System for monitoring broadcast audio content

Information

  • Patent Grant
  • 6574594
  • Patent Number
    6,574,594
  • Date Filed
    Friday, June 29, 2001
    23 years ago
  • Date Issued
    Tuesday, June 3, 2003
    21 years ago
Abstract
A broadcast datastream is received, and audio identifying information is generated for audio content from the broadcast datastream. It is determined whether the audio identifying information generated for the broadcast audio content matches audio identifying information in an audio content database. In one preferred embodiment, the audio identifying information is an audio feature signature that is based on audio content. Also provided is a system for monitoring broadcast audio content.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to the monitoring of audio content, and more specifically to systems and methods for automatically identifying audio content that is broadcast.




2. Description of Related Art




Copyrighted audio content such as music is broadcast to listeners over various mediums that include radio, television, cable television, satellite television, and Internet web sites. Each time a copyrighted song is broadcast, a performance royalty is due to the holders of the performance rights in the song (e.g., the songwriter and music publisher). Typically, each broadcaster (i.e., radio station, television network, television station, cable or satellite system, and web radio station) obtains a general license from a licensing organization such as ASCAP or BMI to broadcast a wide range of audio content. The performance royalties received for these licences is then divided between all performance rights holders (e.g., songwriters and publishers) that are members of the licensing organization based on the number of times each song is performed.




However, this assignment of royalties to individual rights holders is currently done through manual review and a very sparse sampling of broadcasts. Thus, performance royalties for less popular songs are most likely being underestimated. Further, the sparse sampling that is undertaken is at least partially based on the honor system, so the royalties received for even the most popular songs are dependent on the accuracy of the broadcasters. Thus, for copyright enforcement of performance rights, there is a need for a system and method for automatically identifying copyrighted audio content that is broadcast.




One difficulty in developing a practical system for automatically monitoring performance rights is providing a mechanism for automatically identifying audio content. One solution that has been proposed is to tag copyrighted music by using digital watermarking technology. Another solution is to identify the audio content itself. However, the identification of music even from a digital source, such as an MP3 file, is not a trivial problem. Different encoding schemes will yield a different bit stream for the same song. Even if the same encoding scheme is used to encode the same song (i.e., sound recording) and create two digital audio files, the files will not necessarily match at the bit level.




Various effects can lead to differentiation of the bit stream even though the resulting sound differences as judged by human perception are negligible. These effects include: subtle differences in the overall frequency response of the recording system, digital to analog conversion effects, acoustic environmental effects such as reverb, and slight differences in the recording start time. Further, the bit stream that results from a recording will vary depending on the type of audio source. For example, the bitstream for a song created by encoding the output of one stereo receiver will generally not match the bitstream for the same song created by encoding the output of another stereo receiver.




In addition, there are forms of noise and distortion that are quite audible to humans, but that do not impede our ability to recognize music. FM broadcasts and audio cassettes both have a lower bandwidth than CD recordings, but are still copied and enjoyed by some listeners. Likewise, many of the MP3 files on the Internet are of relatively low quality, but still proliferate and thus pose a threat to the profitability of the music industry. Furthermore, some intentional evasions of copyright protections schemes involve the intentional alteration or distortion of the music. These distortions include time-stretching and time-compressing. In such cases, not only may the start and stop times be different, but the song durations may be different as well. All such differences may be barely noticeable to humans, but can foil many conventional copyright protection schemes.




There is a need for systems and methods for automatically enforcing copyright holder rights for audio content such as sound recordings that is broadcast over a medium such as radio, television, or the Internet, such as by automatically and effectively identifying copyrighted audio content that is actually broadcast.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic of an exemplary network on which a preferred embodiment of the present invention can be implemented.





FIG. 2

is a block diagram of a system for automatic performance rights monitoring according to a preferred embodiment of the present invention.





FIG. 3

is a flow diagram of a process for automatically identifying audio content that is broadcast according to a preferred embodiment of the present invention.





FIGS. 4A and 4B

are a flow diagram of a process for identifying events from an audio segment in an exemplary embodiment of the present invention.





FIG. 5

is a flow diagram of a process for generating keys from the events produced by the process shown in

FIGS. 4A and 4B

.





FIG. 6

is a flow diagram of a process for generating keys from the content of a key generator buffer in an exemplary embodiment of the present invention.





FIG. 7

is a flow diagram of a process for filtering percussion events in an exemplary embodiment of the present invention.





FIG. 8

is a flow diagram of a process for using keys to compare two audio segments in an exemplary embodiment of the present invention.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS




Objects, features, and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and specific examples, while indicating preferred embodiments of the present invention, are given by way of illustration only and various modifications may naturally be performed without deviating from the present invention.




The following description is directed to the monitoring of a web radio station that broadcasts audio content over a network such as the Internet. However, this is for illustrative purposes only and the present invention is not so limited. The present invention can similarly be applied to any other type of broadcast (including radio, television, cable, and satellite broadcasts), because the source of the broadcast content is unimportant to the monitoring function performed in accordance with the present invention.





FIG. 1

is a schematic of an exemplary network


100


on which the present invention can be implemented. The network includes a first server


102


and a second server


104


communicatively coupled to a network


106


such as the Internet through a first bi-directional data link


108


and a second bi-directional link


110


, respectively. The first and second servers


102


and


104


have file storage memories such as hard drives for storing files.




A first client computer


112


and a second client computer


114


are communicatively coupled to the network


106


through a third bi-directional data link


116


and fourth bi-directional data link


118


, respectively. The first and second client computers are capable of downloading content including streaming audio from the first and second servers. The network components described thus far describe a system that can be used for the broadcast of audio content such as music. Audio files storing sound recordings of music are temporarily or permanently stored on the servers


102


and


104


.




