologist rankings can, for example, provide a specialist listing service for best ranked doctors in a user's area (based on GPS location or ZIP code) or elsewhere. These hospital, surgeon, and/or ophthalmologist rankings could also provide reviews based on care of diabetes. In addition or in lieu of the rankings, the medical information and education module 328 can provide diabetes product reviews. These reviews could include reviews of equipment, needles, pumps, medications, etc. These reviews and rankings can be periodically updated via the use of the network computing support module 302 and/or the communications I/O interface module 304.


Medical Information and Education—Other Information and Online Communities


In an embodiment, the medical information and education module 328 includes one or more of the following sub-modules. First, it can include a gestational diabetes sub-module that allows for the integration of information and settings specific to the term of pregnancy and the user's concerns. The gestational diabetes sub-module can show pictures of the fetus in each stage of development, and can further be synchronized with the user's calendar and week by week progression. The sub-module can also assist with monitoring timers, medication reminders, and prenatal timers etc. Second, the medical information and education module 328 can include a “Personal Nurse Educator” sub-module. The sub-module can be paid for by an insurance company to provide a 24-hour nurse on call service, with the service specifically allowed to access the user's medical information stored within a remote computing network (e.g. cloud computing network), including data stored on the personal health organizer device. The sub-module enables the user to chat with, send text messages to, email, or phone (including video conference) the on-call nurse with specific questions.


Third, the medical information and education module 328 can include an online health information and chat forum access sub-module. For example, the sub-module can provide latest information on diabetes provided by the diabetes community, including medication information, medical definitions, medical theories, leading developments in cures, and equipment available in various countries. The sub-module can also provide access to support groups. In an embodiment, the sub-module can play back recorded phonic files of correct pronunciations of medications or medical terms. Fourth, the medical information and education module 328 can include a diabetes events calendar sub-module that shows local events and/or global events about diabetes (e.g., world diabetes day, fundraisers etc.), including information on how to get involved or donate directly from the personal health organizer device.


Additional Features


In an embodiment, the personal health organizer includes the communications I/O interface module 304 for providing wireless access to the Internet. Access can be provided via any known protocols such as Wi-Fi, WiMAX, 3G, 4G, CDMA, GSM, etc. For instance, the communications module 304 can be configured to provide free Wi-Fi access at doctor's office. Similarly, communications module 304 can be associated with an IP Telephony program such as Skype. This could allow video conferencing (e.g., using built-in camera 214) between a user of the personal health organizer and his or her physician. The program can also allow Internet based calling via Vonage, Skype or other VOIP providers.


Verification/Security


In an embodiment, the device security module 342 provides a number of security features to secure data stored on the personal health organizer device or otherwise prevent unauthorized access to the device. In an embodiment, if the personal health organizer device is lost, the device security module 342 enables the device to be located with a remote computing network (e.g. cloud computing network). For example, the owner of a lost device can trace the location of the device via the GPS receiver embedded in the device, or through network address (e.g. IP address) tracing when the device is logged onto a network. Additionally, if the user misplaced the device, the device security module 342 can generate audible or visual alerts such as whistle, beep, vibrate or blink (e.g. through the audio component 244) when the user calls it or accesses it through a network.


In another embodiment, if the device is used by a new user, based on the new user's reading (e.g. blood glucose reading), the device security module 342 can recognize that the user has changed. The device can then prompt the new user to enter a password. The device security module 342 can also utilize biometric identification, for example, through the built-in camera 214. The device security module 342 can recognize the face and expressions of the user from the camera. Another embodiment includes an additional rear sub CCD or CMOS camera placed behind an LCD or OLED screen so the user could be prompted for finger print or palm identification. In addition, a CCD or CMOS camera can be embedded in the sensor to take picture of the user's finger print. In addition to or in place of external biometric identification, a special near infrared emitter detector can absorb the unique vein pattern of the finger. The device security module 342 can also utilize the CCD or CMOS camera to distinguish among patients when the device is shared among multiple patients (e.g. in a hospital setting for where a healthcare personnel is using the device for multiple patients). Once a patient's finger print is recognized, the device automatically brings up the patient's file.


Example Health Data Collection Device



FIG. 7 illustrates an example of a health data collection device 112. In the depicted embodiment, the monitoring device 118 includes a finger clip sensor 116 connected to a monitor 118 via a cable 452. In the embodiment shown, the monitor 118 includes a display 456, control buttons 454 and a power button. Moreover, the monitor 118 can advantageously include electronic processing, signal processing, and data storage devices capable of receiving signal data from said sensor 116, processing the signal data to determine one or more output measurement values indicative of one or more physiological parameters of a monitored patient, and displaying the measurement values, trends of the measurement values, combinations of measurement values, and the like.


The cable 452 connecting the sensor 116 and the monitor 118 can be implemented using one or more wires, optical fiber, flex circuits, or the like. In some embodiments, the cable 452 can employ twisted pairs of conductors in order to minimize or reduce cross-talk of data transmitted from the sensor 116 to the monitor 118. Various lengths of the cable 452 can be employed to allow for separation between the sensor 116 and the monitor 118. The cable 452 can be fitted with a connector (male or female) on either end of the cable 452 so that the sensor 116 and the monitor 118 can be connected and disconnected from each other. Alternatively, the sensor 116 and the monitor 118 can be coupled together via a wireless communication link, such as an infrared link, radio frequency channel, or any other wireless communication protocol and channel.


The monitor 118 can be attached to the patient. For example, the monitor 118 can include a belt clip or straps that facilitate attachment to a patient's belt, arm, leg, or the like. The monitor 118 can also include a fitting, slot, magnet, snap-click connector (e.g., connectors manufactured by LEMO S.A. of Switzerland), or other connecting mechanism to allow the cable 452 and sensor 116 to be attached to the monitor 118.


The monitor 118 can also include other components, such as a speaker, power button, removable storage or memory (e.g., a flash card slot), an AC or DC power port, and one or more network interfaces, such as a universal serial bus interface or an Ethernet port. For example, the monitor 118 can include a display 456 that can indicate a measurement for glucose, for example, in mg/dL. Other analytes and forms of display can also appear on the monitor 118.


In addition, although a single sensor 116 with a single monitor 118 is shown, different combinations of sensors and device pairings can be implemented. For example, multiple sensors can be provided for a plurality of differing patient types or measurement sites or even patient fingers.



FIG. 8 is a block diagram that illustrates the components of an example of a health data collection device 112. In certain embodiments, the health data collection device 112 noninvasively measures a blood analyte, such as oxygen, carbon monoxide, methemoglobin, total hemoglobin, glucose, proteins, glucose, lipids, a percentage thereof (e.g., saturation) or for measuring many other physiologically relevant patient characteristics. The device 112 can also measure additional blood analytes and/or other physiological parameters useful in determining a state or trend of wellness of a patient.


The data collection device 112 can be capable of measuring optical radiation from the measurement site. For example, in some embodiments, the data collection device 112 can employ photodiodes defined in terms of area. In an embodiment, the area is from about 1 mm2-5 mm2 (or higher) that are capable of detecting about 100 nanoamps (nA) or less of current resulting from measured light at full scale. In addition to having its ordinary meaning, the phrase “at full scale” can mean light saturation of a photodiode amplifier (not shown). Of course, as would be understood by a person of skill in the art from the present disclosure, various other sizes and types of photodiodes can be used with the embodiments of the present disclosure.


The data collection device 112 can measure a range of approximately about 2 nA to about 100 nA full scale. The data collection device 112 can also include sensor front-ends that are capable of processing and amplifying current from the detector(s) at signal-to-noise ratios (SNRs) of about 100 decibels (dB) or more, such as about 120 dB in order to measure various desired analytes. The data collection device 112 can operate with a lower SNR if less accuracy is needed for an analyte like glucose.


The data collection device 112 can measure analyte concentrations, including glucose, at least in part by detecting light attenuated by a measurement site 502. The measurement site 502 can be any location on a patient's body, such as a finger, foot, ear lobe, or the like. For convenience, this disclosure is described primarily in the context of a finger measurement site 502. However, the features of the embodiments disclosed herein can be used with other measurement sites 502.


In the depicted embodiment, the device 112 includes an optional tissue thickness adjuster or tissue shaper 522, which can include one or more protrusions, bumps, lenses, or other suitable tissue-shaping mechanisms. In certain embodiments, the tissue shaper 522 is a flat or substantially flat surface that can be positioned proximate the measurement site 502 and that can apply sufficient pressure to cause the tissue of the measurement site 502 to be flat or substantially flat. In other embodiments, the tissue shaper 522 is a convex or substantially convex surface with respect to the measurement site 502. Many other configurations of the tissue shaper 522 are possible. Advantageously, in certain embodiments, the tissue shaper 522 reduces thickness of the measurement site 502 while preventing or reducing occlusion at the measurement site 502. Reducing thickness of the site can advantageously reduce the amount of attenuation of the light because there is less tissue through which the light must travel. Shaping the tissue in to a convex (or alternatively concave) surface can also provide more surface area from which light can be detected.


The embodiment of the data collection device 112 shown also includes an optional noise shield 526. In an embodiment, the noise shield 526 can be advantageously adapted to reduce electromagnetic noise while increasing the transmittance of light from the measurement site 502 to one or more detectors 506 (described below). For example, the noise shield 526 can advantageously include a conductive coated glass or metal grid electrically communicating with one or more other shields of the sensor 116 or electrically grounded. In an embodiment where the noise shield 526 includes conductive coated glass, the coating can advantageously include indium tin oxide. In an embodiment, the indium tin oxide includes a surface resistivity ranging from approximately 30 ohms per square inch to about 500 ohms per square inch. In an embodiment, the resistivity is approximately 30, 200, or 500 ohms per square inch. As would be understood by a person of skill in the art from the present disclosure, other resistivities can also be used which are less than about 30 ohms or more than about 500 ohms. Other conductive materials transparent or substantially transparent to light can be used instead.


In some embodiments, the measurement site 502 is located somewhere along a non-dominant arm or a non-dominant hand, e.g., a right-handed person's left arm or left hand. In one embodiment, the data collection device 112 can recognize a user's or patient's non-dominant arm/hand by comparing the two arms/hands according to various types of physiological data/measurements. For example, in some patients, the non-dominant arm or hand can have less musculature and higher fat content, which can result in less water content in that tissue of the patient. Tissue having less water content can provide less interference with the particular wavelengths that are absorbed in a useful manner by blood analytes like glucose. Accordingly, in some embodiments, the data collection device 112 can be used on a person's non-dominant hand or arm.


The data collection device 112 can include a sensor 116 (or multiple sensors) that is coupled to a processing device or physiological monitor 118. In an embodiment, the sensor 116 and the monitor 118 are integrated together into a single unit. In another embodiment, the sensor 116 and the monitor 118 are separate from each other and communicate one with another in any suitable manner, such as via a wired or wireless connection. The sensor 116 and monitor 118 can be attachable and detachable from each other for the convenience of the user or caregiver, for ease of storage, sterility issues, or the like. The sensor 116 and the monitor 118 will now be further described.


In the depicted embodiment shown in FIG. 8, the sensor 116 includes an emitter 504, a tissue shaper 522, a set of detectors 506, and a front-end interface 508. The emitter 504 can serve as the source of optical radiation transmitted towards measurement site 102. As will be described in further detail below, the emitter 504 can include one or more sources of optical radiation, such as LEDs, laser diodes, incandescent bulbs with appropriate frequency-selective filters, combinations of the same, or the like. In an embodiment, the emitter 504 includes sets of optical sources that are capable of emitting visible and near-infrared optical radiation.


