The present invention relates to a system for monitoring chemotherapy-associated adverse drug reactions (side-effects), in particular for cancer patients who are undergoing chemotherapy as outpatients, i.e. based largely in their own home.
Cancer patients undergoing treatment by use of cytotoxic drugs (referred to here as chemotherapy) are now commonly based at home during the period of treatment. A typical chemotherapy regime is based on a number, typically 8-12, of three week treatment cycles. Each cycle consists of the administration of the cytotoxic drug, commonly at an outpatient clinic, following which the patient returns home. Over the next 10-14 days, as the drug takes effect, the patient typically suffers a variety of adverse drug reactions (ADRs—commonly known as side-effects) of varying seriousness. After two weeks the patient will tend to start feeling better and has a week of respite before the next administration of the drug. Common adverse reactions to chemotherapy include febrile neutropenia, diarrhoea, nausea, vomiting and mucositis. Patients may suffer very severely from these and some chemotherapy regimens have toxic death rates of the order of 0.8 to 2.2%.
Good management of the side effects of chemotherapy can reduce their severity and thus make the process less unpleasant for the patient. Currently management of side effects is handled by a variety of measures including patient education with pre-chemotherapy discussion, information leaflets, patient-held diaries and support from healthcare professionals. However, unless the patient contacts the healthcare professional directly, or has an intervening appointment set, their side effects will only be discussed at the next clinic appointment. Commonly, therefore, side effects for one cycle are not discussed with a healthcare professional until just before the start of the next cycle. Closer involvement of healthcare professionals, while desirable, is expensive, and it is now being recognised that empowering patients to manage their own health has a positive effect on the outcomes of therapy and improving the psychological state of the patient.
According to the present invention there is provided a system adapted to monitor side-effects in cancer patients undergoing chemotherapy, the system comprising:
a patient-based data terminal adapted to provide for periodic entry by the patient of data on a plurality of predetermined adverse drug reactions, to process the entered data, to display the processed data to the patient and to transmit the entered data;
a server adapted to receive the data transmitted from the data terminal, to process the data, and to transmit the processed data for display;
a remote terminal adapted to receive the processed data from the server and display it; and
an alerting device (e.g. a pager) for use by a healthcare professional;
wherein the patient-based data terminal and the server both process the data independently based on the same criteria to generate selectively from the entered data an alert of a first or second type, the patient-based data terminal displays said alert to the patient, the server collects alerts of the first type into batches and regularly transmits the batches to said alerting device, and the server immediately transmits alerts of the second type individually to said alerting device.
The invention therefore provides for the patient to monitor their condition themselves according to a pre-defined set of expected adverse reactions, and to enter that data onto their own data terminal. The data is processed to provide feedback to the patient in the form of a display of their current and past condition and, optionally, advice on action to be taken. The data is also transmitted, preferably via the internet, to a secure server which stores the data and independently processes it using the same criteria as the patient-based data terminal. The server is adapted to generate alerts of a first type (amber) or a second type (red) on the basis of predefined criteria. Amber alerts are collected into batches and transmitted periodically, say three times a day, to the pager of a healthcare professional. Red alerts are sent immediately to the pager of the healthcare professional. The server also makes the data available for viewing by the healthcare professional on a secure web page.
Thus in response to the red alert the healthcare professional can immediately access the web page to check the patient's data and can contact the patient. On receipt of the batches of amber alerts the healthcare professional can, at an appropriate time, check these and decide on appropriate action.
The processing of the data at the patient-based data terminal using the same criteria as at the server allows the patient to see when a red alert has been generated. The terminal can display information advising the patient to take further action, for example to take or stop taking medication or, in the case of a red alert, to contact the healthcare professional if the patient is not themselves contacted within a pre-set time of the alert being generated. In the case of a patient's condition not generating any alert, the patient can still feel reassured that their condition is being monitored and is satisfactory. On the other hand, the healthcare professionals can target their attention to those patients needing it.
The patient-based data terminal may conveniently be a mobile telephone or similar telephony-enabled personal digital assistant. This means that the patient is using technology which will be very familiar to them and which is robust and user-friendly.
