The present disclosure relates to methods and apparatuses for nerve modulation techniques such as ablation of nerve tissue or other modulation techniques through the walls of blood vessels and monitoring thereof.
Certain treatments require the temporary or permanent interruption or modification of select nerve function. One example treatment is renal nerve ablation, which is sometimes used to treat conditions related to congestive heart failure or hypertension. The kidneys produce a sympathetic response to congestive heart failure, which, among other effects, increases the undesired retention of water and/or sodium. Ablating some of the nerves running to the kidneys may reduce or eliminate this sympathetic function, which may provide a corresponding reduction in the associated undesired symptoms.
Many nerves, including renal nerves, run along the walls of or in close proximity to blood vessels and thus can be accessed via the blood vessels. In some instances, it may be desirable to ablate perivascular renal nerves using ultrasound energy. The target nerves must be heated sufficiently to make them nonfunctional, but heating tissues can cause significant pain during the procedure. Pain relief during renal nerve ablation has been addressed by medication, which does not always control the pain adequately. It may be desirable to provide for alternative systems and methods for intravascular nerve modulation and pain management during the nerve modulation.
The disclosure is directed to several alternative designs, materials and methods of manufacturing medical device structures and assemblies for performing nerve ablation.
Accordingly, one illustrative embodiment is a system for nerve modulation that may include an elongate shaft having a proximal end region and a distal end region; a control unit. A first and a second transducer may be disposed on the elongate shaft adjacent to the distal end region. The first and second transducers may be electrically connected to a control unit. The first transducer may be configured to provide a thermal nerve block and the second transducer may be configured to perform nerve modulation.
Another illustrative embodiment is a method for performing intravascular nerve modulation. A nerve modulation system including an elongate shaft having a proximal end region and a distal end region may be provided. The modulation system may further include a first transducer disposed adjacent the distal end region and a second transducer disposed distal to the first transducer. The nerve modulation system may be advanced through a lumen such that the first transducer is adjacent to a first target region. A first electrical current may be supplied to the first transducer to generate a first acoustic energy and a second electrical current may be supplied to the second transducer to generate a second acoustic energy.
Another illustrative embodiment is a method for performing intravascular nerve modulation. A nerve modulation system including an elongate shaft having a proximal end region and a distal end region may be provided. The modulation system may further include a transducer disposed adjacent the distal end region. The nerve modulation system may be advanced through a lumen such that the transducer is adjacent to a first target region. A first current may be supplied to the transducer to generate a first acoustic energy. The nerve modulation system may then be advanced distally within the lumen and a second current supplied to the transducer to generate a second acoustic energy.
The above summary of some example embodiments is not intended to describe each disclosed embodiment or every implementation of the invention.
The invention may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying drawings, in which:
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit aspects of the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
All numeric values are herein assumed to be modified by the term “about”, whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the term “about” may be indicative as including numbers that are rounded to the nearest significant figure.
The recitation of numerical ranges by endpoints includes all numbers within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
Although some suitable dimensions ranges and/or values pertaining to various components, features and/or specifications are disclosed, one of skill in the art, incited by the present disclosure, would understand desired dimensions, ranges and/or values may deviate from those expressly disclosed.
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The detailed description and the drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention. The illustrative embodiments depicted are intended only as exemplary. Selected features of any illustrative embodiment may be incorporated into an additional embodiment unless clearly stated to the contrary.
Certain treatments require the temporary or permanent interruption or modification of select nerve function. One example treatment is renal nerve ablation, which is sometimes used to treat conditions related to congestive heart failure or hypertension. The kidneys produce a sympathetic response to congestive heart failure, which, among other effects, increases the undesired retention of water and/or sodium. Ablating some of the nerves running to the kidneys may reduce or eliminate this sympathetic function, which may provide a corresponding reduction in the associated undesired symptoms.
While the devices and methods described herein are discussed relative to renal nerve modulation, it is contemplated that the devices and methods may be used in other treatment locations and/or applications where nerve modulation and/or other tissue modulation including heating, activation, blocking, disrupting, or ablation are desired, such as, but not limited to: blood vessels, urinary vessels, or in other tissues via trocar and cannula access. For example, the devices and methods described herein can be applied to hyperplastic tissue ablation, tumor ablation, benign prostatic hyperplasia therapy, nerve excitation or blocking or ablation, modulation of muscle activity, hyperthermia or other warming of tissues, etc. In some instances, it may be desirable to ablate perivascular renal nerves with ultrasound ablation.
Ultrasound energy may be used to generate heat at a target location. The high frequency sound waves produced by an ultrasonic transducer may be directed at a target region and absorbed at the target region. As the energy emitted is absorbed, the temperature of the target region may rise. In order to perform renal nerve ablation, target nerves must be heated sufficiently to make them nonfunctional, while thermal injury to the artery wall is undesirable. Heating of the artery wall may also increase pain during the procedure. Pain relief during renal nerve ablation has been addressed by medication, which does not always control the pain adequately. A method for ablating target nerves, while providing sufficient pain management is needed. Nerve blocks for reducing pain have routinely been accomplished by anesthetics, and also by electrical stimulation. Various approaches have been used for electrical stimulation of cells, such as high frequency stimulation that is faster than the nerve refractory period so that the cells can't repolarize, or otherwise interfere with depolarization or action potential propagation. A proximal nerve block is often used to block a more distal pain.
Thermal gradients applied to axons and nerves may be used to stimulate the nerves and provide a nerve block. Stimulation of the nerves proximal to a desired ablation treatment region at a temperature sufficient for cell depolarization may “block” the nerves, thus preventing the sensation of pain during a procedure without causing irreversible thermal injury to the tissue. For example, raising the temperature approximately 5-10° C. using a variety of methods may be used to stimulate nerves to provide a thermal nerve block. It appears the temperature rise, not the absolute temperature, causes the stimulation. A low energy method may be used to create a low temperature rise proximal to the desired ablation treatment region. As used herein, the terms “low energy” or “low intensity” may be used to describe the application of energy at a power, frequency, and duration to raise the temperature (by a rise of, for example, approximately 5-10° C.) of a target region to a level sufficient to prevent the sensation of pain during a procedure. In contrast, as used herein the terms “high energy” or “high intensity” may be used to describe the application of energy at a power, frequency, and duration to raise the temperature of a target region to at least a temperature at which tissue begins to denature or cause irreversible tissue changes (for example, at least 50° C.). It is contemplated that the power level, frequency and/or duration of the energy application may be adjusted to achieve the desired temperature rise. Methods of heating may include applying energy using lasers or other light, with or without a dye, focused ultrasound, electrical current, magnetically induced current, or direct heating with a heated probe, balloon, or infusion, etc. In some instances, the temperatures induced by these methods may be too low to cause significant thermal injury for short exposures to local tissues, but may be used to stimulate a nerve.