In some embodiments, the emitter 504 is used as a point optical source, and thus, the one or more optical sources of the emitter 504 can be located within a close distance to each other, such as within about a 2 mm to about 4 mm. The emitters 504 can be arranged in an array, such as is described in U.S. Publication No. 2006/0211924, filed Sep. 21, 2006, titled “Multiple Wavelength Sensor Emitters,” the disclosure of which is hereby incorporated by reference in its entirety. In particular, the emitters 504 can be arranged at least in part as described in paragraphs [0061] through [0068] of the aforementioned publication, which paragraphs are hereby incorporated specifically by reference. Other relative spatial relationships can be used to arrange the emitters 504.


For analytes like glucose, currently available non-invasive techniques often attempt to employ light near the water absorbance minima at or about 1600 nm. Typically, these devices and methods employ a single wavelength or single band of wavelengths at or about 1600 nm. However, to date, these techniques have been unable to adequately consistently measure analytes like glucose based on spectroscopy.


In contrast, the emitter 504 of the data collection device 112 can emit, in certain embodiments, combinations of optical radiation in various bands of interest. For example, in some embodiments, for analytes like glucose, the emitter 504 can emit optical radiation at three (3) or more wavelengths between about 1600 nm to about 1700 nm. In particular, the emitter 504 can emit optical radiation at or about 1610 nm, about 1640 nm, and about 1665 nm. In some circumstances, the use of three wavelengths within about 1600 nm to about 1700 nm enable sufficient SNRs of about 100 dB, which can result in a measurement accuracy of about 20 mg/dL or better for analytes like glucose.


In other embodiments, the emitter 504 can use two (2) wavelengths within about 1600 nm to about 1700 nm to advantageously enable SNRs of about 85 dB, which can result in a measurement accuracy of about 25-30 mg/dL or better for analytes like glucose. Furthermore, in some embodiments, the emitter 504 can emit light at wavelengths above about 1670 nm. Measurements at these wavelengths can be advantageously used to compensate or confirm the contribution of protein, water, and other non-hemoglobin species exhibited in measurements for analytes like glucose conducted between about 1600 nm and about 1700 nm. Of course, other wavelengths and combinations of wavelengths can be used to measure analytes and/or to distinguish other types of tissue, fluids, tissue properties, fluid properties, combinations of the same or the like.


For example, the emitter 504 can emit optical radiation across other spectra for other analytes. In particular, the emitter 504 can employ light wavelengths to measure various blood analytes or percentages (e.g., saturation) thereof. For example, in an embodiment, the emitter 504 can emit optical radiation in the form of pulses at wavelengths about 905 nm, about 1050 nm, about 1200 nm, about 1300 nm, about 1330 nm, about 1610 nm, about 1640 nm, and about 1665 nm. In another embodiment, the emitter 504 can emit optical radiation ranging from about 860 nm to about 950 nm, about 950 nm to about 1100 nm, about 1100 nm to about 1270 nm, about 1250 nm to about 1350 nm, about 1300 nm to about 1360 nm, and about 1590 nm to about 1700 nm. Of course, the emitter 504 can transmit any of a variety of wavelengths of visible or near-infrared optical radiation.


Due to the different responses of analytes to the different wavelengths, certain embodiments of the data collection device 112 can advantageously use the measurements at these different wavelengths to improve the accuracy of measurements. For example, the measurements of water from visible and infrared light can be used to compensate for water absorbance that is exhibited in the near-infrared wavelengths.


As briefly described above, the emitter 504 can include sets of light-emitting diodes (LEDs) as its optical source. The emitter 504 can use one or more top-emitting LEDs. In particular, in some embodiments, the emitter 504 can include top-emitting LEDs emitting light at about 850 nm to 1350 nm.


The emitter 504 can also use super luminescent LEDs (SLEDs) or side-emitting LEDs. In some embodiments, the emitter 504 can employ SLEDs or side-emitting LEDs to emit optical radiation at about 1600 nm to about 1700 nm. Emitter 504 can use SLEDs or side-emitting LEDs to transmit near infrared optical radiation because these types of sources can transmit at high power or relatively high power, e.g., about 40 mW to about 100 mW. This higher power capability can be useful to compensate or overcome the greater attenuation of these wavelengths of light in tissue and water. For example, the higher power emission can effectively compensate and/or normalize the absorption signal for light in the mentioned wavelengths to be similar in amplitude and/or effect as other wavelengths that can be detected by one or more photodetectors after absorption. However, the embodiments of the present disclosure do not necessarily require the use of high power optical sources. For example, some embodiments may be configured to measure analytes, such as total hemoglobin (tHb), oxygen saturation (SpO2), carboxyhemoglobin, methemoglobin, etc., without the use of high power optical sources like side emitting LEDs. Instead, such embodiments may employ other types of optical sources, such as top emitting LEDs. Alternatively, the emitter 504 can use other types of sources of optical radiation, such as a laser diode, to emit near-infrared light into the measurement site 502.


In addition, in some embodiments, in order to assist in achieving a comparative balance of desired power output between the LEDs, some of the LEDs in the emitter 504 can have a filter or covering that reduces and/or cleans the optical radiation from particular LEDs or groups of LEDs. For example, since some wavelengths of light can penetrate through tissue relatively well, LEDs, such as some or all of the top-emitting LEDs can use a filter or covering, such as a cap or painted dye. This can be useful in allowing the emitter 504 to use LEDs with a higher output and/or to equalize intensity of LEDs.


The data collection device 112 also includes a driver 520 that drives the emitter 504. The driver 520 can be a circuit or the like that is controlled by the monitor 118. For example, the driver 520 can provide pulses of current to the emitter 504. In an embodiment, the driver 520 drives the emitter 504 in a progressive fashion, such as in an alternating manner. The driver 520 can drive the emitter 504 with a series of pulses of about 1 milliwatt (mW) for some wavelengths that can penetrate tissue relatively well and from about 40 mW to about 100 mW for other wavelengths that tend to be significantly absorbed in tissue. A wide variety of other driving powers and driving methodologies can be used in various embodiments.


The driver 520 can be synchronized with other parts of the sensor 116 and can minimize or reduce jitter in the timing of pulses of optical radiation emitted from the emitter 504. In some embodiments, the driver 520 is capable of driving the emitter 504 to emit optical radiation in a pattern that varies by less than about 10 parts-per-million.


The detectors 506 capture and measure light from the measurement site 502. For example, the detectors 506 can capture and measure light transmitted from the emitter 504 that has been attenuated or reflected from the tissue in the measurement site 502. The detectors 506 can output a detector signal 524 responsive to the light captured or measured. The detectors 506 can be implemented using one or more photodiodes, phototransistors, or the like.


In addition, the detectors 506 can be arranged with a spatial configuration to provide a variation of path lengths among at least some of the detectors 506. That is, some of the detectors 506 can have the substantially, or from the perspective of the processing algorithm, effectively, the same path length from the emitter 504. However, according to an embodiment, at least some of the detectors 506 can have a different path length from the emitter 504 relative to other of the detectors 506. Variations in path lengths can be helpful in allowing the use of a bulk signal stream from the detectors 506. In some embodiments, the detectors 506 may employ a linear spacing, a logarithmic spacing, or a two or three dimensional matrix of spacing, or any other spacing scheme in order to provide an appropriate variation in path lengths.


The front-end interface 508 provides an interface that adapts the output of the detectors 506, which is responsive to desired physiological parameters. For example, the front-end interface 508 can adapt a signal 524 received from one or more of the detectors 506 into a form that can be processed by the monitor 118, for example, by a signal processor 510 in the monitor 118. The front-end interface 508 can have its components assembled in the sensor 116, in the monitor 118, in connecting cabling (if used), combinations of the same, or the like. The location of the front-end interface 508 can be chosen based on various factors including space desired for components, desired noise reductions or limits, desired heat reductions or limits, and the like.


The front-end interface 508 can be coupled to the detectors 506 and to the signal processor 510 using a bus, wire, electrical or optical cable, flex circuit, or some other form of signal connection. The front-end interface 508 can also be at least partially integrated with various components, such as the detectors 506. For example, the front-end interface 508 can include one or more integrated circuits that are on the same circuit board as the detectors 506. Other configurations can also be used.


The front-end interface 508 can be implemented using one or more amplifiers, such as transimpedance amplifiers, that are coupled to one or more analog to digital converters (ADCs) (which can be in the monitor 118), such as a sigma-delta ADC. A transimpedance-based front-end interface 508 can employ single-ended circuitry, differential circuitry, and/or a hybrid configuration. A transimpedance-based front-end interface 508 can be useful for its sampling rate capability and freedom in modulation/demodulation algorithms. For example, this type of front-end interface 508 can advantageously facilitate the sampling of the ADCs being synchronized with the pulses emitted from the emitter 504.


The ADC or ADCs can provide one or more outputs into multiple channels of digital information for processing by the signal processor 510 of the monitor 118. Each channel can correspond to a signal output from a detector 506.


In some embodiments, a programmable gain amplifier (PGA) can be used in combination with a transimpedance-based front-end interface 508. For example, the output of a transimpedance-based front-end interface 508 can be output to a PGA that is coupled with an ADC in the monitor 118. A PGA can be useful in order to provide another level of amplification and control of the stream of signals from the detectors 506. Alternatively, the PGA and ADC components can be integrated with the transimpedance-based front-end interface 508 in the sensor 116.


In another embodiment, the front-end interface 508 can be implemented using switched-capacitor circuits. A switched-capacitor-based front-end interface 508 can be useful for, in certain embodiments, its resistor-free design and analog averaging properties. In addition, a switched-capacitor-based front-end interface 508 can be useful because it can provide a digital signal to the signal processor 510 in the monitor 118.


As shown in FIG. 8, the monitor 118 can include the signal processor 510 and a user interface, such as a display 512. The monitor 109 can also include optional outputs alone or in combination with the display 512, such as a storage device 514 and a network interface 516. In an embodiment, the signal processor 510 includes processing logic that determines measurements for desired analytes, such as glucose, based on the signals received from the detectors 506. The signal processor 510 can be implemented using one or more microprocessors or subprocessors (e.g., cores), digital signal processors, application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), combinations of the same, and the like.


The signal processor 510 can provide various signals that control the operation of the sensor 116. For example, the signal processor 510 can provide an emitter control signal to the driver 520. This control signal can be useful in order to synchronize, minimize, or reduce jitter in the timing of pulses emitted from the emitter 504. Accordingly, this control signal can be useful in order to cause optical radiation pulses emitted from the emitter 504 to follow a precise timing and consistent pattern. For example, when a transimpedance-based front-end interface 508 is used, the control signal from the signal processor 510 can provide synchronization with the ADC in order to avoid aliasing, cross-talk, and the like. As also shown, an optional memory 518 can be included in the front-end interface 508 and/or in the signal processor 510. This memory 518 can serve as a buffer or storage location for the front-end interface 508 and/or the signal processor 510, among other uses.


