The present invention relates generally to devices and methods for improving the delivery of patient information and care to patients, particularly to transactions involved in utilizing a non-invasive monitoring system to deliver physiological information to patients and patients' service providers.
Numerous diseases require the monitoring of various physiological attributes of a patient. These attributes such as blood glucose level and other blood analyte levels are invaluable to patients and health service providers such as doctors, medical professions, pharmacies, researchers, insurance companies, and government agencies.
Particularly in patients with diabetes, monitoring the level of blood glucose is extremely important in controlling the patient's health, and decreasing or delaying the damaging effects of uncontrolled blood glucose. Diabetes is a disease in which the body does not produce or properly use insulin, which results in the increase uptake of glucose from the blood across cell membranes. About sixteen million people in the United States are diabetics. The American Diabetes Association reports that diabetes is the seventh leading cause of death in the United States. The complications of the disease include blindness, kidney disease, nerve disease, heart disease, and death.
Specifically, for diabetes, monitoring various physiological attributes is essential for diabetic patients. For example, it is essential that patients practice frequent self-monitoring of blood glucose (SMBG). Based upon the level of glucose in the blood, individuals may make insulin dosage decisions before injection. Monitoring the trends in blood glucose over time provides health care providers with invaluable information on the adequacy of therapy, the compliance of the patient and the progression of the disease. However, the prior systems of glucose monitoring usually required obtaining blood from a finger stick (invasive method) or obtaining body fluids (other than blood) and subcutaneous tissue (also an invasive method).
Examples of non-invasive glucose monitoring system, as illustrated in U.S. Pat. No. 6,424,851 (Berman et al.) and in U.S. Pat. Pub. 2006/0004271 A1 (Peyser et al.), each owned by the assignee of this application and incorporated herein by reference in its entirety, provide solutions for non-invasively gathering blood glucose information from diabetic patients. Use of a non-invasive technology rather than an invasive technology permits a significantly better approximation to continuous monitoring, which in turn may contribute significantly to improved health care for diabetic patients. Other examples of optically-based patient monitoring systems which utilize non-invasive glucose-measuring devices are also illustrated in U.S. Pat. No. 6,748,250 (Berman et al.) and in U.S. Pat. Pub. 2004/0097796 A1 (Berman et al.), each of which is also owned by the assignee and is incorporated herein by reference in its entirety.
Therefore, it is advantageous to have a monitoring system that leverages on other non-invasive glucose-measuring devices to provide a medium for sharing of the monitored information.
The patient monitoring system in accordance with one variation may have one or more non-invasive analyte monitor devices, a data processing and storage unit, and one or more information recipients. All elements of the system can be linked to communicate with each other via a network or wireless protocol.
The data processing and storage unit may implement for a user a monitoring system that organizes and processes physiological and behavior attributes of the user to enable transmission of these attributes to information recipients. Optionally, the data processing and storage unit can be programmed to send automated warnings such as by email, phone, or fax to a patient or information recipients if the patient's condition falls outside an acceptable limit that can be prescribed by the patient's caregiver or physician.
Generally, a patient monitoring system for distributing information among one or more recipients may typically comprise an analyte monitoring device configured to measure at least one attribute of a patient via non-invasively interrogating a skin patch placed upon a skin surface of the patient, and a data processing unit to process the at least one attributes and to generate and transmit a profile of the patient to one or more recipients.
One method of monitoring a patient may generally comprise measuring a physiological attribute of the patient from a patch placed upon a skin surface of the patient, and transmitting the attribute to one or more users. More particularly, other methods may generally comprise interrogating the skin patch placed upon the skin surface of the patient via a non-invasive measurement device, correlating a measurement from the skin patch to a physiological attribute of the patient, and transmitting the attribute to one or more users.
Referring to
As illustrated in more detail in
In one example of the system where the user is a diabetic patient, the user may utilize a non-invasive analyte monitoring system 210 based on methods and devices 211 configured to measure glucose from skin patches 212 which collect and retain the glucose brought to the skin surface. Examples of non-invasive analyte monitoring systems 210 which utilizes glucose obtained from a skin patch 212 may be seen in further detail in U.S. Pat. Pub. 2006/0004271 A1 (Peyser et al.), which has been incorporated by reference above. Generally, the patch 212 may be placed on any suitable skin surface such as a finger, palm, wrist, forearm, etc. Such a patch 212 may generally have a collection layer, a detector, and an adhesive layer for adhering the patch 212 to the user's skin surface. The detector may generally comprise any number of detectors which are capable of detecting nanogram quantities of glucose, such as a dry, polymer-based electrochemical sensor, a wet electroenzymatic sensor in a microfluidic package, a glucose-sensitive fluorescent molecule or polymer, etc. The collection layer may generally comprise a fixed volume reservoir to help minimize the effects of a user's sweat rate.
The measurement device 211 may generally comprise a sensitive measurement mechanism for interrogating and measuring the glucose from the patch 212 and converting this measurement into a glucose concentration. The device 211 may generally include an interrogation mechanism 213 which is used to interrogate and detect the collected glucose from the patch 212. The type of interrogation mechanism 213 may depend upon the type of patch 212 utilized; for instance, if the patch 212 were configured as an electrochemical detector, the interrogation mechanism 213 may be correspondingly configured as an electrochemical sensor.