The system 100 may include an elongate shaft 108 having a distal end region 110. The elongate shaft 108 may extend proximally from the distal end region 110 to a proximal end configured to remain outside of a patient's body. The proximal end of the elongate shaft 108 may include a hub attached thereto for connecting other treatment devices or providing a port for facilitating other treatments. It is contemplated that the stiffness of the elongate shaft 108 may be modified to form a modulation system 100 for use in various vessel diameters and various locations within the vascular tree. The elongate shaft 108 may further include one or more lumens extending therethrough. For example, the elongate shaft 108 may include a guidewire lumen and/or one or more auxiliary lumens. The lumens may have a variety of configurations and/or arrangements. For example, the guidewire lumen may extend the entire length of the elongate shaft 108 such as in an over-the-wire catheter or may extend only along a distal portion of the elongate shaft 108 such as in a single operator exchange (SOE) catheter. These examples are not intended to be limiting, but rather examples of some possible configurations. While not explicitly shown, the modulation system 100 may further include temperature sensors/wire, an infusion lumen, radiopaque marker bands, fixed guidewire tip, a guidewire lumen, external sheath and/or other components to facilitate the use and advancement of the system 100 within the vasculature. It is further contemplated that the modulation system 100 may include one or more centering baskets, expandable framework, and/or expandable balloons to center or otherwise position the modulation system 100 within the body lumen 102.
The system 100 may include a distal ablation transducer 112 positioned adjacent the distal end region 110 of the elongate shaft. While the ablation transducer 112 is described as an ultrasonic transducer, it is contemplated that other methods and devices for raising the temperature of the nerves may be used, such as, but not limited to: radiofrequency, microwave, or other acoustic, optical, electrical current, direct contact heating, or other heating. The ablation transducer 112 may be formed from any suitable material such as, but not limited to, lead zirconate titanate (PZT). It is contemplated that other ceramic or piezoelectric materials may also be used. While not explicitly shown, the ablation transducer 112 may have a first radiating surface, a second radiating surface, and a perimeter surface extending around the outer edge of the ablation transducer 112. In some instances, the ablation transducer 112 may include a layer of gold, or other conductive layer, disposed on the first and/or second side over the PZT crystal for connecting electrical leads, such as lead 116, to the ablation transducer 112. In some embodiments, the ablation transducer 112 may be structured to radiate acoustic energy from a single radiating surface. In such an instance, one radiating surface may include a backing layer to direct the acoustic energy in a single direction. In other embodiments, the ablation transducer 112 may be structured to radiate acoustic energy from two radiating surfaces. In some instances, one or more tie layers may be used to bond the gold to the PZT. For example, a layer of chrome may be disposed between the PZT and the gold to improve adhesion. In other instances, the transducers 112, 114 may include a layer of chrome over the PZT followed by a layer of nickel, and finally a layer of gold. These are just examples. It is contemplated that the layers may be deposited on the PZT using sputter coating, although other deposition techniques may be used as desired.
It is contemplated that the radiating surface (surface which radiates acoustic energy) of the ablation transducer 112 may take any shape desired, such as, but not limited to, square, rectangular, polygonal, circular, oblong, cylindrical, etc. The acoustic energy from the radiating surface of the ablation transducer 112 may be transmitted in a spatial pressure distribution related to the shape of the ablation transducer 112. With exposures of appropriate power and duration, lesions formed during ablation may take a shape similar to the contours of the pressure distribution. As used herein, a “lesion” may be a change in tissue structure or function due to injury (e.g. tissue damage caused by the ultrasound). Thus, the shape and dimensions of the ablation transducer 112 may be selected based on the desired treatment and the shape best suited for that treatment. It is contemplated that the ablation transducer 112 may also be sized according to the desired treatment region. For example, in renal applications, the ablation transducer 112 may be sized to be compatible with a 6 French guide catheter, although this is not required.
In some embodiments, the ablation transducer 112 may be formed of a separate structure and attached to the elongate shaft 108. For example, the ablation transducer 112 may be bonded or otherwise attached to the elongate shaft 108. In some instances, the ablation transducer 112 may include a ring or other retaining or holding mechanism (not explicitly shown) disposed around the perimeter of the ablation transducer 112 to facilitate attachment of the ablation transducer 112. The ablation transducer 112 may further include a post, or other like mechanism, affixed to the ring such that the post may be attached to the elongate shaft 108 or other member. In some instances, the rings may be attached to the ablation transducer 112 with a flexible adhesive, such as, but not limited to, silicone. However, it is contemplated that the rings may be attached to the ablation transducer 112 in any manner desired. While not explicitly shown, in some instances, the elongate shaft 108 may be formed with grooves or recesses in an outer surface thereof. The recesses may be sized and shaped to receive the ablation transducer 112. For example, the ablation transducer 112 may be disposed within the recess such that a first radiating surface contacts the outer surface of the elongate shaft 108 and a second radiating surface is directed towards a desired treatment region. However, it is contemplated that the ablation transducer 112 may be affixed to the elongate shaft in any manner desired.
In some embodiments, the ablation transducer 112 may be affixed to an outer surface of the elongate shaft 108 such that the surface of the ablation transducer 112 is exposed to blood flow through the vessel. As the power is relayed to the ablation transducer 112, the power that does not go into generating acoustic power generates heat. As the ablation transducer 112 heats, it becomes less efficient, thus generating more heat. Passive cooling provided by the flow of blood may help improve the efficiency of the ablation transducer 112. As such, additional cooling mechanisms may not be necessary. However, in some instances, additional cooling may be provided by introducing a cooling fluid to the modulation system.
In some instances, the ablation transducer 112 may comprise a plurality of transducers. For example, in some embodiments, the ablation transducer 112 may include a number of transducers (two, three, four, or more) spaced about the circumference of the elongate shaft 108. This may allow for ablation of multiple radial locations about the body lumen 102 simultaneously. In other embodiments, the ablation transducer 112 may comprise a focused or phased array of transducers. The array may be configured to be directed at a focus region such that multiple transducers are radiating energy at a common target region. It is further contemplated that the ablation transducer 112 may comprise two or more longitudinally spaced transducers.
The distal ablation transducer 112 may be connected to a control unit (such as control unit 18 in
The modulation system 100 may further include a proximal stimulation transducer 114 positioned proximal to the ablation transducer 112. It is contemplated that the ablation transducer 112 and the stimulation transducer 114 may be placed at any longitudinal location along the elongate shaft 108 desired. In some embodiments, the stimulation transducer 114 may be an ultrasound transducer similar in form and function to the ablation transducer 112 discussed above. However, the stimulation transducer 114 may be operated at a lower intensity relative to the ablation transducer 112 to stimulate the adjacent nerves in a location 126 proximal to the desired treatment region 124 to block pain signals traveling to the brain. Power may be supplied to the stimulation transducer 114 through an electrical conductor 118 such that the surrounding nerves are heated approximately 5-10° C. greater than the surrounding body temperature. Thus, the surrounding nerves are heated to approximately 40-49° C., depending on the body temperature of the patient. However, these ranges are merely exemplary and the thermal block may be performed at temperature outside these ranges. However, it is contemplated that the location 126 at which the thermal nerve block is performed should not be heated to the point at which tissue begins to denature or irreversibly change, for example, approximately 50-60° C.
Distal tissue ablation may cause progressive nerve damage which may cause continued pain sensation (likely a general or referred pain rather than via nociceptors) which is transmitted proximally through the nerves. Stimulation of the nerves at a location 126 proximal to the ablation target region 124 may block these pain sensations from reaching the brain. After the ablation is completed, the proximal stimulation can be stopped immediately or after a short time. If there is mild pain after the ablation procedure, conventional medications can be used to relieve any residual pain.