A rights monitoring client computer (RMCC)


120


is communicatively coupled to the network


106


through a fifth bi-directional data link


122


. A computer readable memory medium


124


such as a CD-ROM is provided for loading software onto the RMCC for carrying out methods such as those described in detail below. For example, the software can operate to identify audio content that is broadcast over the network.




The first and second servers


102


and


104


, the client computers


112


and


114


, and the RMCC can be any conventional computer systems such as IBM PC-compatible computers. As is known, each IBM PC-compatible computer can include a microprocessor, basic input/output system read-only memory (BIOS ROM), random access memory (RAM), hard disk drive storage, removable computer readable medium storage (e.g., a CD-ROM drive), a video display adapter card, a video monitor, a network interface (e.g., modem), a keyboard, a pointing device (e.g., mouse), a sound card, and speakers.




The first through fifth bi-directional data links


108


,


110


,


116


,


118


, and


122


may include Digital Subscriber Lines (DSL), T1 lines, or dial-up modem connections. The first and second servers


102


and


104


can be provided with server software such as Apache Server software (produced by Apache Software Foundation of Lincoln, Nebr.) running under a UNIX operating system. The first and second client computers


114


and


116


can be loaded with a web browser such as Netscape Navigator (produced by America Online of Dulles, Va.) running under a Windows operating system (produced by Microsoft Corporation of Redmond, Wash.). The web browser preferably operates along with a plug-in application for decoding an audio (or multimedia) datastream that is received and providing an audio signal to the sound card. Alternatively, a separate application or dedicated hardware can be provided for decoding the audio datastream for playback. The two servers


102


and


104


, the two client computers


112


and


114


, and the RMCC are also loaded with communication protocol stack software so as to be able to establish network connections. Further, the RMCC is loaded with an operating system (such as Windows or UNIX) and an RMCC application, such as one that operates as described below.





FIG. 2

is a block diagram of software for automatic performance rights monitoring according to a preferred embodiment of the present invention. A server application


202


includes a file system


204


that includes one or more audio files (e.g., in MP3 format or as tracks on a CD). The server application


202


operates along with a server side communication protocol stack


206


that is capable of supporting broadcast network connections (e.g., Multicast, UDP, TCP, and HTTP). The server application


202


and server side communication protocol stack


206


are run on the first and second servers


102


and


104


. A broadcast network connection


208


is established between the server communication protocol stack


206


and a client communication protocol stack


210


. Alternatively, block


202


can be a radio or television station broadcasting over the airwaves or through a cable or satellite network. In such embodiments, block


210


would be an appropriate receiver for receiving the broadcasted signal.




The client communication protocols stack (or receiver output) is utilized by a performance rights monitoring application


212


. The performance rights monitoring application includes a content identifier module


216


. The content identifier module


216


receives broadcast audio content from the network connection


208


and decodes it to obtain information. In preferred embodiments, the content identifier module includes a key database that contains numerous keys derived from numerous songs. For each song (i.e., sound recording unit) in the database, there is a set of keys. The set of keys provides a means of identifying a song or a segment of a song. A section of a song will have a corresponding subset of keys that allow the section to be identified, thus retaining the ability to identify the presence of only a portion of a song.




In one exemplary embodiment, the key database takes the form of a key table. Each row of the key table includes a key sequence in a first column, a time group value in a second column, and a song ID (e.g., title) in a third column. The key database is constructed by applying a key generation program to known songs, and associating each key obtained by the key generation program with the title in the key database. The time group is a time (measured in units of a predetermined interval relative to the start of the song) at which an audio feature from which a key is derived occurred. Each time group includes events (explained further below) that occurred during a period of time equal to the predetermined interval. Two different broadcasts of the same song can have slightly different start times (e.g, the broadcast may start a few seconds before or after the actual beginning of the song). This variance presents a difficulty that preferred audio identification methods surmount.





FIG. 3

is a flow diagram of a process


300


that is performed by the performance rights monitoring application to automatically identify broadcast audio content (such as an audio or multimedia datastream from a web radio station) according to a preferred embodiment of the present invention. In step


302


, the audio content to be searched for (e.g., copyrighted sound recordings) is registered along with identifying information in an audio content database. In preferred embodiments, the identifying information is produced by a feature generation system and is based on the audio content itself. For example, the process described in detail below can be used to generate a unique signature (in the form of a set of keys) for each piece of audio content that is to be searched for.




In further embodiments, the identifying information can be any other type of audio signature or audio fingerprint that is computed based on the audio data itself, an identifying watermark, embedded identification information such as an identification number, or any other type of information that allows individual pieces of a audio content to be uniquely (or substantially uniquely) identified. Further, the audio content to be searched for can be a single selection or multiple selections (e.g., all selections from a songwriter or publishing company).




In step


304


, a broadcast datastream is received. Next, in step


306


, the content identifier module


218


analyzes the audio content from the broadcast datastream that was received in step


304


using an algorithm that generates audio information like the information stored in the audio content database. For example, in preferred embodiments, a unique feature signature (in the form of a set of keys) is generated for each piece of audio content that is received.




In step


308


, the unique signature computed for each piece of audio content (or portion of audio content) is compared with the information stored in the audio content database. The content identifier module


218


determines whether or not each piece of audio content matches any of the audio content registered in the audio content database. For example, a best match algorithm employing some minimum threshold can be used to make such a determination. One exemplary match determination algorithm is discussed in detail below. In step


310


, for each piece of audio content that is determined to match audio content in the database, an identification of the audio content (e.g., it's title) and the broadcast source (i.e., station) from which it was received are recorded and/or transmitted to a third party (e.g., the copyright owner).




