Hydrocarbon fluids such as natural gas and oil are obtained from a subterranean geologic formation, referred to as a reservoir, by drilling a well that penetrates the hydrocarbon-bearing geologic formation. In many types of land-based applications and subsea applications, the fluids are moved, e.g. pumped, from one location to another. Various types of systems for moving fluid are employed at subsea locations, subterranean locations, and land-based locations. For example, various types of compressors and pumps may be used to move gases, liquids, or mixed phase fluids to desired collection locations or other locations. The compressors and pumps each have a potential flow capacity which depends on factors such as fluid characteristics, relevant pressures, and available power. During operation of the pump/compressor substantial axial loads may be created and these loads can cause excessive wear. The loads also may cause an operator to reduce flow to a level below the potential flow capacity.
In general, a system and methodology are provided for moving fluids with reduced component loading by utilizing opposed axial forces. The system for moving fluid may be in the form of a gas compressor, liquid pump, or other device able to pump or otherwise move fluid from one location to another. According to an embodiment, the system comprises rotor sections which are combined with pumping features. The rotor sections are disposed radially between corresponding inner and outer stator sections which may be powered to cause relative rotation of inner and outer rotor sections in opposite directions. The rotors and corresponding pumping features are configured to move fluid in opposed axial directions toward an outlet section so as to balance axial forces and thus reduce component loading, e.g. thrust bearing loading.
However, many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
Certain embodiments of the disclosure will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements. It should be understood, however, that the accompanying figures illustrate the various implementations described herein and are not meant to limit the scope of various technologies described herein, and:
In the following description, numerous details are set forth to provide an understanding of some embodiments of the present disclosure. However, it will be understood by those of ordinary skill in the art that the system and/or methodology may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
The present disclosure generally relates to a system and methodology which facilitate movement of fluids. The fluid movement system may comprise various pumping systems, including liquid pumping systems and gas compressors, which provide reduced component loading by utilizing opposed axial forces. According to an embodiment, the system comprises rotor sections which are combined with pumping features. The rotor sections are disposed radially between corresponding inner and outer stator sections which may be powered to cause relative rotation of inner and outer rotor sections in opposite directions. The rotors and corresponding pumping features are configured to move fluid in opposed axial directions toward an outlet section so as to balance axial forces and thus reduce component loading, e.g. thrust bearing loading.
In some embodiments, the rotor sections may comprise permanent magnets combined with the radially inner and outer rotor sections. When electric power is supplied to the corresponding stator sections, the inner and outer rotor sections are counter rotated to provide the desired fluid movement, e.g. pumping of liquid, gas, or mixed phase fluid. Effectively, the stator sections are configured to generate rotating electromagnetic fields which interact with the corresponding rotor sections/permanent magnets to cause a desired rotation of the rotors about a central axis. For example, a torque may be transmitted to the rotors and combined pumping features by inducing electromagnetic forces which act on the permanent magnets of the rotors.
The pumping features are oriented to move fluid flows in generally opposite directions. For example, the pumping features may be oriented to move the fluid flows in a generally axial direction toward a center of the fluid movement system. A rotatable outlet section may be located between the first and second rotors to receive the axial fluid flows and to redirect those fluid flows in a generally radial direction to an outlet region of the fluid movement system, e.g. pumping system. In some embodiments, the pumping features may be oriented to move fluid in opposite axially outward directions.
This back-to-back combination of oppositely acting pumping features helps to balance axial forces or otherwise limit net axial forces acting in a single direction. Consequently, the fluid movement system can be constructed in a small size with relatively increased differential pressure capacity due to the increased unit power/capacity relative to unit size/weight. Some embodiments may be constructed with a mechanical seal less design which also enables flexibilities in product sizing.
An outer housing or casing may be disposed around the stator sections and rotor sections. According to some embodiments, the outer housing may be filled with a liquid which protects the internal components of the fluid movement system. The protective liquid and/or other features may be used to provide protection of rotors, stators, bearings, and other components when the fluid movement system is used in harsh environments, such as subsea environments or subterranean environments.
Referring generally to
In the embodiment illustrated, various subsea components are deployed along a sea floor 24. For example, a subsea manifold 26 may be located downstream of a plurality of wells 28 used, for example, to produce hydrocarbon bearing fluid from a subterranean formation. The wells 28 are connected with the subsea manifold 26 by suitable flow lines 30, e.g. pipes. Hydrocarbon fluid may be produced up from wells 28 and through corresponding wellheads 32 and Christmas trees 34 and on to the subsea manifold 26 via flow lines 30.