While the stimulation transducer 114 is described as an ultrasonic transducer, it is contemplated that other methods and devices for raising the temperature of the nerves may be used, such as, but not limited to: microwave, or other acoustic, optical, electrical current, direct contact heating, or other mild heating. The use of the word transducer is not intended to limit the device to an ultrasound stimulation transducer; rather the transducer 114 may be a microwave element, a radiofrequency electrode, or other means for raising the temperature of the nerves. The nerve block may result from the temperature gradient stimulating the nerve. Thus, as the nerve cools, repeat stimulation of the nerve(s) may be required to block the pain. In some instances, the thermal pain block can be ramped up slowly (such as over a time period of seconds) or modulated in frequency, amplitude, and duration or duty cycle to minimize the sensation of pain. While the thermal nerve block is described herein are discussed relative to ultrasound tissue modulation, it is contemplated that the devices and methods may be used in other applications, such as, but not limited to: radiofrequency (RF) ablation, laser or microwave or other thermal ablation, cryothermal ablation, or with chemoablation, to similarly reduce periprocedural pain.
In some embodiments, the stimulation transducer 114 may be pulsed to cause repeated depolarization of the nerve. For example, the stimulation transducer 114 may be pulsed at frequencies of 100 Hz and greater. The thermal block may be accomplished by a succession of temperature gradients. If the heat is focused for example by focused ultrasound, to a small region, repeat depolarization may be done rapidly to enable a nerve block. Pulsed low intensity heating may block the nerve while preserving the nerve by maintaining the average temperature of the target tissue below 50° C. However, in some instances, pulsed low intensity heating may raise the temperature of the target tissue above 50° C. very briefly such that irreversible tissue damage does not occur.
In some instances, the stimulation transducer 114 may comprise a plurality of transducers. For example, in some embodiments, the stimulation transducer 114 may include a number of transducers (two, three, four, or more) spaced about the circumference of the elongate shaft 108. This may allow for stimulation of multiple radial locations about the body lumen 102 simultaneously. In other embodiments, the stimulation transducer 114 may comprise a focused or phased array of transducers. The array may be configured to be directed at a focus region such that multiple transducers are radiating energy at a common target region. It is further contemplated that the stimulation transducer 114 may comprise two or more longitudinally spaced transducers.
The proximal stimulation transducer 114 may be connected to a control unit (such as control unit 18 in
The modulation system 100 may be advanced through the vasculature in any manner known in the art. For example, system 100 may include a guidewire lumen to allow the system 100 to be advanced over a previously located guidewire. In some embodiments, the modulation system 100 may be advanced, or partially advanced, within a guide sheath such as the sheath 16 shown in
In some instances, the elongate shaft 108 may be rotated and additional ablation can be performed at multiple locations around the circumference of the vessel 102. In some instances, a slow automated “rotisserie” rotation can be used to work around the circumference of the vessel 102, or a faster spinning can be used to simultaneously ablate around the entire circumference. The spinning can be accomplished with a micro-motor or by spinning a drive shaft. In some embodiments, ultrasound sensor information can be used to selectively turn on and off the ablation transducer 112 to warm any cool spots or accommodate for veins, or other tissue variations. The number of times the elongate shaft 108 is rotated at a given longitudinal location may be determined by the number and size of the ablation transducer 112 on the elongate shaft 108. Once a particular location has been ablated, it may be desirable to perform further ablation procedures at different longitudinal locations. Once the elongate shaft 108 has been longitudinally repositioned, energy may once again be delivered to the ablation transducer 112 and the stimulation transducer 114. If necessary, the elongate shaft 108 may be rotated to perform ablation around the circumference of the vessel 102 at each longitudinal location. This process may be repeated at any number of longitudinal locations desired. It is contemplated that in some embodiments, the system 100 may include ablation transducers and/or stimulation transducers at various positions along the length of the modulation system 100 such that a larger region may be treated without longitudinal displacement of the elongate shaft 108.
The system 200 may include an elongate shaft 208 having a distal end region 210. The elongate shaft 208 may extend proximally from the distal end region 210 to a proximal end configured to remain outside of a patient's body. The proximal end of the elongate shaft 208 may include a hub attached thereto for connecting other treatment devices or providing a port for facilitating other treatments. It is contemplated that the stiffness of the elongate shaft 208 may be modified to form a modulation system 200 for use in various vessel diameters and various locations within the vascular tree. The elongate shaft 208 may further include one or more lumens extending therethrough. For example, the elongate shaft 208 may include a guidewire lumen and/or one or more auxiliary lumens. The lumens may be configured in any way known in the art. While not explicitly shown, the modulation system 200 may further include temperature sensors/wire, an infusion lumen, radiopaque marker bands, fixed guidewire tip, a guidewire lumen, external sheath and/or other components to facilitate the use and advancement of the system 200 within the vasculature.
The system 200 may include an ultrasound transducer 212 positioned adjacent the distal end region 210 of the elongate shaft 208. The ultrasound transducer 212 may be configured to be operated at a low intensity to provide a thermal nerve block and at a higher intensity to perform tissue modulation. The ultrasound transducer 212 may be formed from any suitable material such as, but not limited to, lead zirconate titanate (PZT). It is contemplated that other ceramic or piezoelectric materials may also be used. It is contemplated that the transducer 212 may have similar form and function to the transducers discussed above. In some instances, the transducer 212 may comprise a plurality of transducers. For example, in some embodiments, the transducer 212 may include a number of transducers (two, three, four, or more) spaced about the circumference of the elongate shaft 208. This may allow for ablation of multiple radial locations about the body lumen 202 simultaneously. In other embodiments, the transducer 212 may comprise a focused or phased array of transducers. The array may be configured to be directed at a focus region such that multiple transducers are radiating energy at a common target region. It is further contemplated that the transducer 212 may comprise two or more longitudinally spaced transducers.
The transducer 212 may be connected to a control unit (such as control unit 18 in
The modulation system 200 may be advanced through the vasculature in any manner known in the art. For example, system 200 may include a guidewire lumen to allow the system 200 to be advanced over a previously located guidewire. In some embodiments, the modulation system 200 may be advanced, or partially advanced, within a guide sheath such as the sheath 16 shown in
Once the modulation system 200 has been advanced to the second region 222, energy may again be supplied to the transducer 212 such that energy 220 is directed from the transducer 212 at a higher intensity to perform tissue modulation. The amount of energy delivered to the ablation transducer 212 may be determined by the desired treatment as well as the feedback provided by the system 200. In some instances, the elongate shaft 208 may be rotated and additional ablation can be performed at multiple locations around the circumference of the vessel 202. In some instances, a slow automated “rotisserie” rotation can be used to work around the circumference of the vessel 202, or a faster spinning can be used to simultaneously ablate around the entire circumference. The spinning can be accomplished with a micro-motor or by spinning a drive shaft. In some embodiments, ultrasound sensor information can be used to selectively turn on and off the transducer 212 to warm any cool spots or accommodate for veins, or other tissue variations. The number of times the elongate shaft 208 is rotated at a given longitudinal location may be determined by the number and size of the transducer(s) 212 on the elongate shaft 208. Once a particular location has been ablated, it may be desirable to perform further ablation procedures at different longitudinal locations. Once the elongate shaft 208 has been longitudinally repositioned, energy may once again be delivered to the transducer 212. If necessary, the elongate shaft 208 may be rotated to perform ablation around the circumference of the vessel 202 at each longitudinal location. This process may be repeated at any number of longitudinal locations desired. It is contemplated that in some embodiments, the system 200 may include transducers at various positions along the length of the modulation system 200 such that a larger region may be treated without longitudinal displacement of the elongate shaft 208.
