This application is the National Phase of International Application PCT/1132004/003766 filed 11 Nov. 2004 which designated the U.S. and that International Application was published under PCT Article 21(2) in English.
The present invention relates to a system for monitoring and controlling machines used in the manufacture of tobacco products.
Advantageously, the invention finds application in complete lines of equipment for the manufacture of tobacco products, and in particular cigarettes, comprising not only cigarette making machines but also filter tip attachment machines operating in combination with the cigarette makers.
The invention is concerned in particular with the quality control of cigarettes taken from the machines in question during the course of the production cycle, and in particular of cigarettes taken from the outfeed end of the line, that is to say, finished cigarettes complete with filter tip and print.
The task of quality-testing sample cigarettes taken from key points along the line is entrusted currently to a skilled operator who, at given regular intervals of time during the production cycle, will take a single sample and present it manually to a testing station in which certain characteristics of the cigarette are verified both by hand and with instruments, for example the quality of the outer surface and the print, the correct alignment of the tipping paper, and so forth.
Thereafter, the operator will make adjustments to the cigarette maker or the filter tip attachment machine so as to correct the operating parameters and remove the causes of any defects that may be observed in the sample cigarette.
It will be clear enough from the foregoing that this method of operation, which involves the use of skilled labour both for testing the characteristics of the cigarettes and for making adjustments to the machines, is particularly costly and unreliable, also that response times in respect of the testing procedure are somewhat lengthy.
In-line quality checks, on the other hand, and in particular those involving an optical inspection of the outer surface presented by the cigarettes, tend not to be very trustworthy by reason of the high speeds at which machines of the type in question typically operate.
The object of the present invention is to provide a system for monitoring and controlling machines used in the manufacture of tobacco products, in particular cigarettes, such as will be unaffected by the aforementioned drawbacks attributable both to testing systems relying on manual input, and to checks performed along the production line.
The stated object is duly realized in a system for monitoring and controlling machines used in the manufacture of tobacco products, as characterized in any one or more of the appended claims.
The invention will now be described in detail, by way of example, with the aid of the accompanying drawings, in which:
Referring to
Associated with the line 1 is a monitoring and control system denoted 5 in its entirety, of which more will be said in due course.
The cigarette maker 3 includes a plurality of the aforementioned production devices and units, and more precisely, proceeding upstream to downstream, a carding unit 6 supplied from a feed hopper (not indicated) with tobacco, which is taken up by a carding roller 7 operating in conjunction with an impeller roller 8, and directed into a descent channel or chute 9, passing thence by way of a belt conveyor 10 to an ascent channel or riser 11.
The top end of the riser 11 is enclosed by an aspirating belt 12 on which particles of tobacco are caused to form gradually into a continuous stream 13 providing a filler for the cigarettes 2.
The stream 13 of tobacco is advanced together with a continuous strip 14 of paper decoiling from a roll 15, following a path along which a printer device 16 is stationed, and passes onto a forming beam 17 along which the paper strip 14 is wrapped around the stream 13 to form a continuous cigarette rod 18.
The rod 18 advances toward a cutting station 19 where it is divided up by a rotary cutter device 20 into cigarette sticks 21 of predetermined constant length, and more exactly of length twice the length of a stick equivalent to a single cigarette 2.
22 denotes a transfer device by which the double length cigarette sticks 21 are directed through an infeed roller stage 23 of the filter tip attachment machine 4 and into a cutting station 24 where each is divided into single cigarette sticks 25 by the action of a roller 26 and a disc cutter 27.
The single sticks 25 are transferred from the roller 26 of the cutting station, by way of a distancing roller 28 that serves to separate each pair of sticks 25 axially one from another, to an assembly roller 29 where a double length filter plug 30 is placed between the two sticks 25 of each successive pair, the filter plugs being dispensed from a feed unit denoted 31 in its entirety.
The resulting assemblies, each composed of two single cigarette sticks 25 and a double length filter plug 30 interposed axially between them, are released by the assembly roller 29 to a roller 32 forming part of a finishing unit 33, which also includes a unit 34 serving to cut and feed single tipping papers 35, and a rolling unit 36 by which the stick and filter plug assemblies 14 and the tipping papers 35 are received in succession and in such a way that each paper 35 can be rolled around a corresponding assembly to form a cigarette 2 of double length.
The double length cigarettes 2 are directed by way of an intermediate roller 37 toward a cutter device 38, and divided each in turn by a stroke made through the double length filter plug 11 in such a way as to generate two successions of single filter cigarettes 2 identical one to the other.