Thus, a list of stations broadcasting a given copyrighted song can be automatically compiled. For example, a licensing organization or individual copyright holder can use the system of the present invention to automatically compile a list of broadcasts of its copyrighted audio content, and then divide royalties based on the number of times each song is actually broadcast. Besides being accurate, the list can be compiled in real time so as to allow billing information to be available immediately. In contrast, the current manual sampling method introduces a significant lag time between broadcast and availability of the billing information.




Similarly, a list of audio content broadcast by a particular station can be automatically compiled for use in performance royalty calculations. The licensing organization or copyright holder can then charge a fee directly to the broadcaster for the use of the copyrighted content. For example, if a broadcaster agrees to pay performance royalties based on actual music content, the compiled information can be used to automatically: determine what audio content is broadcast, generate a bill based on the audio content that is found to have been broadcast, and determine how the royalties should be split by third parties (e.g., individual copyright holders).




Further, an information service can use the system of the present invention to automatically compile such a list that relates to audio content of interest to (e.g., owned by) a third party, and then charge a fee to the third party for the compiled list. Such compiled information can also be used as evidence in judicial or administrative proceedings for copyright enforcement. Additionally, the compiled information can be used for market research purposes. Similarly, the compiled information can be used to automatically generate popularity ratings (e.g., a “Top 40”) for broadcast audio content. Such ratings can be made international, national, regional, or for a single broadcaster.





FIGS. 4A through 8

illustrate in detail relevant portions of one exemplary process for identifying audio content.

FIG. 4A

is a first part of a flow diagram of a process


400


for generating an event stream for an audio segment (e.g., song) according to a preferred embodiment of the present invention. The process


400


accepts an audio signal as input and outputs a sequence of “events”. In some embodiments of the present invention, the audio signal is reproduced from an MP3 file. In step


402


, an audio signal is sampled. In one embodiment, the audio signal is sampled at about 22050 Hz or lower. This allows frequency components up to 11 KHz to be accurately determined. It is advantageous to use an upper frequency limit of about 11 KHz because 11 KHz is about the frequency cut off for FM broadcast radio, and it is desirable to be able to generate the same set of keys for a song regardless of whether the song recording was at one point transmitted through FM radio or obtained directly from a high quality source (e.g., a CD).




In step


404


, for each successive test period the spectrum of the audio signal is computed. The duration of the test period preferably ranges from about {fraction (1/43)} of a second to about {fraction (1/10.75)} of a second, and more preferably the test period is about {fraction (1/21.5)} of a second. The spectrum of the audio signal is preferably analyzed using a fast Fourier transform (FFT) algorithm. The accuracy of spectrum information obtained using an FFT algorithm can be improved by averaging together the results obtained by applying the FFT to several successive periods (sample sets). In preferred embodiments of the present invention, spectrum information is improved by averaging together the results obtained by applying the FFT to two or more successive periods, and preferably 3 or more successive periods, and even more preferably 4 successive periods. According to one exemplary embodiment of the present invention, the spectrum associated with a given test period having a duration of {fraction (1/21.5)} of a second is obtained by sampling an audio signal at a rate of 22050 Hz and averaging together the results obtained by applying an FFT algorithm to four successive periods, each of which has a duration of {fraction (2/21.5)} seconds and includes 2048 samples.




Step


404


can be accomplished by using an FFT algorithm run on the microprocessor of the RMCC


120


. Alternatively, the RMCC could be provided with FFT hardware for performing step


404


. Other spectrum analyzers, such as a filter bank, can alternatively be used for carrying out step


404


. Additionally, in process


404


, successive sets of samples can alternatively be projected onto another type of basis besides a Fourier basis. One particular alternative to the Fourier basis is a wavelet basis. Like Fourier basis functions, wavelets are also localized in the frequency domain (although to a lesser degree). Wavelets have the added property that they are localized in the time domain as well. This opens up the possibility of projecting the audio signal as a whole, rather than successive sample sets of the audio signal onto a wavelet basis, and obtaining time dependent frequency information about the signal.




One common set of frequencies used in composing music are the notes of the even-tempered scale. The even tempered scale includes notes that are equally spaced on a logarithmic scale. Each note covers a frequency band called a “semitone”. The inventors have determined that improved signatures can be obtained by collecting spectral power in discrete semitone bands as opposed to the evenly spaced frequency bands output by an FFT algorithm. Instep


406


, the spectrum information (e.g., Fourier frequency components) obtained in step


404


are collected into a number of semitone frequency bands or channels.




In step


408


, a first average of the power in each semitone frequency channel is taken over the last T1 seconds. In step


410


, a second average of the power in each semitone frequency channel is taken over the last T2 seconds, where T2 is greater than T1. T1 is preferably from about {fraction (1/10)} to about 1 second. T2 is preferably larger than T1 by a factor of from 2 to 8. According to a one exemplary embodiment of the present invention, T2 is equal to one second, and T1 is equal to one-quarter of a second. The “events” mentioned above occur when the value of the first average crosses the second average.




In step


412


, the values of the first and second averages are recorded for each semitone channel. Recording is done so that it can be determined during the following test period whether the first average crossed the second average. In step


414


, for each semitone channel it is determined if the first average crossed the second average. This is done by comparing the inequality relation between the first and second averages during the current test period to the inequality relation for the last period. Although comparison between only two averages has been discussed above, it is possible according to alternative embodiments of the present invention to use more than two averages, and identify events as the crossing points between different sub-combinations of the more than two averages.




In the vicinity of an extremum (local maximum or minimum) in a semitone frequency channel, the two averages will cross. Rather than looking for the crossing point of two running averages with different averaging periods, another type of peak detector (e.g., an electronic circuit) could be used. Such could advantageously be used in combination with an FFT in an implementation of the present invention that is implemented predominately in hardware, as opposed to software.