The user interface 112 can provide an output, e.g., on a display, for presentation to a user of the data collection device 112. The user interface 112 can be implemented as a touch-screen display, an LCD display, an organic LED display, or the like. In addition, the user interface 112 can be manipulated to allow for measurement on the non-dominant side of patient. For example, the user interface 112 can include a flip screen, a screen that can be moved from one side to another on the monitor 118, or can include an ability to reorient its display indicia responsive to user input or device orientation. In alternative embodiments, the data collection device 112 can be provided without a user interface 112 and can simply provide an output signal to a separate display or system.


A storage device 514 and a network interface 516 represent other optional output connections that can be included in the monitor 118. The storage device 514 can include any computer-readable medium, such as a memory device, hard disk storage, EEPROM, flash drive, or the like. The various software and/or firmware applications can be stored in the storage device 514, which can be executed by the signal processor 510 or another processor of the monitor 118. The network interface 516 can be a serial bus port (RS-232/RS-485), a Universal Serial Bus (USB) port, an Ethernet port, a wireless interface (e.g., Wi-Fi such as any 802.1x interface, including an internal wireless card), or other suitable communication device(s) that allows the monitor 118 to communicate and share data with other devices. The monitor 118 can also include various other components not shown, such as a microprocessor, graphics processor, or controller to output the user interface 112, to control data communications, to compute data trending, or to perform other operations.


Although not shown in the depicted embodiment, the data collection device 112 can include various other components or can be configured in different ways. For example, the sensor 116 can have both the emitter 504 and detectors 506 on the same side of the measurement site 502 and use reflectance to measure analytes. The data collection device 112 can also include a sensor that measures the power of light emitted from the emitter 504.


Conclusion


In general, the word “module,” as used herein, refers to logic embodied in hardware or firmware, or to a collection of software instructions, possibly having entry and exit points, written in a programming language, such as, for example, Java, Lua, C or C++. A software module may be compiled and linked into an executable program, installed in a shared library, or may be written in an interpreted programming language such as, for example, BASIC, Perl, Python or in a scripting language. It will be appreciated that software modules may be callable from other modules or from themselves, and/or may be invoked in response to detected events or interrupts. Software instructions may be embedded in firmware, which is stored on a memory such as an EPROM. It will be further appreciated that hardware modules may be comprised of connected logic units, such as gates and flip-flops, and/or may be comprised of programmable units, such as programmable gate arrays or processors. The modules described herein are preferably implemented as software modules, but may be represented in hardware or firmware. Generally, the modules described herein refer to logical modules that may be combined with other modules or divided into sub-modules despite their physical organization or storage.


Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.


While certain embodiments of the inventions disclosed herein have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions disclosed herein. Indeed, the novel methods and systems described herein can be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein can be made without departing from the spirit of the inventions disclosed herein. The claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of certain of the inventions disclosed herein.