Those skilled in the art will recognize that the present invention may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. Accordingly, departure in form and detail may be made without departing from the scope and spirit of the present invention as described in the appended claims.
This application claims priority under 35 U.S.C. § 119 to U.S. Provisional Application Ser. No. 61/704,169, filed Sep. 21, 2012, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
164184 | Kiddee | Jun 1875 | A |
1167014 | O'Brien | Jan 1916 | A |
2505358 | Gusberg et al. | Apr 1950 | A |
2701559 | Cooper | Feb 1955 | A |
3108593 | Glassman | Oct 1963 | A |
3108594 | Glassman | Oct 1963 | A |
3540431 | Mobin | Nov 1970 | A |
3952747 | Kimmell | Apr 1976 | A |
3996938 | Clark, III | Dec 1976 | A |
4046150 | Schwartz et al. | Sep 1977 | A |
4290427 | Chin | Sep 1981 | A |
4402686 | Medel | Sep 1983 | A |
4483341 | Witteles et al. | Nov 1984 | A |
4574804 | Kurwa | Mar 1986 | A |
4587975 | Salo et al. | May 1986 | A |
4649936 | Ungar et al. | Mar 1987 | A |
4682596 | Bales et al. | Jul 1987 | A |
4709698 | Johnston et al. | Dec 1987 | A |
4765331 | Petruzzi et al. | Aug 1988 | A |
4770653 | Shturman | Sep 1988 | A |
4784132 | Fox et al. | Nov 1988 | A |
4784162 | Ricks et al. | Nov 1988 | A |
4785806 | Deckelbaum et al. | Nov 1988 | A |
4788975 | Shturman et al. | Dec 1988 | A |
4790310 | Ginsburg et al. | Dec 1988 | A |
4799479 | Spears | Jan 1989 | A |
4823791 | D'Amelio et al. | Apr 1989 | A |
4830003 | Wolff et al. | May 1989 | A |
4849484 | Heard | Jul 1989 | A |
4862886 | Clarke et al. | Sep 1989 | A |
4887605 | Angelsen et al. | Dec 1989 | A |
4920979 | Bullara et al. | May 1990 | A |
4938766 | Jarvik | Jul 1990 | A |
4955377 | Lennox et al. | Sep 1990 | A |
4976711 | Parins et al. | Dec 1990 | A |
5034010 | Kittrell et al. | Jul 1991 | A |
5052402 | Bencini et al. | Oct 1991 | A |
5053033 | Clarke et al. | Oct 1991 | A |
5071424 | Reger et al. | Dec 1991 | A |
5074871 | Groshong et al. | Dec 1991 | A |
5098429 | Sterzer et al. | Mar 1992 | A |
5098431 | Rydell | Mar 1992 | A |
5109859 | Jenkins | May 1992 | A |
5125928 | Parins et al. | Jun 1992 | A |
5129396 | Rosen et al. | Jul 1992 | A |
5139496 | Hed | Aug 1992 | A |
5143836 | Hartman et al. | Sep 1992 | A |
5156610 | Reger et al. | Oct 1992 | A |
5158564 | Schnepp-Pesch | Oct 1992 | A |
5170802 | Mehra | Dec 1992 | A |
5178620 | Eggers et al. | Jan 1993 | A |
5178625 | Groshong et al. | Jan 1993 | A |
5190540 | Lee | Mar 1993 | A |
5211651 | Reger et al. | May 1993 | A |
5234407 | Teirstein et al. | Aug 1993 | A |
5242441 | Avitall | Sep 1993 | A |
5251634 | Weinberg et al. | Oct 1993 | A |
5255679 | Imran | Oct 1993 | A |
5263493 | Avitall | Nov 1993 | A |
5267954 | Nita et al. | Dec 1993 | A |
5277201 | Stern et al. | Jan 1994 | A |
5282484 | Reger et al. | Feb 1994 | A |
5286254 | Shapland et al. | Feb 1994 | A |
5295484 | Marcus | Mar 1994 | A |
5297564 | Love et al. | Mar 1994 | A |
5300068 | Rosar et al. | Apr 1994 | A |
5301683 | Durkan | Apr 1994 | A |
5304115 | Pflueger et al. | Apr 1994 | A |
5304121 | Sahatjian | Apr 1994 | A |
5304171 | Gregory et al. | Apr 1994 | A |
5304173 | Kittrell et al. | Apr 1994 | A |
5306250 | March et al. | Apr 1994 | A |
5312328 | Nita et al. | May 1994 | A |
5314466 | Stern et al. | May 1994 | A |
5322064 | Lundquist | Jun 1994 | A |
5324255 | Passafaro et al. | Jun 1994 | A |
5326341 | Lew et al. | Jul 1994 | A |
5326342 | Pflueger et al. | Jul 1994 | A |
5330518 | Neilson et al. | Jul 1994 | A |
5333614 | Feiring | Aug 1994 | A |
5342292 | Nita et al. | Aug 1994 | A |
5344395 | Whalen et al. | Sep 1994 | A |
5364392 | Warner et al. | Nov 1994 | A |
5365172 | Hrovat et al. | Nov 1994 | A |
5368557 | Nita et al. | Nov 1994 | A |
5368558 | Nita et al. | Nov 1994 | A |
5380274 | Nita et al. | Jan 1995 | A |
5380319 | Saito et al. | Jan 1995 | A |
5382228 | Nita et al. | Jan 1995 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5383917 | Desai et al. | Jan 1995 | A |
5397301 | Pflueger et al. | Mar 1995 | A |
5397339 | Desai | Mar 1995 | A |
5401272 | Perkins et al. | Mar 1995 | A |
5403311 | Abele et al. | Apr 1995 | A |
5405318 | Nita et al. | Apr 1995 | A |
5405346 | Grundy et al. | Apr 1995 | A |
5409000 | Imran | Apr 1995 | A |
5417672 | Nita et al. | May 1995 | A |
5419767 | Eggers et al. | May 1995 | A |
5427118 | Nita et al. | Jun 1995 | A |
5432876 | Appeldorn et al. | Jul 1995 | A |
5441498 | Perkins et al. | Aug 1995 | A |
5447509 | Mills et al. | Sep 1995 | A |
5451207 | Yock et al. | Sep 1995 | A |
5453091 | Taylor et al. | Sep 1995 | A |
5454788 | Walker et al. | Oct 1995 | A |
5454809 | Janssen | Oct 1995 | A |
5455029 | Hartman et al. | Oct 1995 | A |
5456682 | Edwards et al. | Oct 1995 | A |
5457042 | Hartman et al. | Oct 1995 | A |
5471982 | Edwards et al. | Dec 1995 | A |
5474530 | Passafaro et al. | Dec 1995 | A |
5478351 | Meade et al. | Dec 1995 | A |
5496311 | Abele et al. | Mar 1996 | A |
5496312 | Klicek et al. | Mar 1996 | A |
5498261 | Strul | Mar 1996 | A |