Rather than looking for a peak in the signal in a frequency channel, another type of curve characteristic such as an inflection point could be used as a trigger event. An inflection point can be found by calculating a second derivative of a frequency channel by operating on three successive values of the power in a given frequency channel, and identifying a time at which the second derivative changes from positive to negative or vice versa. The second derivative can be approximated using function (time dependent frequency component) values for three successive points in the following formula.






(


F


(


N+


2)


−F


(


N+


1)


+F


(


N


))/ΔT






where F(I) is the value of the function at the i


th


time (e.g., at the i


th


test period), and ΔT is the interval between successive function values (e.g., the duration of the test period).




At an extremum of a time dependent frequency component, its first derivative is equal to zero. At an inflection point of a time dependent frequency component, its second derivative is equal to zero. Extrema and inflection points are both kinds of events. More generally events can be defined as points (i.e., points in time) at which an equation involving a time dependent frequency component derivative of one or more orders of the time dependent frequency components, and/or integrals involving the time dependent frequency components is satisfied. To allow their use in identifying different audio content, an essential part of the definition of “events” is that they occur at a subset of test periods, not at each test period.




Step


416


is a decision block, the outcome of which depends on whether averages for a semitone channel crossed. Step


416


is tested for each semitone channel. If averages for a semitone channel were not crossed during the current test period, then in step


418


it is determined if the audio signal is over. If the audio stream is finished, then the process


400


terminates. If the audio signal is not finished, then the process


400


is advanced to the next test period and the process continues with step


404


. If on the other hand, averages did cross during the last test period then the process


400


continues with step


422


in which each event is assigned to the current time group and information related to the average crossing event is generated.




Event information preferably includes the time group for the event, the test period for the event, the semitone frequency band of the event, and the value of the fast average (average over T1) at the time of crossing. Event information can be recorded in a memory or storage device associated with the RMCC. Each time group covers a period of time that is longer than a test period, and preferably time groups cover successive periods of time equal to from ¼ to 2 seconds, and more preferably each time group covers a period of from one-half to three-quarters of a second. Grouping events into successive time groups has the advantage that keys obtained by processing two recordings of the same song will tend to match more completely despite the fact that one or both of the recordings may have some distortions (e.g., distortions that arise in the course of recording on magnetic tape).




In step


424


, the process


400


is incremented to the next test period. In step


426


, it is determined if the audio segment (e.g., song) is finished. If the audio segment is finished then the process


400


terminates. If the audio segment is not finished, then the test period is incremented and the process loops back to step


404


.




Thus, the result of the process is to take an audio signal and produce a plurality of events. Each event is assigned to a semitone frequency band in which it occurred and a time group (interval) within which it occurred. The events can be stored in a memory (e.g., RAM in the RMCC


120


). The events can be stored in a buffer from which they are successively read by one or more key generator processes. The events output by the process could be in the form of an event stream, which is to say that after each time group, all the events occurring within the time group could be written to memory and thereby made available for further processing. An alternative is to write all the events for a song to memory or storage at one time.





FIG. 5

is a flow diagram of a key generator process for generating keys from the events produced by a process such as that shown in

FIGS. 4A and 4B

. The events output by process


400


are processed by a plurality of key generator processes


500


. Each of the plurality of key generator processes is assigned to one semitone frequency band that is designated as its main frequency. However, each key generator also uses events that occur in other semitone frequency bands near its main frequency. Preferably each key generator monitors from 5 to 15 semitone frequency bands. If the number of frequency bands monitored is too few, the resulting keys will not be as strongly characteristic of the particular audio segment. On the other hand, a higher number of frequency bands will result in higher computational expense for computing and comparing keys, greater memory requirements for storing keys, and potential performance loss due to key saturation in the key table from the increased number of keys. According to one embodiment of the present invention, each key generator monitors its main semitone frequency band and four other semitone frequency bands, two on each side of the main semitone frequency band.




Referring now to

FIG. 5

, in step


502


each successive time group of events output by process


400


is monitored for events occurring within the semitone frequency bands assigned to this key generator. Step


504


is a decision block, the outcome of which depends on whether the key generator detected (e.g., by reading from memory) any new events in step


502


. If not, then in step


514


, the process


500


is incremented to the next time group and loops back to step


502


. If, on the other hand, new events did occur in the time group and semitone frequency bands checked, then in step


506


the new events are written to a key generator buffer for the key generator under consideration, and the events for the oldest time group that were stored in the key generator buffer are deleted. In one exemplary embodiment, the buffer can be seen as an array in which the rows correspond to time groups and the columns to frequency bands. Thus, in the embodiment of the present invention mentioned above, there would be five columns for each of the semitone frequency bands monitored by each key generator.




The key generator buffer preferably includes events from 3 to 7 time groups. More preferably, events from five or six time groups are maintained in each key buffer array. Note that in this embodiment not all time groups are represented in the key generator buffer. As shown in

FIG. 5

, if no events occur in the semitone frequency bands for a key generator in a certain time group, then no change will be made to the key generator buffer. In other words, a blank row will not be recorded. Therefore, each time group recorded in the key generator buffer includes at least one event.




Step


508


is decision block whose outcome depends on whether an event that occurred in the current time group (e.g., current pass through program loop) is a trigger event. According to a preferred embodiment of the present invention, a trigger event is an event that occurs at the main frequency assigned to this key generator. If a trigger event did not occur, then the process loops back to step


514


. If a trigger event did occur, then the process continues with step


510


in which keys are generated from the contents of the key generator buffer. The process


500


continues until all of the events produced by process


400


have been processed.





FIG. 6

is a flow diagram of a process for generating keys from the contents of a key generator buffer according to one embodiment of the present invention. In particular, the process


600


shows in detail one embodiment of the implementation of step


510


of FIG.