Claims
  • 1. An electronic device for monitoring a user, comprising: a motion sensor configured to gather motion sensor data, of the user;a pulse rate sensor configured to measure pulse rate of the user;a location determination module configured to determine a location of the electronic device; and a processing system connected with the motion sensor,a location determination module, and the pulse rate sensor;the processing, system configured to: determine a location of the electronic device using the location determination module;monitor the pulse rate using the pulse rate sensor;determine a level of exercise activity based on a correlation of the motion sensor data and the monitored pulse rate;manage an exercise activity flag based on the determined level of exercise activity; andin response to determining that the pulse rate exceeds a threshold and that the user is not exercising based on the exercise activity flag: transmit an alert to an emergency service system; access one or more of a contact in an electronic address book associated with the processing system;determine, a proximity of the one or more of a contact relative to the determined location of the electronic device;contact the one or more of a contact based on the determined location of the electronic device; andprovide the determined location of the user of the electronic device in the alert.
  • 2. The electronic device of claim 1, wherein the emergency service system is selected based on the determined location of the electronic device.
  • 3. The electronic device of claim 1, wherein the processing system is further configured to determine nearby medical devices or equipment and alert the user to use the nearby medical devices or equipment.
  • 4. A method for monitoring a user of an electronic device, comprising: gathering, using a motion sensor, motion sensor data of the user;pleasuring, using a pulse rate sensor, a pulse rate of the user;determining a location of an electronic device, wherein the electronic device includes the motion sensor and the pulse rate sensor;determining a location of the electronic device using a location determination module;monitoring the pulse rate using the pulse rate sensor;determining a level of exercise activity based on a correlation of the motion sensor data and the monitored pulse rate;managing an exercise activity flag based on the determined level of physical activity; determining that the pulse rate exceeds a threshold and that the user is not exercising based on the exercise activity flag;transmitting an alert to an emergency service system based on the determination that the pulse rate exceeded the threshold and that the user is not exercising based on the exercise activity flag; accessing one or more of a contact in an electronic address book associated with a processing system;determining a proximity of the one or more of a contact relative to the determined location of the electronic device;contacting the one or more of a contact based on the determined location of the electronic device; andproviding the determined location of the user of the electronic device in the alert.
  • 5. The electronic method of claim 4, wherein the emergency service system is selected based on the determined location of the electronic device.
  • 6. The electronic method of claim 4, wherein the processing system is further configured to determine nearby medical devices or equipment and alert the user to use the nearby medical devices or equipment.
US Referenced Citations (1401)
Number Name Date Kind
4901728 Hutchison Feb 1990 A
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
5009230 Hutchinson Apr 1991 A
5041187 Hink et al. Aug 1991 A
5069213 Polczynski Dec 1991 A
5163438 Gordon et al. Nov 1992 A
5319355 Russek Jun 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5370114 Wong et al. Dec 1994 A
5377676 Vari et al. Jan 1995 A
D359546 Savage et al. Jun 1995 S
5431170 Mathews Jul 1995 A
5436499 Namavar et al. Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
5452717 Branigan et al. Sep 1995 A
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5533509 Koashi et al. Jul 1996 A
5533511 Kaspari et al. Jul 1996 A
5534851 Russek Jul 1996 A
5553616 Ham et al. Sep 1996 A
5561275 Savage et al. Oct 1996 A
5562002 Lalin Oct 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5632272 Diab et al. May 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5664109 Johnson et al. Sep 1997 A
5671914 Kalkhoran et al. Sep 1997 A
5685299 Diab et al. Nov 1997 A
5726440 Kalkhoran et al. Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5747806 Khalil et al. May 1998 A
5750994 Schlager May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5782757 Diab et al. Jul 1998 A
5785659 Caro et al. Jul 1998 A
5791347 Flaherty et al. Aug 1998 A
5810734 Caro et al. Sep 1998 A
5820622 Gross et al. Oct 1998 A
5823950 Diab et al. Oct 1998 A
5823966 Buchert Oct 1998 A
5830131 Caro et al. Nov 1998 A
5833618 Caro et al. Nov 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5885211 Eppstein et al. Mar 1999 A
5890929 Mills et al. Apr 1999 A
5899855 Brown May 1999 A
5904654 Wohltmann et al. May 1999 A
5919134 Diab Jul 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5961451 Reber et al. Oct 1999 A
5987343 Kinast Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6010937 Karam et al. Jan 2000 A
6011986 Diab et al. Jan 2000 A
6027452 Flaherty et al. Feb 2000 A
6036642 Diab et al. Mar 2000 A
6040578 Malin et al. Mar 2000 A
6045509 Caro et al. Apr 2000 A
6061582 Small et al. May 2000 A
6064896 Rosenthal May 2000 A
6066204 Haven May 2000 A
6067462 Diab et al. May 2000 A
6081735 Diab et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6110522 Lepper, Jr. et al. Aug 2000 A
6115673 Malin et al. Sep 2000 A
6124597 Shehada Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6144868 Parker Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6168563 Brown Jan 2001 B1
6184521 Coffin, IV et al. Feb 2001 B1
6206830 Diab et al. Mar 2001 B1
6229856 Diab et al. May 2001 B1
6232609 Snyder et al. May 2001 B1
6236872 Diab et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6253097 Aronow et al. Jun 2001 B1
6255708 Sudharsanan et al. Jul 2001 B1
6256523 Diab et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6295506 Heinonen et al. Sep 2001 B1
6301493 Marro et al. Oct 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6325761 Jay Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6360114 Diab et al. Mar 2002 B1
6368283 Xu et al. Apr 2002 B1
6371921 Caro et al. Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6388240 Schulz et al. May 2002 B2
6397091 Diab et al. May 2002 B2
6411373 Garside et al. Jun 2002 B1
6415167 Blank et al. Jul 2002 B1
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6477393 Chou Nov 2002 B1
6487429 Hockersmith et al. Nov 2002 B2
6494830 Wessel Dec 2002 B1
6501975 Diab et al. Dec 2002 B2
6505059 Kollias et al. Jan 2003 B1
6515273 Al-Ali Feb 2003 B2
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6534012 Hazen et al. Mar 2003 B1
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6561978 Conn et al. May 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587196 Stippick et al. Jul 2003 B1
6587199 Luu Jul 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6597933 Kiani et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6632181 Flaherty et al. Oct 2003 B2
6635559 Greenwald et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6640117 Makarewicz et al. Oct 2003 B2
6641533 Causey, III et al. Nov 2003 B2
6643530 Diab et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
6656114 Pulsen et al. Dec 2003 B1
6658276 Kianl et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6662030 Khalil et al. Dec 2003 B2
6671531 Al-Ali et al. Dec 2003 B2
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6691043 Ribeiro, Jr. Feb 2004 B2
6697656 Al-Ali Feb 2004 B1
6697657 Shehada et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699188 Wessel Mar 2004 B2
6699194 Diab et al. Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6721582 Trepagnier et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6735459 Parker May 2004 B2
6738652 Mattu et al. May 2004 B2
6745060 Diab et al. Jun 2004 B2
6748250 Berman et al. Jun 2004 B1
6760607 Al-Ali Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6788965 Ruchti et al. Sep 2004 B2
6792300 Diab et al. Sep 2004 B1
6809653 Mann et al. Oct 2004 B1
6813511 Diab et al. Nov 2004 B2
6816241 Grubisic Nov 2004 B2
6816741 Diab Nov 2004 B2
6819950 Mills Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6830711 Mills et al. Dec 2004 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6852083 Caro et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6876931 Lorenz et al. Apr 2005 B2
6898451 Wuori May 2005 B2
6898452 Al-Ali et al. May 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931268 Kiani-Azarbayjany et al. Aug 2005 B1
6934570 Kiani et al. Aug 2005 B2
6939305 Flaherty et al. Sep 2005 B2
6943348 Coffin, IV Sep 2005 B1
6949070 Ishler Sep 2005 B2
6950687 Al-Ali Sep 2005 B2
6954662 Freger et al. Oct 2005 B2
6956649 Acosta et al. Oct 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6979812 Al-Ali Dec 2005 B2
6985764 Mason et al. Jan 2006 B2
6990364 Ruchti et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
6999904 Weber et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7039449 Al-Ali May 2006 B2
7041060 Flaherty et al. May 2006 B2
7044918 Diab May 2006 B2
7048687 Reuss et al. May 2006 B1
7067893 Mills et al. Jun 2006 B2
D526719 Richie, Jr. et al. Aug 2006 S
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
D529616 Deros et al. Oct 2006 S
7132641 Schulz et al. Nov 2006 B2
7133710 Acosta et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7149561 Diab Dec 2006 B2
7163511 Conn et al. Jan 2007 B2
7179226 Crothall et al. Feb 2007 B2
7186966 Al-Ali Mar 2007 B2
7190261 Al-Ali Mar 2007 B2
7215984 Diab May 2007 B2
7215986 Diab May 2007 B2