The two successions of filter cigarettes 2 are directed toward an outfeed unit 39 of the filter tip attachment machine 4, advancing first onto an overturning roller 40 by which the two successions are united to establish a single succession of cigarettes 2, then proceeding along a final train of rollers denoted 41 in its entirety, following a path along which the cigarettes 2 will undergo further processing steps of a familiar nature.
As illustrated for example in
Still referring to
The auxiliary inspection unit 45 is connected on the output side to a common interface network 48, both directly, by way of a link denoted 49, and indirectly by way of a respective signal processing and routing unit represented as a block denoted 50.
The network 48 is connected in turn to each of the electrical systems typically controlling the single production devices and units making up the manufacturing line 1 as described above.
With reference also to
Advantageously, the auxiliary inspection unit 45 in the example illustrated is designed to run a full check on certain key characteristics of the cigarette 2, and more exactly the quality of the outer cylindrical surface and the integrity of the filler at one or both ends of the cigarette 2.
The take-up arm 56 referred to above is aligned along the aforementioned conveying direction D and carried by a slide 58 mounted to a table 59 forming part of a frame 60 by which the unit 45 is housed. The slide 58 is capable of movement thus along a relative direction D1 transverse to the conveying direction D, between a first position of alignment with the conveyor device 55, in which the single cigarettes 2 are received, and a second position shown by phantom lines in
The transfer means 62 comprise a rotary transfer mechanism denoted 63, carrying the second arm 61 and positioned so as to interact with a vertical channel 64 affording feed means down which the single cigarettes 2 are directed.
As discernible in
When the suction means associated with the second arm 61 are deactivated, the cigarette 2 proceeds down the channel 64 toward a retaining and transfer unit 66 that combines with sensing and inspection means 67, illustrated in
As illustrated in
The support member 69 is mounted so as to pivot on a horizontal axis O in such a way that the pair of rollers 72, and therefore the seat 73, can be moved from the position indicated in
Accordingly, the cigarette 2 can be positioned appropriately in preparation for the action of the sensing and inspection means 67, in front of which it will be transferred by a movement of the support member 69 along a predetermined path P parallel to the horizontal axis O.
As illustrated in
Also forming part of the sensing and inspection means 67 is at least one optical sensor 75 serving to verify that the end of the cigarette 2 is filled properly with tobacco.
The optical means 74 comprise a first television camera or lens 76 equipped with a relative optical assembly, capable of inspecting the entire outer surface of the cigarette 2, and a second television camera or lens 77 equipped with a relative optical assembly, capable of stepping motion along the axis of the pair of rollers 72 and designed to inspect predetermined portions of the outer surface of each cigarette 2.
Referring to
The cigarettes 2 are taken up at the outfeed 39 of the filter tip attachment machine 4 and directed into the auxiliary inspection unit 45 either in response to instructions entered in manual mode by the operator, or alternatively at predetermined intervals in automatic mode, in such a way as to implement a sample quality control.
It will be seen that the signals generated as a result of the quality testing steps performed by the auxiliary inspection unit 45 are relayed by the unit 45 to processing and control units associated with each of the production devices and/or units installed along the manufacturing line 1.
Certain of these processing and control units are denoted 81 in
Observing the example illustrated, in particular, the signals reflecting the characteristics of the outer surface or ends of the sampled cigarettes 2 will naturally be relayed to the processing and control units 81 associated with the devices or units on which the characteristics in question depend, and thus able to bring about a correction of these same characteristics when necessary.
In the event, for example, that the inspection unit 45 should detect a malfunction of the printer device 16, or the unit 34 by which the tipping papers 35 are cut and fed, or the laser perforating device 43, the signals indicating the faults in question will be routed back to the processing and control units 81 associated with these same devices and units, in such a manner that the appropriate corrective action can be applied.
Accordingly, the auxiliary inspection unit 45 provides a feedback control for all the production devices or units operating on the manufacturing line 1, and the signals emitted by the unit 45 can be presented not only to the network 48, but also to the master control units governing each of the machines in the line 1.
Observing
Finally, the feedback signals can be presented, again via the network 48, to one or more visual display means 84 comprising video screens 85.
Referring to
More precisely, in a first, or open position, shown by continuous lines in
As illustrated in
In this situation, a tray 93 serving to collect the cigarettes 2, supported by a shaft pivotable about a fulcrum denoted 94, is caused to rotate on this same fulcrum and to shift clockwise as viewed in
The bottom end of the channel 90 will be seen to present a substantially “S” shaped profile, serving to attenuate the speed at which the cigarettes 2 drop into the pockets 91 and prevent the selfsame cigarettes 2 from becoming incorrectly positioned.
Referring to
The conveyor 92 extends along a predetermined path P1 of which at least one leg follows a line substantially transverse to the bulkhead A of the filter tip attachment machine 4.