5


. In step


602


, for each key generator (as explained above there are a plurality of key generators carrying out process


500


) and for each trigger event for the key generator under consideration, one or more different combinations of events from the key generator buffer are selected. Each combination includes only one event from each time group. (There may be more than one event for each time group in each key generator buffer.) According to a preferred embodiment of the present invention, not all possible combinations are selected, rather only combinations for which a power associated with each event changes monotonically from one event to the next in the combination are selected.




In this embodiment, the order of events within a combination corresponds to the time group order. The power associated with each event is preferably the magnitude of the fast (first) average at the test period at which the event occurred. In this embodiment, less than all of the possible combinations of keys will be taken, so that the total number of keys for a given audio segment will tend to be reduced which leads to lower memory and processing power requirements. On the other hand, there will be enough keys that the identity of the song will be well characterized by (i.e., strongly correlated to) the set of keys generated from the song. According to an alternative embodiment, only a single combination is selected from the contents of the key generator buffer. The single combination includes the event associated with the highest fast average power from each time group. According to another alternative embodiment, all the different combinations of events taking one event from each time group are taken.




In step


604


, for each selected combination of events a key sequence is composed that includes a sequence of numerical values of frequency offsets (relative to the main key generator frequency) for the sequence of events from each combination formed in step


602


. Each frequency offset is the difference between the frequency of the semitone band in which the event occurred and the main frequency of the key generator. In step


606


, test period information (e.g., a sequence number for the test period of the trigger event, where the sequence number for the first test period for each song is designated by the number one) for the trigger event is associated with the key sequence.




In step


608


, the key which includes the key sequence and the test period information is associated with a song (or other audio) identifier or ID (e. g., title). Process


600


includes step


608


in the case that known songs are being used to construct a song database against which unknown songs will be compared. In comparing two songs, both the key sequence and test period information will be used, as described further below with reference to FIG.


8


. The song database can take the form of a table including three columns and a plurality of rows. The first column includes key sequences, the next column includes corresponding test periods associated with the key sequences, and the final column includes an identification of the song from which the keys in the row were obtained.




While the processes described above can be used to identify audio content, it is advantageous to filter percussion events. More specifically, percussion sounds in a song, if not filtered, typically account for high percentage of the events output by process


400


. In the interest of saving computer resources (e.g., memory and processing power) and obtaining a more characteristic set of keys, it is desirable to reduce the number of percussion events such as by eliminating some percussion events before events are processed by the key generator process


500


. It has been recognized by the inventors that percussion sounds lead to events being triggered during the same test period in adjacent semitone frequency bands. For example, percussion sounds can lead to events occurring in a sequence of 2 or more adjacent semitone frequency bands.





FIG. 7

is a flow diagram of a process used in a preferred embodiment to filter percussion events from the events produced by the process of

FIGS. 4A and 4B

. In step


702


, for each successive test period it is determined if multiple events occurred in a sequence of two or more adjacent semitone frequency bands. Step


704


is a decision block, the outcome of which depends on whether multiple events in adjacent frequency bands occurred. A threshold of some predetermined number of events occurring in adjacent frequency bands used in the process. Preferably, a lower limit on the number of adjacent frequency bands in which events must be found (in order to consider that the events were produced by a percussion sound) is set at three or more. According to an exemplary embodiment of the present invention, events must occur in three successive semitone frequency bands for the outcome of step


704


to be positive.




If the outcome of step


704


is negative, then the process continues with step


708


in which the process increments to the next test period and loops back to step


702


. If, on the other hand, the outcome of step


704


is positive, then the process


700


continues with step


706


in which each sequence of events that occurred during the same test period in adjacent frequency bands is pared down to a single event. All of the events except for the event in the sequence that has the highest fast average value are deleted from the event stream produced by process


400


. Alternatively, instead of deleting all but one, up to a certain predetermined number of events can be retained.




The processes described above produce keys for a sound recording based on the features (i.e., events) contained in the sound recording. Thus, the processes can be ran on known audio content to construct a feature database of the known audio content during a storage phase. After the database is created, during a retrieval phase the above processes can be used to extract features from unknown audio content and then the database can be accessed to identify the audio content based on the features that are extracted. For example, the same processes can be run on the unknown audio content to extract features in real time (or even faster), and then the audio content is identified with the best match in the database. In one embodiment, a best match can be reported for each predetermined interval (e.g., 10 to 30 seconds) of the audio content.





FIG. 8

is a flow diagram of a song identification process that uses the keys generated in the processes of

FIGS. 5 and 6

to identify an audio segments. A song database (such as that described above) is used to identify an unknown song such as a song downloaded from a web site in step


304


of process


300


. The key sequence field (column) of the song database can be used as a database key. The records (rows) of the song database are preferably stored in a hash table for direct lookup. The identification process


800


is an exemplary implementation of step


308


of FIG.


3


.




In step


802


, keys are generated from a song to be identified (for example, by carrying out the processes shown in FIGS.


5


and


6


). In step


804


, each key in the set of keys generated in step


804


is looked up in a song database that includes keys for a plurality of songs. The key sequence part (as opposed to the test period part) of each key is used as a database key. In other words, the song database is searched for any entries that have the same key sequence as a key sequence belonging to a key obtained from the song to be identified. More than one key in the song database can have the same key sequence, and furthermore by happenstance more than one song in the song database can share the same key sequence. In step


806


, for each key in the database that matched (by key sequence) one or more keys in the song database, an offset is calculated by taking the difference between a test period associated with the key being looked up and a test period associated with each matching key in the song database.