5505201 | Grill et al. | Apr 1996 | A |
5505730 | Edwards | Apr 1996 | A |
5507744 | Tay et al. | Apr 1996 | A |
5522873 | Jackman et al. | Jun 1996 | A |
5531520 | Grimson et al. | Jul 1996 | A |
5540656 | Pflueger et al. | Jul 1996 | A |
5540679 | Fram et al. | Jul 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5542917 | Nita et al. | Aug 1996 | A |
5545161 | Imran | Aug 1996 | A |
5562100 | Kittrell et al. | Oct 1996 | A |
5571122 | Kelly et al. | Nov 1996 | A |
5571151 | Gregory | Nov 1996 | A |
5573531 | Gregory et al. | Nov 1996 | A |
5573533 | Strul | Nov 1996 | A |
5584831 | McKay | Dec 1996 | A |
5584872 | Lafontaine et al. | Dec 1996 | A |
5588962 | Nicholas et al. | Dec 1996 | A |
5599346 | Edwards et al. | Feb 1997 | A |
5601526 | Chapelon et al. | Feb 1997 | A |
5609606 | O'Boyle et al. | Mar 1997 | A |
5626576 | Janssen | May 1997 | A |
5630837 | Crowley | May 1997 | A |
5637090 | McGee et al. | Jun 1997 | A |
5643255 | Organ | Jul 1997 | A |
5643297 | Nordgren et al. | Jul 1997 | A |
5647847 | Lafontaine et al. | Jul 1997 | A |
5649923 | Gregory et al. | Jul 1997 | A |
5651780 | Jackson et al. | Jul 1997 | A |
5653684 | Laptewicz et al. | Aug 1997 | A |
5662671 | Barbut et al. | Sep 1997 | A |
5665062 | Houser | Sep 1997 | A |
5665098 | Kelly et al. | Sep 1997 | A |
5666964 | Meilus | Sep 1997 | A |
5667490 | Keith et al. | Sep 1997 | A |
5672174 | Gough et al. | Sep 1997 | A |
5676693 | Lafontaine | Oct 1997 | A |
5678296 | Fleischhacker et al. | Oct 1997 | A |
5681282 | Eggers et al. | Oct 1997 | A |
RE35656 | Feinberg | Nov 1997 | E |
5688266 | Edwards et al. | Nov 1997 | A |
5693015 | Walker et al. | Dec 1997 | A |
5693029 | Leonhardt et al. | Dec 1997 | A |
5693043 | Kittrell et al. | Dec 1997 | A |
5693082 | Warner et al. | Dec 1997 | A |
5695504 | Gifford et al. | Dec 1997 | A |
5697369 | Long, Jr. et al. | Dec 1997 | A |
5697909 | Eggers et al. | Dec 1997 | A |
5702386 | Stern et al. | Dec 1997 | A |
5702433 | Taylor et al. | Dec 1997 | A |
5706809 | Littmann et al. | Jan 1998 | A |
5713942 | Stern et al. | Feb 1998 | A |
5715819 | Svenson et al. | Feb 1998 | A |
5735846 | Panescu et al. | Apr 1998 | A |
5741214 | Ouchi et al. | Apr 1998 | A |
5741248 | Stern et al. | Apr 1998 | A |
5741249 | Moss et al. | Apr 1998 | A |
5743903 | Stern et al. | Apr 1998 | A |
5748347 | Erickson | May 1998 | A |
5749914 | Janssen | May 1998 | A |
5755682 | Knudson et al. | May 1998 | A |
5755715 | Stern et al. | May 1998 | A |
5755753 | Knowlton et al. | May 1998 | A |
5769847 | Panescu et al. | Jun 1998 | A |
5769880 | Truckai et al. | Jun 1998 | A |
5775338 | Hastings | Jul 1998 | A |
5776174 | Van Tassel | Jul 1998 | A |
5779698 | Clayman et al. | Jul 1998 | A |
5782760 | Schaer | Jul 1998 | A |
5785702 | Murphy et al. | Jul 1998 | A |
5797849 | Vesely et al. | Aug 1998 | A |
5797903 | Swanson et al. | Aug 1998 | A |
5800484 | Gough et al. | Sep 1998 | A |
5800494 | Campbell et al. | Sep 1998 | A |
5810802 | Panescu et al. | Sep 1998 | A |
5810803 | Moss et al. | Sep 1998 | A |
5810810 | Tay et al. | Sep 1998 | A |
5817092 | Behl | Oct 1998 | A |
5817113 | Gifford et al. | Oct 1998 | A |
5817144 | Gregory et al. | Oct 1998 | A |
5823956 | Roth et al. | Oct 1998 | A |
5827203 | Nita et al. | Oct 1998 | A |
5827268 | Laufer | Oct 1998 | A |
5829447 | Stevens et al. | Nov 1998 | A |
5830213 | Panescu et al. | Nov 1998 | A |
5830222 | Makower | Nov 1998 | A |
5832228 | Holden et al. | Nov 1998 | A |
5833593 | Liprie | Nov 1998 | A |
5836874 | Swanson et al. | Nov 1998 | A |
5840076 | Swanson et al. | Nov 1998 | A |
5843016 | Lugnani et al. | Dec 1998 | A |
5846238 | Jackson et al. | Dec 1998 | A |
5846239 | Swanson et al. | Dec 1998 | A |
5846245 | McCarthy et al. | Dec 1998 | A |
5848969 | Panescu et al. | Dec 1998 | A |
5853411 | Whayne et al. | Dec 1998 | A |
5855614 | Stevens et al. | Jan 1999 | A |
5860974 | Abele | Jan 1999 | A |
5865801 | Houser | Feb 1999 | A |
5868735 | Lafontaine et al. | Feb 1999 | A |
5868736 | Swanson et al. | Feb 1999 | A |
5871483 | Jackson et al. | Feb 1999 | A |
5871524 | Knowlton et al. | Feb 1999 | A |
5875782 | Ferrari et al. | Mar 1999 | A |
5876369 | Houser | Mar 1999 | A |
5876374 | Alba et al. | Mar 1999 | A |
5876397 | Edelman et al. | Mar 1999 | A |
5879348 | Owens et al. | Mar 1999 | A |
5891114 | Chien et al. | Apr 1999 | A |
5891135 | Jackson et al. | Apr 1999 | A |
5891136 | McGee et al. | Apr 1999 | A |
5891138 | Tu et al. | Apr 1999 | A |
5895378 | Nita | Apr 1999 | A |
5897552 | Edwards et al. | Apr 1999 | A |
5902328 | Lafontaine et al. | May 1999 | A |
5904651 | Swanson et al. | May 1999 | A |
5904667 | Falwell et al. | May 1999 | A |
5904697 | Gifford et al. | May 1999 | A |
5904709 | Arndt et al. | May 1999 | A |
5906614 | Stern et al. | May 1999 | A |
5906623 | Peterson | May 1999 | A |
5906636 | Casscells et al. | May 1999 | A |
5916192 | Nita et al. | Jun 1999 | A |
5916227 | Keith et al. | Jun 1999 | A |
5916239 | Geddes et al. | Jun 1999 | A |
5919219 | Knowlton et al. | Jul 1999 | A |
5924424 | Stevens et al. | Jul 1999 | A |