More exactly, the conveyor 92 presents a first leg 97 extending horizontal and parallel to the vertical bulkhead A, followed by curved second and third legs 98 and 99 connected to a vertical fourth leg 100 of which the top end is connected in turn to a curved fifth leg 101, connecting with a final horizontal leg 102.
Passing along the final horizontal leg 102, the pockets 91 of the conveyor 90 are positioned with their axes parallel to the aforementioned arm 56, so that the cigarettes 2 can be transferred to the arm advancing in a direction substantially parallel to the direction D1 along which the arm 56 itself is set in motion.
As discernible also in
Number | Date | Country | Kind |
---|---|---|---|
BO2003A0684 | Nov 2003 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2004/003766 | 11/11/2004 | WO | 00 | 5/17/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/046365 | 5/26/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3741846 | Greve | Jun 1973 | A |
3946212 | Nakao et al. | Mar 1976 | A |
4363235 | Vulliens et al. | Dec 1982 | A |
5044379 | Cahill et al. | Sep 1991 | A |
5116298 | Bondanelli et al. | May 1992 | A |
5209249 | Neri | May 1993 | A |
5284164 | Andrews et al. | Feb 1994 | A |
5695070 | Draghetti | Dec 1997 | A |
6516811 | Focke et al. | Feb 2003 | B1 |
6629397 | Focke et al. | Oct 2003 | B1 |
6681918 | Wahle | Jan 2004 | B2 |
6813961 | Stiller et al. | Nov 2004 | B2 |
7684889 | Focke et al. | Mar 2010 | B2 |
20010049568 | Focke et al. | Dec 2001 | A1 |
20020056463 | Henning | May 2002 | A1 |
20040015383 | Rathjen et al. | Jan 2004 | A1 |
Number | Date | Country |
---|---|---|
2017360 | Oct 1971 | DE |
3917606 | Dec 1989 | DE |
3917606 | Dec 1989 | DE |
3925073 | Feb 1990 | DE |
19914297 | Oct 2000 | DE |
19925968 | Dec 2000 | DE |
10046133 | Mar 2002 | DE |
10117082 | Oct 2002 | DE |
10209753 | Sep 2003 | DE |
0409443 | Jan 1991 | EP |
0500302 | Aug 1992 | EP |
0500302 | Aug 1992 | EP |
1197431 | Apr 2002 | EP |
1346651 | Sep 2003 | EP |
2220342 | Jan 1990 | GB |
2000037181 | Aug 2000 | JP |
2001525586 | Dec 2001 | JP |
0016647 | Mar 2000 | WO |
Entry |
---|
Hauni, Koerber Gruppe, Tobacco Engineer, Flawless Filters, pp. 40-41, 1994. |
Ernst Voges, Tobacco Encyclopedia, pp. 5, 424 and 425, 1984. |
Office Action issued by the Chinese Patent Office on Oct. 24, 2008 concerning parallel Chinese Patent Application No. 200480033598.9. |
Office Action issued by the Japanese Patent Office on May 11, 2010 concerning parallel Japanese Patent Application No. 2006-538990. |
Electrical Table Book, published by Europe Teaching Tool, 18 Edition, 2001, pp. 124-127, 138, 139, 182-185, 188, 189. |
Walter Jakoby, Automation Technology, Springer 1996. |
Hauni, E is for Efficiency . . . (date unknown). |
M.D. Austin, Automatic Calibration, Automatic Calibration of Q.C. Instrumentation, Coresta Vienna, Sep. 1995. |
Tobacco Engineer, Nov. 1985, published by International Koeber Group of Companies. |
Christopher R. Crawley, Closing the Loop, Tobacco Reporter, Oct. 1989, vol. 116 No. 10. |
Eastman IFMAC System Advances Filter Technology, Filter Facts, Apr. 1986, published by Eastman Chemical Products, Inc., Kingsport, Tennessee. |
Minutes of oral proceedings dated Oct. 17, 2013 for Appeal No. T0576/11—3.2.04 regarding European patent No. EP1694145. |
Decision dated Jan. 18, 2011 rejecting opposition against European patent No. EP1694145. |
Grounds of Appeal dated May 13, 2011 regarding opposition against European patent No. EP 1694145, Opposition No. T0576/11-3204. |
Supplemental submission dated Sep. 6, 2013 regarding European patent No. EP 1694145, Opposition No. T0576/11-32. |
Reply dated Mar. 23, 2012 regarding opposition against European patent No. EP 1694145, Opposition No. T0576/11-32. |
Number | Date | Country | |
---|---|---|---|
20070144542 A1 | Jun 2007 | US |