In step


808


, the offsets are collected into offset time groups. The offset time groups for the offsets are distinct from the time groups used in key generation. According to a preferred embodiment, an offset time group will be equal to from 2 to 10 test periods. By way of illustration, if each offset time group were 5, then any pair of keys for which the difference determined in step


806


was between 0 and 5 would be assigned to a first offset time group, and any pair of keys for which the difference was between 6 and 10 would be assigned to a second offset time group. According to an exemplary embodiment of the present invention, each offset time group is equal to 5 test periods.




In step


810


, for each song that has keys that match keys in the song to be identified, and for each offset time group value that was determined in step


808


and involved keys for a given song in the song database, a count is made of the number of matching keys that had the same time group offset value. One can visualize step


810


in the following way, which may also be used as a basis for an implementation approach. A temporary table is constructed where each row corresponds to a song from the song database that had one or more key matches with the song to be identified. The first column includes names of the songs. In the second column, adjacent each song name there is a value of the offset time group that was found between keys found for the named song in the song database, and matching keys from the song to be identified. After completing step


810


, the third column will include counts of the number of key matches corresponding to a particular song identified in the first column, that had the same offset time group as identified in the second column. The table might appear as follows.














TABLE 1











COUNT OF KEY








SEQUENCE MATCHES







OFFSET VALUE




FOR THIS SONG AND







(UNITS OF TIME




WITH THIS OFFSET






SONG TITLE




GROUP INTERVAL)




VALUE

























Title1




3




1






Title1




4




1






Title2




2




2






Title2




3




107






Title3




5




1






Title2




8




1














If the song to be identified is in the database, then one particular time group offset value will accumulate a high count. In other words, a high number of matching pairs of keys will be found to have some particular value of offset time group. In the example above, the song entitled Title2 has a count of 107 for an offset time group of 3. For example, the time group offset may arise because the specific recording that is being identified started a few seconds after the recording of the song used to generate keys for the song database, or because a small segment of the song is being identified.




In step


812


, the song from the song database that has the highest count of matching keys with the same offset is identified. In decision block


814


, the count is compared to a threshold value. The threshold can be set based on the particular application or through a determination of the minimum value for the highest counts that are found when songs actually match, and the maximum value of the highest counts when songs tested do not match any songs in the database. The value of the threshold used also depends on the specific embodiment chosen for step


602


discussed above, as this determines the total number of keys.




Rather than comparing the count to a threshold, it is possible instead in step


812


to compare a threshold with the ratio of the highest count to the total number of keys generated from the song to be identified. Another alternative is to compare a threshold with the ratio of the highest count to the average of the remaining counts. These latter two alternatives can also be viewed as comparing the highest count to a threshold, although in these cases the threshold is not fixed. If, as would be the case when the song to be identified is not in the database, the count does not meet the threshold criteria, then the song identification process


800


terminates. Additional steps may be provided for reporting (e.g., to a user) that the song to be identified could not be identified. If on the other hand the count does meet the threshold criteria, then in step


814


information identifying the song that had the highest count (which met the threshold criteria) is output. In further embodiments, the processes of the present invention are used to identify segments of songs.




The process for identifying songs described above with reference to

FIGS. 4A through 8

is robust in terms of its ability to handle distortion and alteration. Furthermore, the process is also efficient in terns of computational complexity and memory requirements. The processes for generating an event stream, filtering percussion events, generating keys, and looking up the keys in a song database can also be conducted in real time (or faster). The computational expense of the process is low enough to allow it to run in real time on a common personal computer.




Accordingly, the present invention provides systems and methods for monitoring broadcast audio content that provides accurate accounting of when audio content is broadcast, independent of popularity and the accuracy of the broadcaster. In preferred embodiments, the performance rights monitoring application operates in real time (or even faster). This allows the broadcast datastream that is to be monitored to be fed directly into the application for real-time feature generation of the broadcast audio content.




While the embodiments described above relate to a single broadcast datastream, the system of the present invention could easily be adapted by one of ordinary skill in the art to monitor multiple broadcasts in parallel. Furthermore, while the embodiments of the present invention described above relate to audio content, the system of the present invention could easily be adapted by one of ordinary skill in the art to monitor other types of broadcasted media content such as graphical images, multimedia content, and video. In such further embodiments, a broadcast datastream of the desired type is received, identifying information is generated from the broadcast datastream, and then the generated identification information is compared with a database of identifying information for content of interest.




The present invention can be realized in hardware, software, or a combination of hardware and software. Any kind of computer system—or other apparatus adapted for carrying out the methods described herein—is suited. A typical combination of hardware and software could be a general purpose computer system with a computer program that, when being loaded and executed, controls the computer system such that it carries out the methods described herein.




The present invention can also be embedded in a computer program product, which includes all the features enabling the implementation of the methods described herein, and which—when loaded in a computer system—is able to carry out these methods. Computer program means or computer program in the present context mean any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following a) conversion to another language, code or, notation; and b) reproduction in a different material form. Each computer system may include, inter alia, one or more computers and at least a computer readable medium allowing a computer to read data, instructions, messages or message packets, and other computer readable information from the computer readable medium. The computer readable medium may include non-volatile memory, such as ROM, Flash memory, disk drive memory, CD-ROM, and other permanent storage. Additionally, a computer medium may include, for example, volatile storage such as RAM, buffers, cache memory, and network circuits. Furthermore, the computer readable medium may include computer readable information in a transitory state medium such as a network link and/or a network interface, including a wired network or a wireless network, that allow a computer to read such computer readable information.




While there has been illustrated and described what are presently considered to be the preferred embodiments of the present invention, it will be understood by those skilled in the art that various other modifications may be made, and equivalents maybe substituted, without departing from the true scope of the invention. Additionally, many modifications may be made to adapt a particular situation to the teachings of the present invention without departing from the central inventive concept described herein. Therefore, it is intended that the present invention not be limited to the particular embodiments disclosed, but that the invention include all embodiments falling within the scope of the appended claims.