5925038 | Panescu et al. | Jul 1999 | A |
5934284 | Plaia et al. | Aug 1999 | A |
5935063 | Nguyen | Aug 1999 | A |
5938670 | Keith et al. | Aug 1999 | A |
5947977 | Slepian et al. | Sep 1999 | A |
5948011 | Knowlton et al. | Sep 1999 | A |
5951494 | Wang et al. | Sep 1999 | A |
5951539 | Nita et al. | Sep 1999 | A |
5954717 | Behl et al. | Sep 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5957941 | Ream et al. | Sep 1999 | A |
5957969 | Warner et al. | Sep 1999 | A |
5961513 | Swanson et al. | Oct 1999 | A |
5964757 | Ponzi et al. | Oct 1999 | A |
5967976 | Larsen et al. | Oct 1999 | A |
5967978 | Littmann et al. | Oct 1999 | A |
5967984 | Chu et al. | Oct 1999 | A |
5971975 | Mills et al. | Oct 1999 | A |
5972026 | Laufer et al. | Oct 1999 | A |
5980563 | Tu et al. | Nov 1999 | A |
5989208 | Nita et al. | Nov 1999 | A |
5989284 | Laufer | Nov 1999 | A |
5993462 | Pomeranz et al. | Nov 1999 | A |
5997497 | Nita et al. | Dec 1999 | A |
5999678 | Murphy et al. | Dec 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6004316 | Laufer et al. | Dec 1999 | A |
6007514 | Nita | Dec 1999 | A |
6010522 | Barbut et al. | Jan 2000 | A |
6013033 | Berger et al. | Jan 2000 | A |
6014590 | Whayne et al. | Jan 2000 | A |
6022309 | Celliers et al. | Feb 2000 | A |
6024740 | Lesh | Feb 2000 | A |
6030611 | Gorecki et al. | Feb 2000 | A |
6032675 | Rubinsky et al. | Mar 2000 | A |
6033397 | Laufer et al. | Mar 2000 | A |
6033398 | Farley et al. | Mar 2000 | A |
6036687 | Laufer et al. | Mar 2000 | A |
6036689 | Tu et al. | Mar 2000 | A |
6041260 | Stern et al. | Mar 2000 | A |
6050994 | Sherman | Apr 2000 | A |
6056744 | Edwards | May 2000 | A |
6056746 | Goble et al. | May 2000 | A |
6063085 | Tay et al. | May 2000 | A |
6066096 | Smith et al. | May 2000 | A |
6066139 | Ryan et al. | May 2000 | A |
6068638 | Makower | May 2000 | A |
6068653 | Lafontaine | May 2000 | A |
6071277 | Farley et al. | Jun 2000 | A |
6071278 | Panescu et al. | Jun 2000 | A |
6078839 | Carson | Jun 2000 | A |
6079414 | Roth | Jun 2000 | A |
6080171 | Keith et al. | Jun 2000 | A |
6081749 | Ingle et al. | Jun 2000 | A |
6086581 | Reynolds et al. | Jul 2000 | A |
6093166 | Knudson et al. | Jul 2000 | A |
6096021 | Helm et al. | Aug 2000 | A |
6099526 | Whayne et al. | Aug 2000 | A |
6102908 | Tu et al. | Aug 2000 | A |
6106477 | Miesel et al. | Aug 2000 | A |
6110187 | Donlon et al. | Aug 2000 | A |
6114311 | Parmacek et al. | Sep 2000 | A |
6117101 | Diederich et al. | Sep 2000 | A |
6117128 | Gregory | Sep 2000 | A |
6120476 | Fung et al. | Sep 2000 | A |
6120516 | Selmon et al. | Sep 2000 | A |
6121775 | Pearlman | Sep 2000 | A |
6123679 | Lafaut et al. | Sep 2000 | A |
6123682 | Knudson et al. | Sep 2000 | A |
6123702 | Swanson et al. | Sep 2000 | A |
6123703 | Tu et al. | Sep 2000 | A |
6123718 | Tu et al. | Sep 2000 | A |
6129725 | Tu et al. | Oct 2000 | A |
6135997 | Laufer et al. | Oct 2000 | A |
6142991 | Schatzberger et al. | Nov 2000 | A |
6142993 | Whayne et al. | Nov 2000 | A |
6149647 | Tu et al. | Nov 2000 | A |
6152899 | Farley et al. | Nov 2000 | A |
6152912 | Jansen et al. | Nov 2000 | A |
6156046 | Passafaro et al. | Dec 2000 | A |
6158250 | Tibbals et al. | Dec 2000 | A |
6159187 | Park et al. | Dec 2000 | A |
6159225 | Makower | Dec 2000 | A |
6161048 | Sluijter et al. | Dec 2000 | A |
6162184 | Swanson et al. | Dec 2000 | A |
6165163 | Chien et al. | Dec 2000 | A |
6165172 | Farley et al. | Dec 2000 | A |
6165187 | Reger et al. | Dec 2000 | A |
6168594 | Lafontaine et al. | Jan 2001 | B1 |
6171321 | Gifford, III et al. | Jan 2001 | B1 |
6179832 | Jones et al. | Jan 2001 | B1 |
6179835 | Panescu et al. | Jan 2001 | B1 |
6179859 | Bates et al. | Jan 2001 | B1 |
6183468 | Swanson et al. | Feb 2001 | B1 |
6183486 | Snow et al. | Feb 2001 | B1 |
6190379 | Heuser et al. | Feb 2001 | B1 |
6191862 | Swanson et al. | Feb 2001 | B1 |
6197021 | Panescu et al. | Mar 2001 | B1 |
6200266 | Shokrollahi et al. | Mar 2001 | B1 |
6203537 | Adrian | Mar 2001 | B1 |
6203561 | Ramee et al. | Mar 2001 | B1 |
6210406 | Webster | Apr 2001 | B1 |
6211247 | Goodman | Apr 2001 | B1 |
6217576 | Tu et al. | Apr 2001 | B1 |
6219577 | Brown, III et al. | Apr 2001 | B1 |
6228076 | Winston et al. | May 2001 | B1 |
6228109 | Tu et al. | May 2001 | B1 |
6231516 | Keilman et al. | May 2001 | B1 |
6231587 | Makower | May 2001 | B1 |
6235044 | Root et al. | May 2001 | B1 |
6236883 | Ciaccio et al. | May 2001 | B1 |
6237605 | Vaska et al. | May 2001 | B1 |
6238389 | Paddock et al. | May 2001 | B1 |
6238392 | Long | May 2001 | B1 |
6241666 | Pomeranz et al. | Jun 2001 | B1 |
6241753 | Knowlton | Jun 2001 | B1 |
6245020 | Moore et al. | Jun 2001 | B1 |
6245045 | Stratienko | Jun 2001 | B1 |
6248126 | Lesser et al. | Jun 2001 | B1 |
6251128 | Knopp et al. | Jun 2001 | B1 |
6258087 | Edwards et al. | Jul 2001 | B1 |
6273886 | Edwards et al. | Aug 2001 | B1 |
6280466 | Kugler et al. | Aug 2001 | B1 |
6283935 | Laufer et al. | Sep 2001 | B1 |
6283959 | Lalonde et al. | Sep 2001 | B1 |
6284743 | Parmacek et al. | Sep 2001 | B1 |
6287323 | Hammerslag | Sep 2001 | B1 |