Generally, prior to application of the patch 212 to the user's skin surface, the skin may be wiped clean to remove any residual glucose remaining on the skin. The wipe may include any number of supports capable of absorbing a solvent or having a solvent impregnated therein, for example, any type of fabric, woven, non-woven, cloth, pad, polymeric, or fibrous mixture, etc. The solvent absorbed in the wipe typically does not contain solvents, markers, or other chemicals that would interfere with the measurement of glucose. Polar solvents, for example, a mixture of distilled water and alcohol, may be utilized.
In some variations, the wipe may also contain a marker that is deposited upon the skin prior to patch placement. The marker may comprise a chemical having a short half-life so as to decay after a short period of time; alternatively, the marker may also be bound to a volatile compound made to evaporate in a short period of time. Such a marker may be deposited onto the skin by the wipe so as be detectable by the device 211. If the marker is detected by the device 211, then the measurement may proceed; however, if the marker is not detected, the measurement does not proceed. In this way, the user can have some indication that the skin has not been properly wiped and any possibly erroneous readings may be prevented.
The device 211 may also include a processor 214 for analyzing the measured data and processing the information for display to the user via a graphical display 215, which may also be utilized to display a variety of other information. The device 211 may also include a computer-executable code containing a calibration module 217, which relates measured values of the detected glucose to blood glucose values. Furthermore, a storage module 216 in device 211 may be utilized for storing measurements and user-related information, which may be inputted via a number of input/output modules 218, such as buttons and other types of user interface mechanisms.
Alternatively and/or additionally, the user may also input behavioral attributes such as time duration between analyte measurement and last meal, time duration between analyte measurement and last exercise session, time duration between analyte measurement and last resting session, time and dosage of medication taken, etc., via the input/output module 218. These behavioral attributes may affect the interpretation of the blood glucose measurement. For example, blood glucose level tends to be higher for users that have just eaten a meal. Thus, by adding behavioral attributes, the system 210 can provide a better profile of the user's health to information recipients 600. Also, the user may utilize the input/output module 218 to include other physiological attributes such as heart rate, blood pressure, etc. Optionally, the input/output module 218 can comprise an activity sensor that determines energy use and/or a metabolic activity sensor that measures metabolic rates such as oxygen consumption.
Additionally, the output module 218 of the analyte system 210 may serve as a messaging terminal for the patient. These messages can be configured as automatic alarms that alert the patient when the analyte measurements, behavior attributes, physiological attributes, etc., are out of a normal range prescribed by the patient, the patient's caregiver, and/or the patient's physician. These messages can be generated by the analyte device 211 itself or from any one of the information recipients. For example, if the patient's physician determines that the patient is not responding to a prescribed medicine dosage, the physician can send a message to the display 215 via the input/output module 218 to request the patient to change his dosage or to request a visit to the physician's office for consultation.
All the analyte measurements, behavior attributes, and physiological attributes are communicated to the data processing and storage unit 510 for processing and storage, which will be furthered described in detail in
After communication is established between the monitor device 211 and the processing unit 510, an account manager 512 in the processing unit 510 accesses the user's account and the security module 511 verifies the user's identity via a password or any other security means. After verification, the attributes are transmitted and organized into a physiological database 513, which stores the user's analyte measurements and other physiological attributes, and a behavioral database, which stores the user's behavioral attributes. The account manager 512 also communicates with an information recipient database 515 that includes the user's selected information recipients 600 and recipient parameters associated with each specific information recipient. These “recipient parameters” as described herein are requirements that direct the transmission of the user attributes, which may include “type of information” such as report of blood glucose level, an email to alert if blood glucose level reaches a certain maximum or minimum, a report of behavioral and blood glucose correlation, “time of information” such as weekly, monthly, or quarterly, “fonnat type” such as a graphical representation or text, and “information recipient” such as sending the information to doctor and patient personal computer, or sending to family members in case of emergency.
The processes of gathering the user's attributes, processing the attributes, and transmitting the attributes to corresponding information recipients are furthered described in detail in
After user registration, the user can utilize his device to gather physiological and behavioral attributes, which is illustrated in
In variations where a marker is deposited upon the skin surface by a wipe, once the user has selected the desired analyte to be measured 4400, the device 211 may initially interrogate the skin patch 212 to detect the presence of a marker. If the marker is detected, then the analyte calibration may be initiated, if necessary; otherwise, of the marker is not detected, thus indicating an improperly wiped skin surface, then the measured is prevented from proceeding until such a marker is detected by the device 211.
If calibration is complete, the user can obtain measurements from the skin patch 4600 and the analyte measurement generator records 4700 and calculates the analyte level. If only the analyte measurement is selected and no processing is needed, the display 215 will display the measurement. If further processing is required, the data is sent 4800 to the processing unit and the date is processed, as illustrated in more detail in
In
Foregoing described embodiments of the invention are provided as illustrations and descriptions. They are not intended to limit the invention to precise form described. In particular, it is contemplated that functional implementation of invention described herein may be implemented equivalently in hardware, software, firmware, and/or other available functional components or building blocks. Other variations and embodiments are possible in light of above teachings, and it is thus intended that the scope of invention not be limited by this Detailed Description, but rather by the claims following.
This is a continuation-in-part of U.S. patent application Ser. No. 10/632,991 filed Aug. 1, 2003, which is a continuation of U.S. patent application Ser. No. 09/844,687 filed Apr. 27, 2001 (now U.S. Pat. No. 6,748,250 B1), each of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 10632991 | Aug 2003 | US |
Child | 11422561 | Jun 2006 | US |
Parent | 09844687 | Apr 2001 | US |
Child | 10632991 | Aug 2003 | US |