From subsea manifold 26, the hydrocarbon bearing fluid may be routed to a surface facility 36, e.g. a surface platform or surface vessel, via a suitable flow line 38. The fluid movement systems 20 may be positioned at desired locations for facilitating fluid flow from wells 28 to surface facility 36. By way of example, the fluid movement systems 20 may be positioned in electric submersible pumping systems located within wells 28, e.g. within wellbores drilled into the subterranean formation.
Additional fluid movement systems 20, e.g. liquid pumps, multiphase pumps, gas compressors, may be positioned at other locations including within subsea manifold 26 and/or along flow line 38. In some applications, heating units 40 also may be positioned along the flow lines, e.g. along flow lines 30, 38. Electric power may be supplied to the fluid movement systems 20 and other subsea components, e.g. heating units 40, via a suitable power cable or cables 42 routed to the subsea locations from surface facility 36.
Referring generally to
In the embodiment illustrated in
The first rotor portion 56 is rotatably mounted within housing 44 between a first radially inner stator section 64 and a first radially outer stator section 66. The first rotor portion 56 also may comprise a first radially inward permanent magnet 68 coupled with inner rotor section 58 and a first radially outward permanent magnet 70 coupled with outer rotor section 60, as illustrated. The permanent magnets 68, 70 and the construction of separately rotatable inner rotor section 58 and outer rotor section 60 enable rotation of the inner rotor section 58 and outer rotor section 60 in opposite directions.
Similarly, the system 20 comprises a second rotor portion 72 having a second radially inner rotor section 74, a second radially outer rotor section 76, and second pumping features 78. The pumping features 78 may again be in the form of impellers, vanes, or other suitable features. The pumping features 78 are constructed to move fluid from second inlet 48 to outlet 50.
The second rotor portion 72 is rotatably mounted within housing 44 between a second radially inner stator section 80 and a second radially outer stator section 82. The second rotor portion 72 also may comprise a second radially inward permanent magnet 84 coupled with inner rotor section 74 and a second radially outward permanent magnet 86 coupled with outer rotor section 76, as illustrated. The permanent magnets 84, 86 and the construction of separately rotatable inner rotor section 80 and outer rotor section 82 enable rotation of the inner rotor section 80 and outer rotor section 82 in opposite directions. It should be noted the inner rotor sections 58, 74 may be rotated together as a single unit although some embodiments may use separate, independently rotatable rotor sections 58, 74. Similarly, the outer rotor sections 66, 76 may be rotated together as a single unit although some embodiments may use separate, independently rotatable rotor sections 60, 76. Regardless, the inner rotor sections may be counter rotated with respect to the outer rotor sections. It should be noted that labyrinth seals or other suitable seals may be employed between outer rotor sections 60, 76 and corresponding outer stator sections 66, 82 to prevent pressure losses through gaps therebetween.
When electric power is supplied to the stator sections 64, 66, 80, 82, the first and second rotor portions 56, 72 are rotated to provide the desired fluid movement, e.g. pumping of liquid, gas, or mixed phase fluid, via pumping features 62, 78. The stator sections 64, 66, 80, 82 generate rotating electromagnetic fields which interact with the corresponding rotor sections 58, 60, 74, 76 and corresponding permanent magnets 68, 70, 84, 86 to cause a desired rotation of the inner rotor sections 58, 74 relative to the outer rotor sections 60, 76 about the central system axis 54.
The pumping features 62, 78 may be oriented to move the fluid flows in axially opposed directions toward an axially central location during opposite rotation of inner rotor sections 58, 74 relative to outer rotor sections 60, 76. However, the pumping features 62, 78 also may be oriented to move the fluid flows in the axially opposed directions toward axially outlying regions when the rotor sections 58, 74 are counter rotated relative to rotor sections 60, 76. As illustrated in
Referring again to the embodiment of
By way of example, the inner rotor sections 58, 74 and the outer rotor sections 60, 76 may be rotatably mounted within outer housing 44 via a plurality of radial and thrust bearing assemblies 94. The creation of opposed axial fluid flows, as described herein, reduces the thrust loading on thrust bearing assemblies 94 (and potentially on other components of fluid movement system 20) by producing counter acting axial thrust loads. In some embodiments, the first radially inner stator section 64 and the second radially inner stator section 74 may be separated by a central radial bearing 96. However, the first radially inner stator section 64 and second radially inner stator section 74 may be combined in a unitary structure, as illustrated in the embodiment of
Referring generally to
Additionally, the rotatable outlet section 90 may have an arcuate outer surface 100 which is shaped to guide the fluid flow from a generally axial flow to a generally radial flow so as to direct the flow of fluid out through outlet region 50 with less resistance. The flow members 98 also may comprise or may be constructed to pump or otherwise aid in moving the fluid flow received from the corresponding pumping features 62 or 78 until the fluid is discharged through outlet region 50. In some embodiments, the flow members 98 may be in the form of airfoils 102 which rotate with the corresponding rotor to facilitate the desired fluid movement out through region 50. Additionally, the rotatable component(s) 92 may be mounted on a corresponding rotor shaft or shafts 104 which also may be part of the corresponding rotor sections. The flow members 98 and arcuate surfaces 100 are examples of features which may be used to help make the fluid flow transition from relatively long axial flow paths to a radial outflow path.