Claims
  • 1. A method for monitoring broadcast audio content, said method comprising the steps of:receiving a broadcast datastream; generating audio identifying information for audio content from the broadcast datastream based on detected events in the audio content; and determining whether the audio identifying information generated for the broadcast audio content matches audio identifying information in an audio content database, wherein the generating step includes the sub-step of: detecting a plurality of events in the audio content, each of the events being a crossing of the value of a first running average and the value of a second running average, wherein the first running average is an average over a first averaging period of a plurality of time dependent frequency components of the audio content, and the second running average is an average over a second averaging period, which is different than the first averaging period, of the time dependent frequency components of the audio content.
  • 2. The method according to claim 1, wherein the audio identifying information is an audio feature signature that is based on the detected events in the audio content.
  • 3. The method according to claim 2, wherein the determining step includes the sub-step of comparing the audio feature signature generated for the broadcast audio content with the audio feature signatures stored in the audio content database.
  • 4. The method according to claim 1, further comprising the steps of:generating audio identifying information for predetermined audio content based on detected events in the predetermined audio content; and storing the audio identifying information for the predetermined audio content in the audio content database.
  • 5. The method according to claim 1, further comprising the step of:if the audio identifying information generated for the broadcast audio content matches audio identifying information in the audio content database, recording information including identification of the audio content and a broadcast source from which the broadcast datastream was received.
  • 6. The method according to claim 5, further comprising the steps of:compiling at least one list from the recorded information, the list including all broadcasts of a plurality of pieces of audio content; and dividing royalties based at least partially on the number of times each pieces of audio content is broadcast.
  • 7. The method according to claim 5, further comprising the steps of:compiling at least one list from the recorded information, the list including all of the audio content broadcast by at least one broadcast source; and charging royalties to the broadcast source based on the list.
  • 8. The method according to claim 5, further comprising the step of:compiling at least one list from the recorded information, the list including all broadcasts of at least one piece of audio content; and charging a fee for the list.
  • 9. The method according to claim 1, wherein the generating step further includes the sub-steps of:obtaining an audio signal characterized by a time dependent power spectrum; analyzing the spectrum to obtain the time dependent frequency components; and producing the audio identifying information for the audio content from the broadcast datastream based on the detected events.
  • 10. The method according to claim 9, wherein the sub-step of analyzing the spectrum includes:sampling the audio signal to obtain a plurality of audio signal samples; taking a plurality of subsets from the plurality of audio signal samples; and performing a Fourier transform on each of the plurality of subsets to obtain a set of Fourier frequency components.
  • 11. The method according to claim 9, wherein the sub-step of detecting a plurality of events includes:keeping the first running average over the first averaging period of the plurality of time dependent frequency components so as to obtain a first series of averages for the first averaging period; keeping the second running average over the second averaging period of the plurality of time dependent frequency components so as to obtain a second series of averages for the first averaging period; and recording a plurality of event times, each of the event times being a time at which there occurs one of the detected events of the first running average crossing the second running average.
  • 12. The method according to claim 1, wherein the generating step further includes the sub-steps of:performing a Fourier transformation of the audio signals of the portion into a time series of audio power dissipated over a first plurality of frequencies; grouping the frequencies into a smaller second plurality of bands that each include a range of neighboring frequencies; detecting power dissipation events in each of the bands; and grouping together the power dissipation events from mutually adjacent bands at a selected moment so as to form the identifying feature.
  • 13. A computer-readable medium encoded with a program for monitoring broadcast audio content, said program containing instructions for performing the steps of:receiving a broadcast datastream; generating audio identifying information for audio content from the broadcast datastream based on detected events in the audio content; and determining whether the audio identifying information generated for the broadcast audio content matches audio identifying information in an audio content database, wherein the generating step includes the sub-step of: detecting a plurality of events in the audio content, each of the events being a crossing of the value of a first running average and the value of a second running average, wherein the first running average is an average over a first averaging period of a plurality of time dependent frequency components of the audio content, and the second running average is an average over a second averaging period, which is different than the first averaging period, of the time dependent frequency components of the audio content.
  • 14. The computer-readable medium according to claim 13, wherein the audio identifying information is an audio feature signature that is based on the detected events in the audio content.
  • 15. The computer-readable medium according to claim 14, wherein the determining step includes the sub-step of comparing the audio feature signature generated for the broadcast audio content with the audio feature signatures stored in the audio content database.
  • 16. The computer-readable medium according to claim 13, wherein said program further contains instructions for performing the steps of:generating audio identifying information for predetermined audio content based on detected events in the predetermined audio content; and storing the audio identifying information for the predetermined audio content in the audio content database.
  • 17. The computer-readable medium according to claim 13, wherein said program further contains instructions for performing the step of:if the audio identifying information generated for the broadcast audio content matches audio identifying information in the audio content database, billing a broadcast source from which the broadcast datastream was received.
  • 18. The computer-readable medium according to claim 13, wherein said program further contains instructions for performing the steps of:if the audio identifying information generated for the broadcast audio content matches audio identifying information in the audio content database, recording information including identification of the audio content and a broadcast source from which the broadcast datastream was received; compiling at least one list from the recorded information, the list including all broadcasts of a plurality of pieces of audio content; and dividing royalties based at least partially on the number of times each pieces of audio content is broadcast.