7221971 Diab May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7225007 Al-Ali May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7231263 Choi Jun 2007 B2
7239905 Kiani-Azarbayjany et al. Jul 2007 B2
7241265 Cummings et al. Jul 2007 B2
7245953 Parker Jul 2007 B1
7248907 Hogan Jul 2007 B2
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7272425 Al-Ali Sep 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7295866 Al-Ali Nov 2007 B2
7328053 Diab et al. Feb 2008 B1
7332784 Mills et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
7344500 Talbot et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7355512 Al-Ali Apr 2008 B1
7356365 Schurman Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7373194 Weber et al. May 2008 B2
7376453 Diab et al. May 2008 B1
7377794 Al-Ali et al. May 2008 B2
7377899 Weber et al. May 2008 B2
7383070 Diab et al. Jun 2008 B2
7395158 Monfre et al. Jul 2008 B2
7400257 Rivas Jul 2008 B2
7403805 Abreu Jul 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7428432 Ali et al. Sep 2008 B2
7430445 Esenaliev et al. Sep 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7440786 Hockersmith et al. Oct 2008 B2
7440787 Diab Oct 2008 B2
7454240 Diab et al. Nov 2008 B2
7467002 Weber et al. Dec 2008 B2
7469157 Diab et al. Dec 2008 B2
7471969 Diab et al. Dec 2008 B2
7471971 Diab et al. Dec 2008 B2
7483729 Al-Ali et al. Jan 2009 B2
7483730 Diab et al. Jan 2009 B2
7489958 Diab et al. Feb 2009 B2
7496391 Diab et al. Feb 2009 B2
7496393 Diab et al. Feb 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7499741 Diab et al. Mar 2009 B2
7499835 Weber et al. Mar 2009 B2
7500950 Al-Ali et al. Mar 2009 B2
7509154 Diab et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7514725 Wojtczuk et al. Apr 2009 B2
7519327 White Apr 2009 B2
7519406 Blank et al. Apr 2009 B2
7526328 Diab et al. Apr 2009 B2
D592507 Wachman et al. May 2009 S
7529537 Ford May 2009 B2
7530942 Diab May 2009 B1
7530949 Al Ali et al. May 2009 B2
7530955 Diab et al. May 2009 B2
7539532 Tran May 2009 B2
7563110 Al-Ali et al. Jul 2009 B2
7593230 Abul-Haj et al. Sep 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7601123 Tweed et al. Oct 2009 B2
7606608 Blank et al. Oct 2009 B2
7618375 Flaherty Nov 2009 B2
7620674 Ruchti et al. Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7629039 Eckerbom et al. Dec 2009 B2
7640140 Ruchti et al. Dec 2009 B2
7647083 Al-Ali et al. Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
7689202 Ford Mar 2010 B2
D614305 Al-Ali et al. Apr 2010 S
7697966 Monfre et al. Apr 2010 B2
7698105 Ruchti et al. Apr 2010 B2
RE41317 Parker May 2010 E
RE41333 Blank et al. May 2010 E
7726209 Ruotoistenmäki Jun 2010 B2
7729733 Al-Ali et al. Jun 2010 B2
7734320 Al-Ali Jun 2010 B2
7739130 Surwit et al. Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7761128 Al-Ali et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621516 Kiani et al. Aug 2010 S
7791155 Diab Sep 2010 B2
7801581 Diab Sep 2010 B2
7822452 Schurman et al. Oct 2010 B2
RE41912 Parker Nov 2010 E
7844313 Kiani et al. Nov 2010 B2
7844314 Al-Ali Nov 2010 B2
7844315 Al-Ali Nov 2010 B2
7862523 Ruotoistenmaki Jan 2011 B2
7865222 Weber et al. Jan 2011 B2
7873497 Weber et al. Jan 2011 B2
7880606 Al-Ali Feb 2011 B2
7880626 Al-Ali et al. Feb 2011 B2
7891355 Al-Ali et al. Feb 2011 B2
7894868 Al-Ali et al. Feb 2011 B2
7899507 Al-Ali et al. Mar 2011 B2
7899518 Trepagnier et al. Mar 2011 B2
7904132 Weber et al. Mar 2011 B2
7909772 Popov et al. Mar 2011 B2
7910875 Al-Ali Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7937130 Diab et al. May 2011 B2
7941199 Kiani May 2011 B2
7951086 Flaherty et al. May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7962190 Diab et al. Jun 2011 B1
7976472 Kiani Jul 2011 B2
7988637 Diab Aug 2011 B2
7990382 Kiani Aug 2011 B2
7991446 Ali et al. Aug 2011 B2
8000761 Al-Ali Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8019400 Diab et al. Sep 2011 B2
8028701 Al-Ali et al. Oct 2011 B2
8029765 Bellott et al. Oct 2011 B2
8036727 Schurman et al. Oct 2011 B2
8036728 Diab et al. Oct 2011 B2
8046040 Ali et al. Oct 2011 B2
8046041 Diab et al. Oct 2011 B2
8046042 Diab et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8126528 Diab et al. Feb 2012 B2
8128572 Diab et al. Mar 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8145287 Diab et al. Mar 2012 B2
8150487 Diab et al. Apr 2012 B2
8175672 Parker May 2012 B2
8180420 Diab et al. May 2012 B2
8182443 Kiani May 2012 B1
8185180 Diab et al. May 2012 B2
8190223 Al-Ali et al. May 2012 B2
8190227 Diab et al. May 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8204566 Schurman et al. Jun 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8228181 Al-Ali Jul 2012 B2
8229532 Davis Jul 2012 B2
8229533 Diab et al. Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8244325 Al-Ali et al. Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8255027 Al-Ali et al. Aug 2012 B2
8255028 Al-Ali et al. Aug 2012 B2
8260577 Weber et al. Sep 2012 B2
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
8280473 Al-Ali Oct 2012 B2
8289130 Nakajima et al. Oct 2012 B2
8301217 Al-Ali et al. Oct 2012 B2
8306596 Schurman et al. Nov 2012 B2
8310336 Muhsin et al. Nov 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
RE43860 Parker Dec 2012 E
8323189 Tran Dec 2012 B2
8337403 Al-Ali et al. Dec 2012 B2
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8359080 Diab et al. Jan 2013 B2
8364223 Al-Ali et al. Jan 2013 B2
8364226 Diab et al. Jan 2013 B2
8364389 Dorogusker et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8385995 Al-Ali et al. Feb 2013 B2
8385996 Smith et al. Feb 2013 B2
8388353 Kiani et al. Mar 2013 B2
8399822 Al-Ali Mar 2013 B2
8401602 Kiani Mar 2013 B2
8405608 Al-Ali et al. Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8423106 Lamego et al. Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437825 Dalvi et al. May 2013 B2
8455290 Siskavich Jun 2013 B2
8457703 Al-Ali Jun 2013 B2
8457707 Kiani Jun 2013 B2
8463349 Diab et al. Jun 2013 B2
8466286 Bellott et al. Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8483787 Al-Ali et al. Jul 2013 B2
8489364 Weber et al. Jul 2013 B2
8498684 Weber et al. Jul 2013 B2
8504128 Blank et al. Aug 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
8529301 Al-Ali et al. Sep 2013 B2
8532727 Ali et al. Sep 2013 B2
8532728 Diab et al. Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8547209 Kiani et al. Oct 2013 B2
8548548 Al-Ali Oct 2013 B2
8548549 Schurman et al. Oct 2013 B2
8548550 Al-Ali et al. Oct 2013 B2
8560032 Al-Ali et al. Oct 2013 B2
8560034 Diab et al. Oct 2013 B1
8570167 Al-Ali Oct 2013 B2
8570503 Vo et al. Oct 2013 B2
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8577431 Lamego et al. Nov 2013 B2
8581732 Al-Ali et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8600467 Al-Ali et al. Dec 2013 B2
8606342 Diab Dec 2013 B2
8615290 Lin et al. Dec 2013 B2
8626255 Al-Ali et al. Jan 2014 B2
8630691 Lamego et al. Jan 2014 B2
8634889 Al-Ali et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8655004 Prest et al. Feb 2014 B2
8663107 Kiani Mar 2014 B2
8666468 Al-Ali Mar 2014 B1
8667967 Al-Ali et al. Mar 2014 B2
8670811 O'Reilly Mar 2014 B2
8670814 Diab et al. Mar 2014 B2
8676286 Weber et al. Mar 2014 B2
8682407 Al-Ali Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
8688183 Bruinsma et al. Apr 2014 B2
8690799 Telfort et al. Apr 2014 B2
8700112 Kiani Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8706179 Parker Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8718735 Lamego et al. May 2014 B2
8718737 Diab et al. May 2014 B2
8718738 Blank et al. May 2014 B2
8720249 Al-Ali May 2014 B2
8721541 Al-Ali et al. May 2014 B2
8721542 Al-Ali et al. May 2014 B2
8723677 Kiani May 2014 B1
8740792 Kiani et al. Jun 2014 B1
8754776 Poeze et al. Jun 2014 B2
8755535 Telfort et al. Jun 2014 B2
8755856 Diab et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8760517 Sarwar et al. Jun 2014 B2
8761850 Lamego Jun 2014 B2
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8777634 Kiani et al. Jul 2014 B2
8781543 Diab et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8781549 Al-Ali et al. Jul 2014 B2
8788003 Schurman et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8831700 Schurman et al. Sep 2014 B2
8840549 Al-Ali et al. Sep 2014 B2
8847740 Kiani et al. Sep 2014 B2
8849365 Smith et al. Sep 2014 B2
8852094 Al-Ali et al. Oct 2014 B2
8852994 Wojtzuk et al. Oct 2014 B2
8868147 Stippick et al. Oct 2014 B2
8868150 Al-Ali et al. Oct 2014 B2
8870792 Al-Ali et al. Oct 2014 B2
8886271 Kiani et al. Nov 2014 B2
8888539 Al-Ali et al. Nov 2014 B2
8888708 Diab et al. Nov 2014 B2
8892180 Weber et al. Nov 2014 B2
8897847 Al-Ali Nov 2014 B2
8909310 Lamego et al. Dec 2014 B2
8911377 Al-Ali Dec 2014 B2
8912909 Al-Ali et al. Dec 2014 B2
8920317 Al-Ali et al. Dec 2014 B2
8921699 Al-Ali et al. Dec 2014 B2
8922382 Al-Ali et al. Dec 2014 B2
8929964 Al-Ali et al. Jan 2015 B2
8942777 Diab et al. Jan 2015 B2
8948834 Diab et al. Feb 2015 B2
8948835 Diab Feb 2015 B2
8965471 Lamego Feb 2015 B2
8983564 Al-Ali Mar 2015 B2
8989831 Al-Ali et al. Mar 2015 B2
8996085 Kiani et al. Mar 2015 B2
8998809 Kiani Apr 2015 B2
9028429 Telfort et al. May 2015 B2
9037207 Al-Ali et al. May 2015 B2
9060721 Reichgott et al. Jun 2015 B2
9066666 Kiani Jun 2015 B2
9066680 Al-Ali et al. Jun 2015 B1
9072437 Paalasmaa Jul 2015 B2
9072474 Al-Ali et al. Jul 2015 B2
9078560 Schurman et al. Jul 2015 B2
9081889 Ingrassia, Jr. et al. Jul 2015 B2
9084569 Weber et al. Jul 2015 B2
9095316 Welch et al. Aug 2015 B2
9106038 Telfort et al. Aug 2015 B2
9107625 Telfort et al. Aug 2015 B2
9107626 Al-Ali et al. Aug 2015 B2
9113831 Al-Ali Aug 2015 B2
9113832 Al-Ali Aug 2015 B2
9119595 Lamego Sep 2015 B2
9131881 Diab et al. Sep 2015 B2
9131882 Al-Ali et al. Sep 2015 B2
9131883 Al-Ali Sep 2015 B2
9131917 Telfort et al. Sep 2015 B2
9138180 Coverston et al. Sep 2015 B1
9138182 Al-Ali et al. Sep 2015 B2
9138192 Weber et al. Sep 2015 B2
9142117 Muhsin et al. Sep 2015 B2