Depending on the type of fluid being moved, the environment in which fluid movement system 20 is to be operated, and the desired volumetric flow rates, the fluid movement system 20 may be constructed in various sizes and configurations. The back-to-back configuration may be used in multiple types of pumps and compressors constructed for moving single phase fluids or multi-phase fluids.
In some embodiments, the inner and outer sections of rotors 56, 72 may be mounted on continuous rotatable shafts or on separate rotatable shaft segments which may be supported by suitable bearings, e.g. magnetic bearings, hydrodynamic bearings, and/or other suitable bearings. The bearings also may be selected according to the characteristics of the processed fluid and the intended duty.
The back-to-back construction enables the axial forces to be countered, e.g. axially balanced. To some extent, however, some axial thrust loading may be handled by thrust bearings. For example, there may be differences in composition of fluids entering the first inlet 46 relative to the second inlet 48 and these compositional differences can cause differences in axial forces even with the back-to-back construction. The radial and thrust bearing assemblies 94 may be selected to handle the anticipated radial and thrust loading.
Depending on the torque desired, different arrangements of radially inner and outer rotors, permanent magnets, and stator sections may be employed. In some embodiments, each rotor may be constructed with a single rotor section and corresponding permanent magnet for use in combination with a single corresponding stator section. Various types of vanes or other features may be combined with the rotors 56, 72.
Additionally, the stator sections may be process cooled or cooled by circulation of a dielectric fluid. For example, stator sections may be canned to provide an enclosed structure for dielectric fluid and/or for protection of internal components against corrosion, moisture, and erosion. The dielectric fluid and/or other materials, e.g. coated thin alloy steel, also may be selected to minimize eddy current losses.
In some embodiments, the outlet region 50 may comprise or may work in cooperation with restrictions constructed to limit losses from the outlet pressure side to the inlet pressure side. An example of such a restriction is a labyrinth seal. However, other types of restrictions may be used.
Although a few embodiments of the disclosure have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
Number | Name | Date | Kind |
---|---|---|---|
693946 | Boyce | Feb 1902 | A |
2234733 | Jendrassik | Mar 1941 | A |
2318990 | Doran | May 1943 | A |
5209650 | Lemieux | May 1993 | A |
5417544 | Mohn | May 1995 | A |
5923111 | Eno | Jul 1999 | A |
5924848 | Izraelev | Jul 1999 | A |
6100618 | Schoeb | Aug 2000 | A |
6206659 | Izraelev | Mar 2001 | B1 |
6247892 | Kazatchkov | Jun 2001 | B1 |
6547539 | Izraelev | Apr 2003 | B2 |
6595743 | Kazatchkov | Jul 2003 | B1 |
7074018 | Chang | Jul 2006 | B2 |
9127679 | Van Dam | Sep 2015 | B2 |
9476427 | Torkildsen | Oct 2016 | B2 |
20070273225 | Head | Nov 2007 | A1 |
20140147243 | Torkildsen | May 2014 | A1 |
20140205475 | Dale | Jul 2014 | A1 |
20150104328 | Babbitt | Apr 2015 | A1 |
20160169231 | Michelassi et al. | Jun 2016 | A1 |
20170306966 | Valland et al. | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
858196 | Dec 1952 | DE |
9927256 | Jun 1999 | WO |
WO-03031823 | Apr 2003 | WO |
2014083055 | Jun 2014 | WO |
2014083055 | Jul 2014 | WO |
2017021553 | Feb 2017 | WO |
Entry |
---|
Extended European Search Report issued in European Patent Appl. No. 18206032.7 dated Jul. 22, 2019; 11 pages. |
Number | Date | Country | |
---|---|---|---|
20190145415 A1 | May 2019 | US |