6290696 | Lafontaine | Sep 2001 | B1 |
6292695 | Webster, Jr. et al. | Sep 2001 | B1 |
6293942 | Goble et al. | Sep 2001 | B1 |
6293943 | Panescu et al. | Sep 2001 | B1 |
6296619 | Brisken et al. | Oct 2001 | B1 |
6298256 | Meyer | Oct 2001 | B1 |
6299379 | Lewis | Oct 2001 | B1 |
6299623 | Wulfman | Oct 2001 | B1 |
6309379 | Willard et al. | Oct 2001 | B1 |
6309399 | Barbut et al. | Oct 2001 | B1 |
6311090 | Knowlton | Oct 2001 | B1 |
6317615 | KenKnight et al. | Nov 2001 | B1 |
6319242 | Patterson et al. | Nov 2001 | B1 |
6319251 | Tu et al. | Nov 2001 | B1 |
6322559 | Daulton et al. | Nov 2001 | B1 |
6325797 | Stewart et al. | Dec 2001 | B1 |
6325799 | Goble | Dec 2001 | B1 |
6328699 | Eigler et al. | Dec 2001 | B1 |
6346074 | Roth | Feb 2002 | B1 |
6346104 | Daly et al. | Feb 2002 | B2 |
6350248 | Knudson et al. | Feb 2002 | B1 |
6350276 | Knowlton | Feb 2002 | B1 |
6353751 | Swanson et al. | Mar 2002 | B1 |
6355029 | Joye et al. | Mar 2002 | B1 |
6357447 | Swanson et al. | Mar 2002 | B1 |
6361519 | Knudson et al. | Mar 2002 | B1 |
6364840 | Crowley | Apr 2002 | B1 |
6371965 | Gifford, III et al. | Apr 2002 | B2 |
6375668 | Gifford et al. | Apr 2002 | B1 |
6377854 | Knowlton | Apr 2002 | B1 |
6377855 | Knowlton | Apr 2002 | B1 |
6379352 | Reynolds et al. | Apr 2002 | B1 |
6379373 | Sawhney et al. | Apr 2002 | B1 |
6381497 | Knowlton | Apr 2002 | B1 |
6381498 | Knowlton | Apr 2002 | B1 |
6383151 | Diederich et al. | May 2002 | B1 |
6387105 | Gifford, III et al. | May 2002 | B1 |
6387380 | Knowlton | May 2002 | B1 |
6389311 | Whayne et al. | May 2002 | B1 |
6389314 | Feiring | May 2002 | B2 |
6391024 | Sun et al. | May 2002 | B1 |
6394096 | Constantz | May 2002 | B1 |
6394956 | Chandrasekaran et al. | May 2002 | B1 |
6398780 | Farley et al. | Jun 2002 | B1 |
6398782 | Pecor et al. | Jun 2002 | B1 |
6398792 | O'Connor | Jun 2002 | B1 |
6401720 | Stevens et al. | Jun 2002 | B1 |
6402719 | Ponzi et al. | Jun 2002 | B1 |
6405090 | Knowlton | Jun 2002 | B1 |
6409723 | Edwards | Jun 2002 | B1 |
6413255 | Stern | Jul 2002 | B1 |
6421559 | Pearlman | Jul 2002 | B1 |
6423057 | He et al. | Jul 2002 | B1 |
6425867 | Vaezy et al. | Jul 2002 | B1 |
6425912 | Knowlton | Jul 2002 | B1 |
6427118 | Suzuki | Jul 2002 | B1 |
6428534 | Joye et al. | Aug 2002 | B1 |
6428536 | Panescu et al. | Aug 2002 | B2 |
6430446 | Knowlton | Aug 2002 | B1 |
6432102 | Joye et al. | Aug 2002 | B2 |
6436056 | Wang et al. | Aug 2002 | B1 |
6438424 | Knowlton | Aug 2002 | B1 |
6440125 | Rentrop | Aug 2002 | B1 |
6442413 | Silver | Aug 2002 | B1 |
6443965 | Gifford, III et al. | Sep 2002 | B1 |
6445939 | Swanson et al. | Sep 2002 | B1 |
6447505 | McGovern et al. | Sep 2002 | B2 |
6447509 | Bonnet et al. | Sep 2002 | B1 |
6451034 | Gifford, III et al. | Sep 2002 | B1 |
6451044 | Naghavi et al. | Sep 2002 | B1 |
6453202 | Knowlton | Sep 2002 | B1 |
6454737 | Nita et al. | Sep 2002 | B1 |
6454757 | Nita et al. | Sep 2002 | B1 |
6454775 | Demarais et al. | Sep 2002 | B1 |
6458098 | Kanesaka | Oct 2002 | B1 |
6461378 | Knowlton | Oct 2002 | B1 |
6468276 | McKay | Oct 2002 | B1 |
6468297 | Williams et al. | Oct 2002 | B1 |
6470216 | Knowlton | Oct 2002 | B1 |
6470219 | Edwards et al. | Oct 2002 | B1 |
6471696 | Berube et al. | Oct 2002 | B1 |
6475213 | Whayne et al. | Nov 2002 | B1 |
6475215 | Tanrisever | Nov 2002 | B1 |
6475238 | Fedida et al. | Nov 2002 | B1 |
6477426 | Fenn et al. | Nov 2002 | B1 |
6480745 | Nelson et al. | Nov 2002 | B2 |
6481704 | Koster et al. | Nov 2002 | B1 |
6482202 | Goble et al. | Nov 2002 | B1 |
6484052 | Visuri et al. | Nov 2002 | B1 |
6485489 | Teirstein et al. | Nov 2002 | B2 |
6488679 | Swanson et al. | Dec 2002 | B1 |
6489307 | Phillips et al. | Dec 2002 | B1 |
6491705 | Gifford, III et al. | Dec 2002 | B2 |
6494891 | Cornish et al. | Dec 2002 | B1 |
6497711 | Plaia et al. | Dec 2002 | B1 |
6500172 | Panescu et al. | Dec 2002 | B1 |
6500174 | Maguire et al. | Dec 2002 | B1 |
6508765 | Suorsa | Jan 2003 | B2 |
6508804 | Sarge et al. | Jan 2003 | B2 |
6508815 | Strul et al. | Jan 2003 | B1 |
6511478 | Burnside et al. | Jan 2003 | B1 |
6511496 | Huter et al. | Jan 2003 | B1 |
6511500 | Rahme | Jan 2003 | B1 |
6514236 | Stratienko | Feb 2003 | B1 |
6514245 | Williams et al. | Feb 2003 | B1 |
6514248 | Eggers et al. | Feb 2003 | B1 |
6517534 | McGovern et al. | Feb 2003 | B1 |
6517572 | Kugler et al. | Feb 2003 | B2 |
6522913 | Swanson et al. | Feb 2003 | B2 |
6522926 | Kieval et al. | Feb 2003 | B1 |
6524299 | Tran et al. | Feb 2003 | B1 |
6527765 | Kelman et al. | Mar 2003 | B2 |
6527769 | Langberg et al. | Mar 2003 | B2 |
6540761 | Houser | Apr 2003 | B2 |
6542781 | Koblish et al. | Apr 2003 | B1 |
6544780 | Wang | Apr 2003 | B1 |
6546272 | MacKinnon et al. | Apr 2003 | B1 |
6547788 | Maguire et al. | Apr 2003 | B1 |
6549800 | Atalar et al. | Apr 2003 | B1 |
6552796 | Magnin et al. | Apr 2003 | B2 |
6554780 | Sampson et al. | Apr 2003 | B1 |
6558381 | Ingle et al. | May 2003 | B2 |
6558382 | Jahns et al. | May 2003 | B2 |
6564096 | Mest | May 2003 | B2 |