9153112 Kiani et al. Oct 2015 B1
9153121 Kiani et al. Oct 2015 B2
9161696 Al-Ali et al. Oct 2015 B2
9161713 Al-Ali et al. Oct 2015 B2
9167995 Lamego et al. Oct 2015 B2
9176141 Al-Ali et al. Nov 2015 B2
9186102 Bruinsma et al. Nov 2015 B2
9192312 Al-Ali Nov 2015 B2
9192329 Al-Ali Nov 2015 B2
9192351 Telfort et al. Nov 2015 B1
9195385 Al-Ali et al. Nov 2015 B2
9210566 Ziemianska et al. Dec 2015 B2
9211072 Kiani Dec 2015 B2
9211095 Al-Ali Dec 2015 B1
9218454 Kiani et al. Dec 2015 B2
9226696 Kiani Jan 2016 B2
9241662 Al-Ali et al. Jan 2016 B2
9245668 Vo et al. Jan 2016 B1
9259185 Abdul-Hafiz et al. Feb 2016 B2
9267572 Barker et al. Feb 2016 B2
9277880 Poeze et al. Mar 2016 B2
9289167 Diab et al. Mar 2016 B2
9295421 Kiani et al. Mar 2016 B2
9307928 Al-Ali et al. Apr 2016 B1
9311382 Varoglu et al. Apr 2016 B2
9323894 Kiani Apr 2016 B2
D755392 Hwang et al. May 2016 S
9326712 Kiani May 2016 B1
9333316 Kiani May 2016 B2
9339220 Lamego et al. May 2016 B2
9341565 Lamego et al. May 2016 B2
9351673 Diab et al. May 2016 B2
9351675 Al-Ali et al. May 2016 B2
9357665 Myers et al. May 2016 B2
9364181 Kiani et al. Jun 2016 B2
9368671 Wojtczuk et al. Jun 2016 B2
9370325 Al-Ali et al. Jun 2016 B2
9370326 McHale et al. Jun 2016 B2
9370335 Al-Ali et al. Jun 2016 B2
9375185 Ali et al. Jun 2016 B2
9386953 Al-Ali Jul 2016 B2
9386961 Al-Ali et al. Jul 2016 B2
9392945 Al-Ali et al. Jul 2016 B2
9397448 Al-Ali et al. Jul 2016 B2
9408542 Kinast et al. Aug 2016 B1
9436645 Al-Ali et al. Sep 2016 B2
9445759 Lamego et al. Sep 2016 B1
9466919 Kiani et al. Oct 2016 B2
9474474 Lamego et al. Oct 2016 B2
9480422 Al-Ali Nov 2016 B2
9480435 Olsen Nov 2016 B2
9489081 Anzures et al. Nov 2016 B2
9492110 Al-Ali et al. Nov 2016 B2
9497534 Prest et al. Nov 2016 B2
9510779 Poeze et al. Dec 2016 B2
9517024 Kiani et al. Dec 2016 B2
9526430 Srinivas et al. Dec 2016 B2
9532722 Lamego et al. Jan 2017 B2
9538949 Al-Ali et al. Jan 2017 B2
9538980 Telfort et al. Jan 2017 B2
9549696 Lamego et al. Jan 2017 B2
9553625 Hatanaka et al. Jan 2017 B2
9554737 Schurman et al. Jan 2017 B2
9560996 Kiani Feb 2017 B2
9560998 Al-Ali et al. Feb 2017 B2
9566019 Al-Ali et al. Feb 2017 B2
9579039 Jansen et al. Feb 2017 B2
9591975 Dalvi et al. Mar 2017 B2
9593969 King Mar 2017 B2
9622692 Lamego et al. Apr 2017 B2
9622693 Diab Apr 2017 B2
D788312 Al-Ali et al. May 2017 S
9636055 Al-Ali et al. May 2017 B2
9636056 Al-Ali May 2017 B2
9649054 Lamego et al. May 2017 B2
9651405 Gowreesunker et al. May 2017 B1
9662052 Al-Ali et al. May 2017 B2
9668676 Culbert Jun 2017 B2
9668679 Schurman et al. Jun 2017 B2
9668680 Bruinsma et al. Jun 2017 B2
9668703 Al-Ali Jun 2017 B2
9675286 Diab Jun 2017 B2
9687160 Kiani Jun 2017 B2
9693719 Al-Ali et al. Jul 2017 B2
9693737 Al-Ali Jul 2017 B2
9697928 Al-Ali et al. Jul 2017 B2
9699546 Qian et al. Jul 2017 B2
9716937 Qian et al. Jul 2017 B2
9717425 Kiani et al. Aug 2017 B2
9717458 Lamego et al. Aug 2017 B2
9723997 Lamego Aug 2017 B1
9724016 Al-Ali et al. Aug 2017 B1
9724024 Al-Ali Aug 2017 B2
9724025 Kiani et al. Aug 2017 B1
9730640 Diab et al. Aug 2017 B2
9743887 Al-Ali et al. Aug 2017 B2
9749232 Sampath et al. Aug 2017 B2
9750442 Olsen Sep 2017 B2
9750443 Smith et al. Sep 2017 B2
9750461 Telfort Sep 2017 B1
9775545 Al-Ali et al. Oct 2017 B2
9775546 Diab et al. Oct 2017 B2
9775570 Al-Ali Oct 2017 B2
9778079 Al-Ali et al. Oct 2017 B1
9781984 Baranski et al. Oct 2017 B2
9782077 Lamego et al. Oct 2017 B2
9782110 Kiani Oct 2017 B2
9787568 Lamego et al. Oct 2017 B2
9788735 Al-Ali Oct 2017 B2
9788768 Al-Ali et al. Oct 2017 B2
9795300 Al-Ali Oct 2017 B2
9795310 Al-Ali Oct 2017 B2
9795358 Telfort et al. Oct 2017 B2
9795739 Al-Ali et al. Oct 2017 B2
9801556 Kiani Oct 2017 B2
9801588 Weber et al. Oct 2017 B2
9808188 Perea et al. Nov 2017 B1
9814418 Weber et al. Nov 2017 B2
9820658 Tran Nov 2017 B2
9820691 Kiani Nov 2017 B2
9833152 Kiani et al. Dec 2017 B2
9833180 Shakespeare et al. Dec 2017 B2
9838775 Qian et al. Dec 2017 B2
9839379 Al-Ali et al. Dec 2017 B2
9839381 Weber et al. Dec 2017 B1
9847002 Kiani et al. Dec 2017 B2
9847749 Kiani et al. Dec 2017 B2
9848800 Lee et al. Dec 2017 B1
9848806 Al-Ali et al. Dec 2017 B2
9848807 Lamego Dec 2017 B2
9848823 Raghuram et al. Dec 2017 B2
9861298 Eckerbom et al. Jan 2018 B2
9861304 Al-Ali et al. Jan 2018 B2
9861305 Weber et al. Jan 2018 B1
9866671 Thompson et al. Jan 2018 B1
9867575 Maani et al. Jan 2018 B2
9867578 Al-Ali et al. Jan 2018 B2
9872623 Al-Ali Jan 2018 B2
9876320 Coverston et al. Jan 2018 B2
9877650 Muhsin et al. Jan 2018 B2
9877686 Al-Ali et al. Jan 2018 B2
9891079 Dalvi Feb 2018 B2
9895107 Al-Ali et al. Feb 2018 B2
9898049 Myers et al. Feb 2018 B2
9913617 Al-Ali et al. Mar 2018 B2
9918646 Singh Alvarado et al. Mar 2018 B2
9924893 Schurman et al. Mar 2018 B2
9924897 Abdul-Hafiz Mar 2018 B1
9936917 Poeze et al. Apr 2018 B2
9943269 Muhsin et al. Apr 2018 B2
9949676 Al-Ali Apr 2018 B2
9952095 Hotelling et al. Apr 2018 B1
9955937 Telfort May 2018 B2
9965946 Al-Ali et al. May 2018 B2
9980667 Kiani et al. May 2018 B2
D820865 Muhsin et al. Jun 2018 S
9986919 Lamego et al. Jun 2018 B2
9986952 Dalvi et al. Jun 2018 B2
9989560 Poeze et al. Jun 2018 B2
9993207 Al-Ali et al. Jun 2018 B2
10007758 Al-Ali et al. Jun 2018 B2
D822215 Al-Ali et al. Jul 2018 S
D822216 Barker et al. Jul 2018 S
10010276 Al-Ali et al. Jul 2018 B2
10032002 Kiani et al. Jul 2018 B2
10039080 Miller et al. Jul 2018 B2
10039482 Al-Ali et al. Aug 2018 B2
10052037 Kinast et al. Aug 2018 B2
10055121 Chaudhri et al. Aug 2018 B2
10058275 Al-Ali et al. Aug 2018 B2
10064562 Al-Ali Sep 2018 B2
10066970 Gowreesunker et al. Sep 2018 B2
10076257 Lin et al. Sep 2018 B2
10078052 Ness et al. Sep 2018 B2
10086138 Novak, Jr. Oct 2018 B1
10092200 Al-Ali et al. Oct 2018 B2
10092249 Kiani et al. Oct 2018 B2
10098550 Al-Ali et al. Oct 2018 B2
10098591 Al-Ali et al. Oct 2018 B2
10098610 Al-Ali et al. Oct 2018 B2
10111591 Dyell et al. Oct 2018 B2
D833624 DeJong et al. Nov 2018 S
10123726 Al-Ali et al. Nov 2018 B2
10123729 Dyell et al. Nov 2018 B2
10130289 Al-Ali et al. Nov 2018 B2
10130291 Schurman et al. Nov 2018 B2
D835282 Barker et al. Dec 2018 S
D835283 Barker et al. Dec 2018 S
D835284 Barker et al. Dec 2018 S
D835285 Barker et al. Dec 2018 S
10149616 Al-Ali et al. Dec 2018 B2
10154815 Al-Ali et al. Dec 2018 B2
10159412 Lamego et al. Dec 2018 B2
10188296 Al-Ali et al. Jan 2019 B2
10188331 Al-Ali et al. Jan 2019 B1
10188348 Kiani et al. Jan 2019 B2
RE47218 Ali-Ali Feb 2019 E
RE47244 Kiani et al. Feb 2019 E
RE47249 Kiani et al. Feb 2019 E
10194847 Al-Ali Feb 2019 B2
10194848 Kiani et al. Feb 2019 B1
10201298 Al-Ali et al. Feb 2019 B2
10205272 Kiani et al. Feb 2019 B2
10205291 Scruggs et al. Feb 2019 B2
10213108 Al-Ali Feb 2019 B2
10219706 Al-Ali Mar 2019 B2
10219746 McHale et al. Mar 2019 B2
10226187 Al-Ali et al. Mar 2019 B2
10226576 Kiani Mar 2019 B2
10231657 Al-Ali et al. Mar 2019 B2
10231670 Blank et al. Mar 2019 B2
10231676 Al-Ali et al. Mar 2019 B2
RE47353 Kiani et al. Apr 2019 E
10251585 Al-Ali et al. Apr 2019 B2
10251586 Lamego Apr 2019 B2
10255994 Sampath et al. Apr 2019 B2
10258265 Poeze et al. Apr 2019 B1
10258266 Poeze et al. Apr 2019 B1
10271748 Al-Ali Apr 2019 B2
10278626 Schurman et al. May 2019 B2
10278648 Al-Ali et al. May 2019 B2
10279247 Kiani May 2019 B2
10292628 Poeze et al. May 2019 B1
10292657 Abdul-Hafiz et al. May 2019 B2
10292664 Al-Ali May 2019 B2
10299708 Poeze et al. May 2019 B1
10299709 Perea et al. May 2019 B2
10299720 Brown et al. May 2019 B2
10305775 Lamego et al. May 2019 B2
10307111 Muhsin et al. Jun 2019 B2
10325681 Sampath et al. Jun 2019 B2
10327337 Triman et al. Jun 2019 B2
10327713 Barker et al. Jun 2019 B2
10332630 Al-Ali Jun 2019 B2
10335033 Al-Ali Jul 2019 B2
10335068 Poeze et al. Jul 2019 B2
10335072 Al-Ali et al. Jul 2019 B2
10342470 Al-Ali et al. Jul 2019 B2
10342487 Al-Ali et al. Jul 2019 B2
10342497 Al-Ali et al. Jul 2019 B2
10349895 Telfort et al. Jul 2019 B2
10349898 Al-Ali et al. Jul 2019 B2
10354504 Kiani et al. Jul 2019 B2
10357206 Weber et al. Jul 2019 B2
10357209 Al-Ali Jul 2019 B2
10366787 Sampath et al. Jul 2019 B2
10368787 Reichgott et al. Aug 2019 B2
10376190 Poeze et al. Aug 2019 B1
10376191 Poeze et al. Aug 2019 B1
10383520 Wojtczuk et al. Aug 2019 B2
10383527 Al-Ali Aug 2019 B2
10388120 Muhsin et al. Aug 2019 B2
10398320 Kiani et al. Sep 2019 B2
10405804 Al-Ali et al. Sep 2019 B2
10413666 Al-Ali et al. Sep 2019 B2
10420493 Al-Ali et al. Sep 2019 B2
D864120 Forrest et al. Oct 2019 S
10433776 Al-Ali Oct 2019 B2
10441181 Telfort et al. Oct 2019 B1
10441196 Eckerbom et al. Oct 2019 B2
10448844 Al-Ali et al. Oct 2019 B2
10448871 Al-Ali Oct 2019 B2
10456038 Lamego et al. Oct 2019 B2
10463284 Al-Ali et al. Nov 2019 B2
10463340 Telfort et al. Nov 2019 B2
10470695 Al-Ali Nov 2019 B2
10471159 Lapotko et al. Nov 2019 B1
10478107 Kiani et al. Nov 2019 B2
10503379 Al-Ali et al. Dec 2019 B2
10505311 Al-Ali et al. Dec 2019 B2
10512436 Muhsin et al. Dec 2019 B2
10524706 Telfort et al. Jan 2020 B2
10524738 Olsen Jan 2020 B2
10531811 Al-Ali et al. Jan 2020 B2
10531819 Diab et al. Jan 2020 B2
10531835 Al-Ali et al. Jan 2020 B2
10532174 Al-Ali Jan 2020 B2
10537285 Shreim et al. Jan 2020 B2
10542903 Al-Ali et al. Jan 2020 B2
10548561 Telfort et al. Feb 2020 B2
10555678 Dalvi et al. Feb 2020 B2
10568514 Wojtczuk et al. Feb 2020 B2
10568553 O'Neil et al. Feb 2020 B2
RE47882 Al-Ali Mar 2020 E
10575779 Poeze et al. Mar 2020 B2
10582886 Poeze et al. Mar 2020 B2
10588518 Kiani Mar 2020 B2
10588553 Poeze et al. Mar 2020 B2
10588556 Kiani et al. Mar 2020 B2
10608817 Haider et al. Mar 2020 B2
D880477 Forrest et al. Apr 2020 S
10617302 Al-Ali et al. Apr 2020 B2
10617335 Al-Ali et al. Apr 2020 B2
10637181 Al-Ali et al. Apr 2020 B2
D887548 Abdul-Hafiz et al. Jun 2020 S
D887549 Abdul-Hafiz et al. Jun 2020 S
10667764 Ahmed et al. Jun 2020 B2
D890708 Forrest et al. Jul 2020 S
10721785 Al-Ali Jul 2020 B2
10736518 Al-Ali et al. Aug 2020 B2
10750984 Pauley et al. Aug 2020 B2
D897098 Al-Ali Sep 2020 S
10779098 Iswanto et al. Sep 2020 B2
