The present disclosure relates generally to a method and apparatus for mounting panels to a building.
The present invention resides in one aspect in a mounting rail for attachment to a building, the mounting rail comprising a base for engaging the building, the base having a top edge and a bottom edge, a pivot member projecting from the base and providing a pivot point structure at a fulcrum distance from the base, and a gripping flange on the base extending from a position between the bottom edge and the pivot point structure toward the pivot point structure. The gripping flange provides a gripping surface at a gripping surface height from the base that is greater than the fulcrum distance and at a position between the bottom edge and the pivot point structure. The mounting rail also comprises an anchor portion between the gripping surface and the bottom edge.
In another aspect, there is described herein a mounting system for mounting panels on a building. The mounting system comprises a plurality of mounting rails and a plurality of panel brackets for engaging panels to be mounted on the building. Each panel bracket has two ends and comprises a bracket tail extending from a first end and a bracket head at the second end. The bracket tail has a thickness which is less than the opening width of the slot but greater than the depth dimension of the slot. The bracket tail is insertable into the slot of one mounting rail, and when the panel bracket is aligned with the base, the bracket tail bears against the pivot point structure and the gripping flange and the bracket head can be secured to an anchor portion of a different mounting rail.
In yet another aspect, a method for mounting panels on a building is disclosed. The method comprises securing a plurality of horizontally disposed mounting rails as described herein to the building, each mounting rail separated from the next closest mounting rail by a separation distance, providing a plurality of panels each having a plurality of panel brackets as described herein, and inserting the bracket tails into the slot in a mounting rail on the building, and securing the bracket heads to another mounting rail on the building.
A system for mounting panels externally or internally on a building includes a bracket system which forms a grid mounted on the building and between the building and the panels, and on which the panels are mounted. The bracket system includes brackets that are lengthy and mounted vertically or horizontally according to the orientation of their length on the building when the panels are mounted thereon. The bracket system includes panel brackets attached vertically on the panels (“vertical panel brackets”) and building brackets mounted on the building, and the vertical panel brackets and building brackets are configured so that the vertical panel brackets can be connected to the building brackets to form the grid and mount the panels on the building. The brackets may be made from extruded aluminum or any other acceptable engineering material.
The use of the bracket system 10 is described herein with reference to ceramic granite panels, but the invention is not limited in this regard and in other embodiments the bracket system may be used with other types of panels.
One embodiment of a bracket system 10 is depicted in
One embodiment of a mounting rail 16 is shown in
For purposes of this description, when the vertical spacing 16a is measured from the top of the anchor portion 38 on one mounting rail 16 to the top of the anchor portion on the next mounting rail, the vertical length of a panel bracket 22 (from the bottom of the mounting insert 26 to the top of the head is slightly less than the vertical spacing 16a so that the panel bracket 22 can engage a mounting rail at each end of the panel bracket as follows.
A first step for mounting a panel according to one embodiment is depicted in
The bracket head of the uppermost panel, which will not have another panel mounted above it, can be mounted to a mounting rail which has only an anchor portion; there would be no need for a gripping flange or pivot point structure. Accordingly, the uppermost mounting rail in the bracket system 10 can have a different configuration from other mounting rails, as seen, in one embodiment, in uppermost mounting rail 40 shown in
To assemble the bracket system 10 for use, the mounting rails 16 are mounted on the building by securing them to building verticals 18. In one embodiment, the building verticals have a T-cross section as shown for building vertical 18a in
In another embodiment, the building vertical is configured as a rectangular vertical 18d which is secured to the building by being secured to an anchor bracket 20e which has an anchor base 20f from which a pair of parallel anchor flanges 20g extend to define a space between them sufficient to receive the rectangular vertical 18d between them. By securing the rectangular vertical 18d to the anchor flanges 20f, the rectangular vertical 18d is secured to the building and provides a secure structure on which to mount the mounting rails 16 etc.
An apparatus, system and method for mounting panels on a building as described herein offers several advantageous features. For example, the components are delivered to site and assembled piecemeal. Also, the aluminum framework can be assembled in sections of site and delivered to site in prefabricated panels for erection on site, and thereafter the cladding panels are attached in the normal manner. The system can be used to mount very large ceramic panels, for example, up to about 3.5 meters (m)×1.6 m (about 11.5 feet (ft)×5.25 ft) in size. Prior art systems have the drawback that, if mounting large ceramic panels, the dead-load of the panel is normally carried either on two anchor points at the top of the panel, or via grooves in the horizontal edges of the panel. These methods of panel attachment limit the size of the ceramic in areas with high wind load. Systems as disclosed herein allow the dead-load of the panel to be carried by two or more straps fitted to the back face of panels, the straps evenly distribute the dead-load of the panel by means of multiple undercut anchor fixing points. Some prior art systems rely on the use of interlocking aluminum extrusions as the basis of the support structure upon which the panels are mounted. The tolerances of the manufacturing process for aluminum extrusion are such that, systems that rely on the interlocking of profiles, may be subject to the mounted ceramic panels having the capacity to move under wind-load, which can result in the ceramic panels ‘rattling’ and producing unwanted noise. In contrast, the profile of the mounting rail bracket is such that, as the ceramic façade panel is positioned into its correct alignment upon the horizontal rails, the floating tail of the straps attached to the rear of the ceramic panel become tightly fitting in a cantilever action upon the horizontal rail. The straps are slightly in tension when finally positioned and this tension provides a secure fixing point for the panel, preventing wind rattle under wind-load. Further, the profile of the mounting rail bracket is designed such that, the floating tail of the straps mounted onto the back of ceramic façade panels can accommodate horizontal and vertical movement without inducing stress in the ceramic panel, which is a brittle material and must not be subject to stresses caused by wind-load, thermal movement or seismic movement.
Still another benefit of the floating tail within mounting rail bracket is the ability for the installed panels to accommodate substantial lateral displacement resulting from seismic activity. Prior art systems, as previously patented, do not have the ability to accommodate horizontal and vertical displacement in seismic activity, without damage to or detachment of the ceramic façade panels. The mounting rail brackets are provided with multiple slotted and circular punched apertures along their top and bottom edges. These fixing points accommodate both thermal movement and provide resistance to damage caused by seismic activity. The system has open horizontal and vertical joints and this is a feature of the system which allows pressure equalisation and ventilation of the cavity behind the façade.
The non-limiting inventive embodiments are described herein with reference to the accompanying drawings, wherein like reference numerals represent like elements throughout. Details of the preferred embodiment and others are provided, but the invention is not limited to the disclosed features, and variations apparent to those of ordinary skill in the art after reading and understanding of this disclosure should be recognized as being within the spirit and scope of the invention as claimed.
Reference throughout this document to ““one embodiment”, “certain embodiments”, and “an embodiment” or similar terms means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of such phrases or in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments without limitation.
The drawings featured in the figures are provided for the purposes of illustrating some embodiments of the present invention, and are not to be considered as limitation thereto.
The terms “first,” “second,” and the like, herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. The terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
Although the invention has been described with reference to particular embodiments thereof, it will be understood by one of ordinary skill in the art, upon a reading and understanding of the foregoing disclosure, that numerous variations and alterations to the disclosed embodiments will fall within the scope of this invention and of the appended claims.
This application is a continuation-in-part of U.S. application Ser. No. 13/491,658, filed Jun. 8, 2012, now abandoned, which claims the benefit of U.S. Provisional Application No. 61/567,647, filed Dec. 7, 2011, both of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61567647 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13491658 | Jun 2012 | US |
Child | 15357645 | US |