The data entered by the patient preferably consists of a combination of measured values, such as temperature, white blood cell count, blood pressure, heart rate, etc., together with subjective self-assessments as to the severity of predetermined adverse reactions such as feelings of nausea, episodes of diarrhoea, vomiting, mucositis, etc. These self-assessments may be entered by the patient in response to the display of a series of questions.
The alerts are preferably generated based on data entered over a plurality of successive data entry periods. For example, patients may be required to enter data on their condition twice daily and thus each data entry period consists of 12 hours. Each adverse reaction may be monitored over a suitable number of successive periods and the criteria for generation of an alert, and the type of alert, can be based on the severity of the adverse reaction encountered over set numbers of those periods.
Alerts may also be generated in the case of lack of data entry, and in particular by certain combinations of adverse reactions occurring followed by a lack of data entry.
As compared with current practice in chemotherapy, the system of the present invention provides for real time monitoring and response for patients undergoing chemotherapy at home.
It will be appreciated that the invention may be embodied in computer programs (software applications) stored and executed on the patient-based data terminal and the server, and thus that the invention extends to such computer programs.
The invention will be further described by way of example with reference to the accompanying drawings in which:
As illustrated in
The application is also designed to allow entry of numerical data using the mobile telephone keypad and preferably checks that the entered values are realistic. In this embodiment the application requires the patient to confirm the entered value as correct before moving onto the next question.
After entry of all the data the software application processes the data at step 26 to display the patient's cumulative toxicity charts as illustrated in
The software application on the mobile telephone also checks the data to generate amber or red alerts according to stored criteria. Table 2 below illustrates the toxicity alert criteria for the colon cancer chemotherapy trial mentioned above (the same criteria are used at the server 7).
The application on the telephone 3 is also adapted to display advice to the patient, based on the entered data, such as to adjust their medication or take additional medication or to stop taking medication. Examples are illustrated in
Further, if an amber alert is generated for four out of five consecutive 12 hour time slots, it is automatically escalated to a red alert. In the case of a red alert the software application displays to the patient an indication that a red alert has been generated as illustrated in
As illustrated at step 28 of
At step 29, amber alerts are sent by the server 7 in batches to the healthcare professional's pager at regular times during the day, for example, 9 a.m., 1 p.m. and 3.30 p.m., seven days a week. Amber alerts indicate that the patient is experiencing some difficulties but that these are not severe or life threatening. Red alerts, however, indicate that the patient is pyrexial and/or experiencing symptoms that are severe or life threatening. Red alerts are therefore sent by the server 7 to the healthcare professional's pager 13 immediately on receipt and processing of the data. The red alert indicates the identity of the patient. The server 7 additionally processes the entered data into a form suitable for viewing on a secure web page as illustrated in
In steps 37 to 40 it is checked whether the patient has already entered two sets of data for that day. The system is designed to prevent patients entering more than two sets of data and in the event that they try to do so the patient is asked to contact their healthcare professional. Steps 41 to 43 allow the patient to enter data on the other symptoms they are experiencing and in step 44, following completion of data entry, the charts showing the patient's condition are displayed. During this time the data terminal 3 transmits the data, if a connection is available, to the remote server 7. On checking at step 45 that the transmission is finished the patient can be advised at steps 47 and 49 that they will be contacted if they have a red alert, or can be advised at step 48 of the failure to transmit and the need to contact a healthcare professional if they have a red alert.
The cumulative toxicity displays, one of which is illustrated in
As mentioned above alerts may be generated as a result of checks on the data, or lack of data. Checks for lack of data (compliance checks) are preferably made by the server software twice a day, and the current and two former timeslots are analysed. If no data is found then a red alert is generated. Time dependent alerts (24 or 48 hours of symptoms) are also generated if there has been no data recorded within the current or previous time, but previous timeslots contain the requisite symptoms (i.e. a lack of data is regarded as a worst case).
It will therefore be appreciated that red alerts generated as a result of data entered by the patient are transmitted immediately on receipt and processing of that data at the server 7 to the healthcare professional's pager 13. On the other hand red alerts generated by lack of data are transmitted when they are generated at the regular compliance checks on the server 7.
Number | Date | Country | Kind |
---|---|---|---|
0709248.9 | May 2007 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2008/001671 | 5/14/2008 | WO | 00 | 4/2/2010 |