10827961 Iyengar et al. Nov 2020 B1
10828007 Telfort et al. Nov 2020 B1
10832818 Muhsin et al. Nov 2020 B2
20010034477 Mansfield et al. Oct 2001 A1
20010039483 Brand et al. Nov 2001 A1
20020010401 Bushmakin et al. Jan 2002 A1
20020058864 Mansfield et al. May 2002 A1
20020109600 Mault Aug 2002 A1
20020133080 Apruzzese et al. Sep 2002 A1
20020168958 Ford Nov 2002 A1
20030013975 Kiani Jan 2003 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030036923 Waldon et al. Feb 2003 A1
20030144582 Cohen et al. Jul 2003 A1
20030156288 Barnum et al. Aug 2003 A1
20030212312 Coffin, IV et al. Nov 2003 A1
20040102931 Ellis May 2004 A1
20040106163 Workman, Jr. et al. Jun 2004 A1
20040117207 Brown Jun 2004 A1
20040117208 Brown Jun 2004 A1
20040117209 Brown Jun 2004 A1
20040117210 Brown Jun 2004 A1
20040138539 Jay et al. Jul 2004 A1
20040147034 Gore et al. Jul 2004 A1
20040199409 Brown Oct 2004 A1
20040243435 Williams Dec 2004 A1
20050033127 Ciurczak et al. Feb 2005 A1
20050054907 Page et al. Mar 2005 A1
20050055276 Kiani et al. Mar 2005 A1
20050065464 Talbot et al. Mar 2005 A1
20050228244 Banet Oct 2005 A1
20050234317 Kiani Oct 2005 A1
20050277872 Colby et al. Dec 2005 A1
20060073719 Kiani Apr 2006 A1
20060161054 Reuss et al. Jul 2006 A1
20060189871 Al-Ali et al. Aug 2006 A1
20060224057 Burd et al. Oct 2006 A1
20060258918 Burd et al. Nov 2006 A1
20060281982 Grata et al. Dec 2006 A1
20070004975 Zribi et al. Jan 2007 A1
20070033074 Nitzan et al. Feb 2007 A1
20070073116 Kiani et al. Mar 2007 A1
20070123759 Grata et al. May 2007 A1
20070167850 Russell Jul 2007 A1
20070180140 Welch et al. Aug 2007 A1
20070208241 Drucker Sep 2007 A1
20070244377 Cozad et al. Oct 2007 A1
20070265533 Tran Nov 2007 A1
20070273504 Tran Nov 2007 A1
20070276270 Tran Nov 2007 A1
20070282478 Al-Ali et al. Dec 2007 A1
20080001735 Tran Jan 2008 A1
20080064965 Jay et al. Mar 2008 A1
20080094228 Welch et al. Apr 2008 A1
20080146900 Andrews et al. Jun 2008 A1
20080183060 Steil et al. Jul 2008 A1
20080200782 Planman et al. Aug 2008 A1
20080214912 Cano Sep 2008 A1
20080221418 Al-Ali et al. Sep 2008 A1
20090036759 Ault et al. Feb 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090095926 MacNeish, III Apr 2009 A1
20090227876 Tran Sep 2009 A1
20090243878 Ricordi Oct 2009 A1
20090247984 Lamego et al. Oct 2009 A1
20090275813 Davis Nov 2009 A1
20090275844 Al-Ali Nov 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20100056876 Ellis Mar 2010 A1
20100099964 O'Reilly et al. Apr 2010 A1
20100190479 Scott Jul 2010 A1
20100234718 Sampath et al. Sep 2010 A1
20100270257 Wachman et al. Oct 2010 A1
20100331651 Groll Dec 2010 A1
20110001605 Kiani et al. Jan 2011 A1
20110028806 Merritt et al. Feb 2011 A1
20110028809 Goodman Feb 2011 A1
20110040197 Welch et al. Feb 2011 A1
20110082711 Poeze et al. Apr 2011 A1
20110087081 Kiani et al. Apr 2011 A1
20110105854 Kiani et al. May 2011 A1
20110118561 Tari et al. May 2011 A1
20110125060 Telfort et al. May 2011 A1
20110137297 Kiani et al. Jun 2011 A1
20110172498 Olsen et al. Jul 2011 A1
20110208015 Welch et al. Aug 2011 A1
20110213212 Al-Ali Sep 2011 A1
20110230733 Al-Ali Sep 2011 A1
20110237911 Lamego et al. Sep 2011 A1
20110237969 Eckerbom et al. Sep 2011 A1
20110288383 Diab Nov 2011 A1
20120041316 Al-Ali et al. Feb 2012 A1
20120046557 Kiani Feb 2012 A1
20120059267 Lamego et al. Mar 2012 A1
20120088984 Al-Ali et al. Apr 2012 A1
20120123231 O'Reilly May 2012 A1
20120165629 Merritt et al. Jun 2012 A1
20120179006 Jansen et al. Jul 2012 A1
20120209082 Al-Ali Aug 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120226117 Lamego et al. Sep 2012 A1
20120227739 Kiani Sep 2012 A1
20120283524 Kiani et al. Nov 2012 A1
20120296178 Lamego et al. Nov 2012 A1
20120319816 Al-Ali Dec 2012 A1
20120330112 Lamego et al. Dec 2012 A1
20130023775 Lamego et al. Jan 2013 A1
20130041591 Lamego Feb 2013 A1
20130045685 Kiani Feb 2013 A1
20130046204 Lamego et al. Feb 2013 A1
20130060147 Welch et al. Mar 2013 A1
20130096405 Garfio Apr 2013 A1
20130096936 Sampath et al. Apr 2013 A1
20130190581 Al-Ali et al. Jul 2013 A1
20130197328 Diab et al. Aug 2013 A1
20130211214 Olsen Aug 2013 A1
20130243021 Siskavich Sep 2013 A1
20130253334 Al-Ali et al. Sep 2013 A1
20130274572 Al-Ali et al. Oct 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130296713 Al-Ali et al. Nov 2013 A1
20130317370 Dalvi et al. Nov 2013 A1
20130324808 Al-Ali et al. Dec 2013 A1
20130331660 Al-Ali et al. Dec 2013 A1
20130331670 Kiani Dec 2013 A1
20130338461 Lamego et al. Dec 2013 A1
20130345921 Al-Ali et al. Dec 2013 A1
20140012100 Al-Ali et al. Jan 2014 A1
20140034353 Al-Ali et al. Feb 2014 A1
20140051953 Lamego et al. Feb 2014 A1
20140058230 Abdul-Hafiz et al. Feb 2014 A1
20140066783 Kiani et al. Mar 2014 A1
20140077956 Sampath et al. Mar 2014 A1
20140081100 Muhsin Mar 2014 A1
20140081175 Telfort Mar 2014 A1
20140094667 Schurman et al. Apr 2014 A1
20140100434 Diab et al. Apr 2014 A1
20140114199 Lamego et al. Apr 2014 A1
20140120564 Workman et al. May 2014 A1
20140121482 Merritt et al. May 2014 A1
20140121483 Kiani May 2014 A1
20140127137 Bellott et al. May 2014 A1
20140129702 Lamego et al. May 2014 A1
20140135588 Al-Ali et al. May 2014 A1
20140142401 Al-Ali et al. May 2014 A1
20140163344 Al-Ali Jun 2014 A1
20140163402 Lamego et al. Jun 2014 A1
20140166076 Kiani et al. Jun 2014 A1
20140171146 Ma et al. Jun 2014 A1
20140171763 Diab Jun 2014 A1
20140180038 Kiani Jun 2014 A1
20140180154 Sierra et al. Jun 2014 A1
20140180160 Brown et al. Jun 2014 A1
20140187973 Brown et al. Jul 2014 A1
20140194709 Al-Ali et al. Jul 2014 A1
20140194711 Al-Ali Jul 2014 A1
20140194766 Al-Ali et al. Jul 2014 A1
20140206963 Al-Ali Jul 2014 A1
20140213864 Abdul-Hafiz et al. Jul 2014 A1
20140243627 Diab et al. Aug 2014 A1
20140266790 Al-Ali et al. Sep 2014 A1
20140275808 Poeze et al. Sep 2014 A1
20140275835 Lamego et al. Sep 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140275881 Lamego et al. Sep 2014 A1
20140276115 Dalvi et al. Sep 2014 A1
20140288400 Diab et al. Sep 2014 A1
20140303520 Telfort et al. Oct 2014 A1
20140316217 Purdon et al. Oct 2014 A1
20140316218 Purdon et al. Oct 2014 A1
20140316228 Blank et al. Oct 2014 A1
20140323825 Al-Ali et al. Oct 2014 A1
20140323897 Brown et al. Oct 2014 A1
20140323898 Purdon et al. Oct 2014 A1
20140330092 Al-Ali et al. Nov 2014 A1
20140330098 Merritt et al. Nov 2014 A1
20140330099 Al-Ali et al. Nov 2014 A1
20140333440 Kiani Nov 2014 A1
20140336481 Shakespeare et al. Nov 2014 A1
20140343436 Kiani Nov 2014 A1
20140357966 Al-Ali et al. Dec 2014 A1
20150005600 Blank et al. Jan 2015 A1
20150011907 Purdon et al. Jan 2015 A1
20150012231 Poeze et al. Jan 2015 A1
20150018650 Al-Ali et al. Jan 2015 A1
20150025406 Al-Ali Jan 2015 A1
20150032029 Al-Ali et al. Jan 2015 A1
20150038859 Dalvi et al. Feb 2015 A1
20150045637 Dalvi Feb 2015 A1
20150051462 Olsen Feb 2015 A1
20150073241 Lamego Mar 2015 A1
20150080754 Purdon et al. Mar 2015 A1
20150087936 Al-Ali et al. Mar 2015 A1
20150094546 Al-Ali Apr 2015 A1
20150097701 Al-Ali et al. Apr 2015 A1
20150099950 Al-Ali et al. Apr 2015 A1
20150099951 Al-Ali et al. Apr 2015 A1
20150099955 Al-Ali et al. Apr 2015 A1
20150101844 Al-Ali et al. Apr 2015 A1
20150106121 Muhsin et al. Apr 2015 A1
20150112151 Muhsin et al. Apr 2015 A1
20150116076 Al-Ali et al. Apr 2015 A1
20150126830 Schurman et al. May 2015 A1
20150133755 Smith et al. May 2015 A1
20150141781 Weber et al. May 2015 A1
20150165312 Kiani Jun 2015 A1
20150173671 Paalasmaa et al. Jun 2015 A1
20150196237 Lamego Jul 2015 A1
20150196249 Brown et al. Jul 2015 A1
20150216459 Al-Ali et al. Aug 2015 A1
20150230755 Al-Ali et al. Aug 2015 A1
20150238722 Al-Ali Aug 2015 A1
20150245773 Lamego et al. Sep 2015 A1
20150245794 Al-Ali Sep 2015 A1
20150255001 Haughav et al. Sep 2015 A1
20150257689 Al-Ali et al. Sep 2015 A1
20150272514 Kiani et al. Oct 2015 A1
20150281424 Vock et al. Oct 2015 A1
20150318100 Rothkopf et al. Nov 2015 A1
20150351697 Weber et al. Dec 2015 A1
20150351704 Kiani et al. Dec 2015 A1
20150359429 Al-Ali et al. Dec 2015 A1
20150366472 Kiani Dec 2015 A1
20150366507 Blank Dec 2015 A1
20150374298 Al-Ali et al. Dec 2015 A1
20150380875 Coverston et al. Dec 2015 A1
20160000362 Diab et al. Jan 2016 A1
20160007930 Weber et al. Jan 2016 A1
20160019360 Pahwa et al. Jan 2016 A1
20160023245 Zadesky et al. Jan 2016 A1
20160029932 Al-Ali Feb 2016 A1
20160038045 Shapiro Feb 2016 A1
20160045118 Kiani Feb 2016 A1
20160051157 Waydo Feb 2016 A1
20160051158 Silva Feb 2016 A1
20160051205 Al-Ali et al. Feb 2016 A1
20160058302 Raghuram et al. Mar 2016 A1
20160058309 Han Mar 2016 A1
20160058312 Han et al. Mar 2016 A1
20160058338 Schurman et al. Mar 2016 A1
20160058347 Reichgott et al. Mar 2016 A1
20160058356 Raghuram et al. Mar 2016 A1
20160058370 Raghuram et al. Mar 2016 A1
20160066823 Kind et al. Mar 2016 A1
20160066824 Al-Ali et al. Mar 2016 A1
20160066879 Telfort et al. Mar 2016 A1
20160071392 Hankey et al. Mar 2016 A1
20160072429 Kiani et al. Mar 2016 A1
20160081552 Wojtczuk et al. Mar 2016 A1
20160095543 Telfort et al. Apr 2016 A1
20160095548 Al-Ali et al. Apr 2016 A1
20160103598 Al-Ali et al. Apr 2016 A1
20160113527 Al-Ali et al. Apr 2016 A1
20160143548 Al-Ali May 2016 A1
20160154950 Nakajima et al. Jun 2016 A1
20160157780 Rimminen et al. Jun 2016 A1
20160166182 Al-Ali et al. Jun 2016 A1
20160166183 Poeze et al. Jun 2016 A1
20160166188 Bruinsma et al. Jun 2016 A1
20160166210 Al-Ali Jun 2016 A1
20160192869 Kiani et al. Jul 2016 A1
20160196388 Lamego Jul 2016 A1
20160197436 Barker et al. Jul 2016 A1
20160213281 Eckerbom et al. Jul 2016 A1
20160213309 Sannholm et al. Jul 2016 A1
20160228043 O'Neil et al. Aug 2016 A1
20160233632 Scruggs et al. Aug 2016 A1
20160234944 Schmidt et al. Aug 2016 A1
20160256058 Pham et al. Sep 2016 A1
20160256082 Ely et al. Sep 2016 A1
20160267238 Nag Sep 2016 A1
20160270735 Diab et al. Sep 2016 A1
20160283665 Sampath et al. Sep 2016 A1
20160287090 Al-Ali et al. Oct 2016 A1
20160287181 Han et al. Oct 2016 A1
20160287786 Kiani Oct 2016 A1
20160296169 McHale et al. Oct 2016 A1