  • 19. The computer-readable medium according to claim 13, wherein said program further contains instructions for performing the steps of:if the audio identifying information generated for the broadcast audio content matches audio identifying information in the audio content database, recording information including identification of the audio content and a broadcast source from which the broadcast datastream was received; compiling at least one list from the recorded information, the list including all broadcasts of at least one piece of audio content; and charging a fee for the list.
  • 20. The computer-readable medium according to claim 13, wherein the generating step further includes the sub-steps of:obtaining an audio signal characterized by a time dependent power spectrum; analyzing the spectrum to obtain the time dependent frequency components; and producing the audio identifying information for the audio content from the broadcast datastream based on the detected events.
  • 21. The computer-readable medium according to claim 20, wherein the sub-step of analyzing the spectrum includes:sampling the audio signal to obtain a plurality of audio signal samples; taking a plurality of subsets from the plurality of audio signal samples; and performing a Fourier transform on each of the plurality of subsets to obtain a set of Fourier frequency components.
  • 22. The computer-readable medium according to claim 20, wherein the sub-step of detecting a plurality of events includes:keeping the first running average over the first averaging period of the plurality of time dependent frequency components so as to obtain a first series of averages for the first averaging period; keeping the second running average over the second averaging period of the plurality of time dependent frequency components so as to obtain a second series of averages for the first averaging period; and recording a plurality of event times, each of the event times being a time at which there occurs one of the detected events of the first running average crossing the second running average.
  • 23. The computer-readable medium according to claim 14, wherein the generating step further includes the sub-steps of:performing a Fourier transformation of the audio signals of the portion into a time series of audio power dissipated over a first plurality of frequencies; grouping the frequencies into a smaller second plurality of bands that each include a range of neighboring frequencies; detecting power dissipation events in each of the bands; and grouping together the power dissipation events from mutually adjacent bands at a selected moment so as to form the identifying feature.
  • 24. A system for monitoring broadcast audio content, said system comprising:a receiver for receiving a broadcast datastream; an identifying information generator for generating audio identifying information based on detected events in audio content from the broadcast datastream; and a match detector for determining whether the audio identifying information generated for the broadcast audio content matches audio identifying information in an audio content database, wherein the identifying information generator detects a plurality of events in the audio content, each of the events being a crossing of the value of a first running average and the value of a second running average, the first running average is an average over a first averaging period of a plurality of time dependent frequency components of the audio content, and the second running average is an average over a second averaging period, which is different than the first averaging period, of the time dependent frequency components of the audio content.
  • 25. The system according to claim 24, wherein the audio identifying information is an audio feature signature that is based on the detected events in the audio content.
  • 26. The system according to claim 24, wherein the audio content database stores audio identifying information for predetermined audio content.
  • 27. The system according to claim 24, further comprising:an invoicer for charging a fee to a broadcast source from which the broadcast datastream was received, if the audio identifying information generated for the broadcast audio content matches audio identifying information in the audio content database.
  • 28. The system according to claim 24, further comprising:an information collector for recording information including identification of the audio content and a broadcast source from which the broadcast datastream was received, if the audio identifying information generated for the audio content matches audio identifying information in the audio content database; a list generator for compiling at least one list from the recorded information, the list including all broadcasts of a plurality of pieces of audio content; and a royalty calculator for assigning royalties based at least partially on the number of times each pieces of audio content is broadcast.
  • 29. The system according to claim 24, further comprising:an information collector for recording information including identification of the audio content and a broadcast source from which the broadcast datastream was received, if the audio identifying information generated for the audio content matches audio identifying information in the audio content database; a list generator for compiling at least one list from the recorded information, the list including all broadcasts of at least one piece of audio content; and an invoicer for charging a fee for the list.
  • 30. A method for charging royalties for usage of copyrighted audio content, said method comprising the steps of:receiving a broadcast datastream; generating audio identifying information for audio content from the broadcast datastream based on detected events in the audio content; determining whether the audio identifying information generated for the broadcast audio content matches audio identifying information in a copyrighted audio content database; and if the audio identifying information generated for the broadcast audio content matches audio identifying information in the copyrighted audio content database, billing a broadcast source from which the broadcast datastream was received, wherein the generating step includes the sub-step of: detecting a plurality of events in the audio content, each of the events being a crossing of the value of a first running average and the value of a second running average, wherein the first running average is an average over a first averaging period of a plurality of time dependent frequency components of the audio content, and the second running average is an average over a second averaging period, which is different than the first averaging period, of the time dependent frequency components of the audio content.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of prior U.S. application Ser. No. 09/803,298, filed Mar. 9, 2001, which is based upon and claims priority from prior U.S. Provisional Application No. 60/245,799, filed Nov. 3, 2000. The entire disclosures of application Ser. No. 09/803,298 and Provisional Application No. 60/245,799 are herein incorporated by reference.

US Referenced Citations (5)
Number Name Date Kind
4450531 Kenyon et al. May 1984 A
4843562 Kenyon et al. Jun 1989 A
4918730 Schulze Apr 1990 A
5437050 Lamb et al. Jul 1995 A
5504518 Ellis et al. Apr 1996 A
Non-Patent Literature Citations (4)
Entry
“13.4 Power Spectrum Estimation Using the FFT,” Numerical Recipes in C, Cambridge University Press, 1993, pp. 549-558.
Sundberg, J., “The Science of Musical Sounds,” Academic Press, 1991, p. 89.
Germain, R., Califano, Andrea, Colville, S., et al. “Fingerprint Matching Using Transformation Parameter Clustering” IEEE Computational Science and Engineering, Oct.-Dec. 1997, vol. 4, No. 4, pp. 42-49.
Crawford, T., Iliopoulos, C.S., Raman, Rajeev, “String-Matching Techniques for Musical Similarity and Melodic Recognition,” Computing in Musicology 11, 1997-98, p. 73-100.
Provisional Applications (1)
Number Date Country
60/245799 Nov 2000 US
Continuation in Parts (1)
Number Date Country
Parent 09/803298 Mar 2001 US
Child 09/896849 US