20160296173 Culbert Oct 2016 A1
20160296174 Isikman et al. Oct 2016 A1
20160310027 Han Oct 2016 A1
20160310052 Al-Ali et al. Oct 2016 A1
20160314260 Kiani Oct 2016 A1
20160324486 Al-Ali et al. Nov 2016 A1
20160324488 Olsen Nov 2016 A1
20160327984 Al-Ali et al. Nov 2016 A1
20160328528 Al-Ali et al. Nov 2016 A1
20160331332 Al-Ali Nov 2016 A1
20160367173 Dalvi et al. Dec 2016 A1
20160378069 Rothkopf Dec 2016 A1
20160378071 Rothkopf Dec 2016 A1
20170007134 Al-Ali et al. Jan 2017 A1
20170007183 Dusan et al. Jan 2017 A1
20170007190 Al-Ali et al. Jan 2017 A1
20170007198 Al-Ali et al. Jan 2017 A1
20170010858 Prest et al. Jan 2017 A1
20170014083 Diab et al. Jan 2017 A1
20170014084 Al-Ali et al. Jan 2017 A1
20170021099 Al-Ali et al. Jan 2017 A1
20170024748 Haider Jan 2017 A1
20170027456 Kinast et al. Feb 2017 A1
20170042488 Muhsin Feb 2017 A1
20170055847 Kiani et al. Mar 2017 A1
20170055851 Al-Ali Mar 2017 A1
20170055882 Al-Ali et al. Mar 2017 A1
20170055887 Al-Ali Mar 2017 A1
20170055896 Al-Ali et al. Mar 2017 A1
20170074897 Mermel et al. Mar 2017 A1
20170079594 Telfort et al. Mar 2017 A1
20170084133 Cardinali et al. Mar 2017 A1
20170086689 Shui et al. Mar 2017 A1
20170086723 Al-Ali et al. Mar 2017 A1
20170086742 Harrison-Noonan et al. Mar 2017 A1
20170086743 Bushnell et al. Mar 2017 A1
20170094450 Tu et al. Mar 2017 A1
20170143281 Olsen May 2017 A1
20170147774 Kiani May 2017 A1
20170164884 Culbert et al. Jun 2017 A1
20170173632 Al-Ali Jun 2017 A1
20170188919 Al-Ali et al. Jul 2017 A1
20170196464 Jansen et al. Jul 2017 A1
20170196470 Lamego et al. Jul 2017 A1
20170224262 Al-Ali Aug 2017 A1
20170228516 Sampath et al. Aug 2017 A1
20170245790 Al-Ali et al. Aug 2017 A1
20170248446 Gowreesunker et al. Aug 2017 A1
20170251974 Shreim et al. Sep 2017 A1
20170258403 Abdul-Hafiz et al. Sep 2017 A1
20170273619 Alvarado et al. Sep 2017 A1
20170281024 Narasimhan et al. Oct 2017 A1
20170293727 Klaassen et al. Oct 2017 A1
20170311891 Kiani et al. Nov 2017 A1
20170325698 Allec et al. Nov 2017 A1
20170325744 Allec et al. Nov 2017 A1
20170340209 Klaassen et al. Nov 2017 A1
20170340219 Sullivan et al. Nov 2017 A1
20170340293 Al-Ali et al. Nov 2017 A1
20170347885 Tan et al. Dec 2017 A1
20170354332 Lamego Dec 2017 A1
20170354795 Blahnik et al. Dec 2017 A1
20170358239 Arney et al. Dec 2017 A1
20170358240 Blahnik et al. Dec 2017 A1
20170358242 Thompson et al. Dec 2017 A1
20170360306 Narasimhan et al. Dec 2017 A1
20170366657 Thompson et al. Dec 2017 A1
20180008146 Al-Ali et al. Jan 2018 A1
20180013562 Haider et al. Jan 2018 A1
20180014752 Al-Ali et al. Jan 2018 A1
20180014781 Clavelle et al. Jan 2018 A1
20180025287 Mathew et al. Jan 2018 A1
20180056129 Narasimha Rao et al. Jan 2018 A1
20180042556 Shahparnia et al. Feb 2018 A1
20180049694 Singh Alvarado et al. Feb 2018 A1
20180050235 Tan et al. Feb 2018 A1
20180055375 Martinez et al. Mar 2018 A1
20180055390 Kiani et al. Mar 2018 A1
20180055439 Pham et al. Mar 2018 A1
20180064381 Shakespeare et al. Mar 2018 A1
20180070867 Smith et al. Mar 2018 A1
20180078151 Allec et al. Mar 2018 A1
20180078182 Chen et al. Mar 2018 A1
20180082767 Al-Ali et al. Mar 2018 A1
20180085068 Telfort Mar 2018 A1
20180087937 Al-Ali et al. Mar 2018 A1
20180103874 Lee et al. Apr 2018 A1
20180103905 Kiani Apr 2018 A1
20180110469 Maani et al. Apr 2018 A1
20180125368 Lamego et al. May 2018 A1
20180125430 Al-Ali et al. May 2018 A1
20180132769 Weber et al. May 2018 A1
20180146901 Al-Ali et al. May 2018 A1
20180146902 Kiani et al. May 2018 A1
20180153418 Sullivan et al. Jun 2018 A1
20180153442 Eckerbom et al. Jun 2018 A1
20180153446 Kiani Jun 2018 A1
20180153448 Weber et al. Jun 2018 A1
20180164853 Myers et al. Jun 2018 A1
20180168491 Al-Ali et al. Jun 2018 A1
20180184917 Kiani Jul 2018 A1
20180192924 Al-Ali Jul 2018 A1
20180192953 Shreim et al. Jul 2018 A1
20180196514 Allec et al. Jul 2018 A1
20180199871 Pauley et al. Jul 2018 A1
20180206795 Al-Ali Jul 2018 A1
20180206815 Telfort Jul 2018 A1
20180213583 Al-Ali Jul 2018 A1
20180214090 Al-Ali et al. Aug 2018 A1
20180216370 Ishiguro et al. Aug 2018 A1
20180218792 Muhsin et al. Aug 2018 A1
20180225960 Al-Ali et al. Aug 2018 A1
20180228414 Shao et al. Aug 2018 A1
20180238718 Dalvi Aug 2018 A1
20180238734 Hotelling et al. Aug 2018 A1
20180242853 Al-Ali Aug 2018 A1
20180242923 Al-Ali et al. Aug 2018 A1
20180242924 Barker et al. Aug 2018 A1
20180242926 Muhsin et al. Aug 2018 A1
20180247353 Al-Ali et al. Aug 2018 A1
20180247712 Muhsin et al. Aug 2018 A1
20180249933 Schurman et al. Sep 2018 A1
20180253947 Muhsin et al. Sep 2018 A1
20180256087 Al-Ali et al. Sep 2018 A1
20180256113 Weber et al. Sep 2018 A1
20180279956 Waydo et al. Oct 2018 A1
20180285094 Housel et al. Oct 2018 A1
20180289337 Al-Ali et al. Oct 2018 A1
20180296161 Shreim et al. Oct 2018 A1
20180300919 Muhsin et al. Oct 2018 A1
20180310822 Indorf et al. Nov 2018 A1
20180310823 Al-Ali et al. Nov 2018 A1
20180317826 Muhsin Nov 2018 A1
20180317841 Novak, Jr. Nov 2018 A1
20180333055 Lamego et al. Nov 2018 A1
20180333087 Al-Ali Nov 2018 A1
20190000317 Muhsin et al. Jan 2019 A1
20190015023 Monfre Jan 2019 A1
20190029574 Schurman et al. Jan 2019 A1
20190029578 Al-Ali et al. Jan 2019 A1
20190058280 Al-Ali et al. Feb 2019 A1
20190069813 Al-Ali Mar 2019 A1
20190076028 Al-Ali et al. Mar 2019 A1
20190082979 Al-Ali et al. Mar 2019 A1
20190090760 Kinast et al. Mar 2019 A1
20190090764 Al-Ali Mar 2019 A1
20190117070 Muhsin et al. Apr 2019 A1
20190117139 Al-Ali et al. Apr 2019 A1
20190117141 Al-Ali Apr 2019 A1
20190117930 Al-Ali Apr 2019 A1
20190122762 Al-Ali et al. Apr 2019 A1
20190122763 Sampath et al. Apr 2019 A1
20190133525 Al-Ali et al. May 2019 A1
20190142283 Lamego et al. May 2019 A1
20190142344 Telfort et al. May 2019 A1
20190150800 Poeze et al. May 2019 A1
20190150856 Kiani et al. May 2019 A1
20190167161 Al-Ali et al. Jun 2019 A1
20190175019 Al-Ali et al. Jun 2019 A1
20190192076 McHale et al. Jun 2019 A1
20190200941 Chandran et al. Jul 2019 A1
20190201623 Kiani Jul 2019 A1
20190209025 Al-Ali Jul 2019 A1
20190214778 Scruggs et al. Jul 2019 A1
20190216379 Al-Ali et al. Jul 2019 A1
20190221966 Kiani et al. Jul 2019 A1
20190223804 Blank et al. Jul 2019 A1
20190231199 Al-Ali et al. Aug 2019 A1
20190231241 Al-Ali et al. Aug 2019 A1
20190231270 Abdul-Hafiz et al. Aug 2019 A1
20190239787 Pauley et al. Aug 2019 A1
20190239824 Muhsin et al. Aug 2019 A1
20190254578 Lamego Aug 2019 A1
20190261857 Al-Ali Aug 2019 A1
20190269370 Al-Ali et al. Sep 2019 A1
20190274627 Al-Ali et al. Sep 2019 A1
20190274635 Al-Ali et al. Sep 2019 A1
20190290136 Dalvi et al. Sep 2019 A1
20190298270 Al-Ali et al. Oct 2019 A1
20190304601 Sampath et al. Oct 2019 A1
20190304605 Al-Ali Oct 2019 A1
20190307377 Perea et al. Oct 2019 A1
20190320906 Olsen Oct 2019 A1
20190320959 Al-Ali Oct 2019 A1
20190320988 Ahmed et al. Oct 2019 A1
20190325722 Kiani et al. Oct 2019 A1
20190350506 Al-Ali Nov 2019 A1
20190357813 Poeze et al. Nov 2019 A1
20190357823 Reichgott et al. Nov 2019 A1
20190357824 Al-Ali Nov 2019 A1
20190358524 Kiani Nov 2019 A1
20190365294 Poeze et al. Dec 2019 A1
20190365295 Poeze et al. Dec 2019 A1
20190374135 Poeze et al. Dec 2019 A1
20190374139 Kiani et al. Dec 2019 A1
20190374173 Kiani et al. Dec 2019 A1
20190374713 Kiani et al. Dec 2019 A1
20190386908 Lamego et al. Dec 2019 A1
20190388039 Al-Ali Dec 2019 A1
20200000338 Lamego et al. Jan 2020 A1
20200000415 Barker et al. Jan 2020 A1
20200015716 Poeze et al. Jan 2020 A1
20200021930 Iswanto et al. Jan 2020 A1
20200037453 Triman et al. Jan 2020 A1
20200037891 Kiani et al. Feb 2020 A1
20200037966 Al-Ali Feb 2020 A1
20200046257 Eckerbom et al. Feb 2020 A1
20200054253 Al-Ali et al. Feb 2020 A1
20200060591 Diab et al. Feb 2020 A1
20200060628 Al-Ali et al. Feb 2020 A1
20200060629 Muhsin et al. Feb 2020 A1
20200060869 Telfort et al. Feb 2020 A1
20200074819 Muhsin et al. Mar 2020 A1
20200111552 Ahmed Apr 2020 A1
20200113435 Muhsin Apr 2020 A1
20200113488 Al-Ali et al. Apr 2020 A1
20200113496 Scruggs et al. Apr 2020 A1
20200113497 Triman et al. Apr 2020 A1
20200113520 Abdul-Hafiz et al. Apr 2020 A1
20200138288 Al-Ali et al. May 2020 A1
20200138368 Kiani et al. May 2020 A1
20200163597 Dalvi et al. May 2020 A1
20200196877 Vo et al. Jun 2020 A1
20200253474 Muhsin et al. Aug 2020 A1
20200253544 Belur Nagaraj et al. Aug 2020 A1
20200275841 Telfort et al. Sep 2020 A1
20200288983 Telfort et al. Sep 2020 A1
20200321793 Al-Ali et al. Oct 2020 A1
20200329983 Al-Ali et al. Oct 2020 A1
20200329984 Al-Ali et al. Oct 2020 A1
20200329993 Al-Ali et al. Oct 2020 A1
20200330037 Al-Ali et al. Oct 2020 A1
Non-Patent Literature Citations (9)
Entry
US 8,845,543 B2, 09/2014, Diab et al. (withdrawn)
US 9,579,050 B2, 02/2017, Al-Ali (withdrawn)
“Apple—Downloads—Home & Learning—1-2Tracker” at http://www.apple.com/downloads/macosx/home_learning/12tracker.html, accessed on Feb. 16, 2009.
“Apple—Downloads—Home & Learning—Diabetes Logbook X” at http://www.apple.com/downloads/macosx/home_learning/diabeteslogbookx.html, accessed on Feb. 16, 2009.
“Apple—Downloads—Home & Learning—HealthEngage Diabetes” at http://www.apple.com/downloads/macosx/home_learning/healthengagediabetes.html, accessed on Feb. 16, 2009.
“Apple—Web apps—Diabetes Headline News” at http://www.apple.com/webapps/news/diabetesheadlinenews.html, accessed on Feb. 19, 2009.
“iPhone and iPod Touch Application List >> A Low GI Diet—Glycemic Index Search” at http://iphoneapplicationlist.com/2009/02/02/a-low-gi-diet-glycemic-index-search/, accessed on Feb. 16, 2009.
“Tech, Medical Device Cos Target Wireless Diabetes Monitoring,” Roger Cheng and Jon Kamp, Dow Jones Newswires, http://online.wsj.com/article/BT-CO-20090930-712994.html, Sep. 30, 2009.
“Total Hemoglobin” at http://www.masimo.com/hemoglobin/index.html, accessed on Jun. 29, 2009.
Related Publications (1)
Number Date Country
20190216319 A1 Jul 2019 US
Provisional Applications (1)
Number Date Country
61249221 Oct 2009 US
Continuations (1)
Number Date Country
Parent 12898663 Oct 2010 US
Child 16219827 US