6565582 | Gifford, III et al. | May 2003 | B2 |
6569109 | Sakurai et al. | May 2003 | B2 |
6569177 | Dillard et al. | May 2003 | B1 |
6570659 | Schmitt | May 2003 | B2 |
6572551 | Smith et al. | Jun 2003 | B1 |
6572612 | Stewart et al. | Jun 2003 | B2 |
6577902 | Laufer et al. | Jun 2003 | B1 |
6579308 | Jansen et al. | Jun 2003 | B1 |
6579311 | Makower | Jun 2003 | B1 |
6582423 | Thapliyal et al. | Jun 2003 | B1 |
6589238 | Edwards et al. | Jul 2003 | B2 |
6592526 | Lenker | Jul 2003 | B1 |
6592567 | Levin et al. | Jul 2003 | B1 |
6595959 | Stratienko | Jul 2003 | B1 |
6600956 | Maschino et al. | Jul 2003 | B2 |
6602242 | Fung | Aug 2003 | B1 |
6602246 | Joye et al. | Aug 2003 | B1 |
6605084 | Acker et al. | Aug 2003 | B2 |
6623452 | Chien et al. | Sep 2003 | B2 |
6623453 | Guibert et al. | Sep 2003 | B1 |
6632193 | Davison et al. | Oct 2003 | B1 |
6632196 | Houser | Oct 2003 | B1 |
6645223 | Boyle et al. | Nov 2003 | B2 |
6648854 | Patterson et al. | Nov 2003 | B1 |
6648878 | Lafontaine | Nov 2003 | B2 |
6648879 | Joye et al. | Nov 2003 | B2 |
6651672 | Roth | Nov 2003 | B2 |
6652513 | Panescu et al. | Nov 2003 | B2 |
6652515 | Maguire et al. | Nov 2003 | B1 |
6656136 | Weng et al. | Dec 2003 | B1 |
6658279 | Swanson et al. | Dec 2003 | B2 |
6659981 | Stewart et al. | Dec 2003 | B2 |
6666858 | Lafontaine | Dec 2003 | B2 |
6666863 | Wentzel et al. | Dec 2003 | B2 |
6669655 | Acker et al. | Dec 2003 | B1 |
6669692 | Nelson et al. | Dec 2003 | B1 |
6673040 | Samson et al. | Jan 2004 | B1 |
6673064 | Rentrop | Jan 2004 | B1 |
6673066 | Werneth | Jan 2004 | B2 |
6673090 | Root et al. | Jan 2004 | B2 |
6673101 | Fitzgerald et al. | Jan 2004 | B1 |
6673290 | Whayne et al. | Jan 2004 | B1 |
6676678 | Gifford, III et al. | Jan 2004 | B2 |
6679268 | Stevens et al. | Jan 2004 | B2 |
6681773 | Murphy et al. | Jan 2004 | B2 |
6682541 | Gifford, III et al. | Jan 2004 | B1 |
6684098 | Oshio et al. | Jan 2004 | B2 |
6685732 | Kramer | Feb 2004 | B2 |
6685733 | Dae et al. | Feb 2004 | B1 |
6689086 | Nita et al. | Feb 2004 | B1 |
6689148 | Sawhney et al. | Feb 2004 | B2 |
6690181 | Dowdeswell et al. | Feb 2004 | B1 |
6692490 | Edwards | Feb 2004 | B1 |
6695830 | Vigil et al. | Feb 2004 | B2 |
6695857 | Gifford, III et al. | Feb 2004 | B2 |
6699241 | Rappaport et al. | Mar 2004 | B2 |
6699257 | Gifford, III et al. | Mar 2004 | B2 |
6702748 | Nita et al. | Mar 2004 | B1 |
6702811 | Stewart et al. | Mar 2004 | B2 |
6706010 | Miki et al. | Mar 2004 | B1 |
6706011 | Murphy-Chutorian et al. | Mar 2004 | B1 |
6706037 | Zvuloni et al. | Mar 2004 | B2 |
6709431 | Lafontaine | Mar 2004 | B2 |
6711429 | Gilboa et al. | Mar 2004 | B1 |
6712815 | Sampson et al. | Mar 2004 | B2 |
6714822 | King et al. | Mar 2004 | B2 |
6716184 | Vaezy et al. | Apr 2004 | B2 |
6720350 | Kunz et al. | Apr 2004 | B2 |
6723043 | Kleeman et al. | Apr 2004 | B2 |
6723064 | Babaev | Apr 2004 | B2 |
6736811 | Panescu et al. | May 2004 | B2 |
6743184 | Sampson et al. | Jun 2004 | B2 |
6746401 | Panescu | Jun 2004 | B2 |
6746464 | Makower | Jun 2004 | B1 |
6746474 | Saadat | Jun 2004 | B2 |
6748953 | Sherry et al. | Jun 2004 | B2 |
6749607 | Edwards et al. | Jun 2004 | B2 |
6752805 | Maguire et al. | Jun 2004 | B2 |
6760616 | Hoey et al. | Jul 2004 | B2 |
6763261 | Casscells, III et al. | Jul 2004 | B2 |
6764501 | Ganz | Jul 2004 | B2 |
6769433 | Zikorus et al. | Aug 2004 | B2 |
6770070 | Balbierz | Aug 2004 | B1 |
6771996 | Bowe et al. | Aug 2004 | B2 |
6773433 | Stewart et al. | Aug 2004 | B2 |
6786900 | Joye et al. | Sep 2004 | B2 |
6786901 | Joye et al. | Sep 2004 | B2 |
6786904 | Döscher et al. | Sep 2004 | B2 |
6788977 | Fenn et al. | Sep 2004 | B2 |
6790206 | Panescu | Sep 2004 | B2 |
6790222 | Kugler et al. | Sep 2004 | B2 |
6796981 | Wham et al. | Sep 2004 | B2 |
6797933 | Mendis et al. | Sep 2004 | B1 |
6797960 | Spartiotis et al. | Sep 2004 | B1 |
6800075 | Mische et al. | Oct 2004 | B2 |
6802857 | Walsh et al. | Oct 2004 | B1 |
6807444 | Tu et al. | Oct 2004 | B2 |
6811550 | Holland et al. | Nov 2004 | B2 |
6813520 | Truckai et al. | Nov 2004 | B2 |
6814730 | Li | Nov 2004 | B2 |
6814733 | Schwartz et al. | Nov 2004 | B2 |
6823205 | Jara | Nov 2004 | B1 |
6824516 | Batten et al. | Nov 2004 | B2 |
6827726 | Parodi | Dec 2004 | B2 |
6827926 | Robinson et al. | Dec 2004 | B2 |
6829497 | Mogul | Dec 2004 | B2 |
6830568 | Kesten et al. | Dec 2004 | B1 |
6837886 | Collins et al. | Jan 2005 | B2 |
6837888 | Ciarrocca et al. | Jan 2005 | B2 |
6845267 | Harrison | Jan 2005 | B2 |
6847848 | Sterzer | Jan 2005 | B2 |
6849073 | Hoey et al. | Feb 2005 | B2 |
6849075 | Bertolero et al. | Feb 2005 | B2 |
6853425 | Kim et al. | Feb 2005 | B2 |
6855123 | Nita | Feb 2005 | B2 |
6855143 | Davison | Feb 2005 | B2 |
6869431 | Maguire et al. | Mar 2005 | B2 |
6872183 | Sampson et al. | Mar 2005 | B2 |
6884260 | Kugler et al. | Apr 2005 | B2 |
6889694 | Hooven | May 2005 | B2 |
6893436 | Woodard et al. | May 2005 | B2 |
6895077 | Karellas et al. | May 2005 | B2 |
6895265 | Silver | May 2005 | B2 |
6898454 | Atalar et al. | May 2005 | B2 |
6899711 | Stewart et al. | May 2005 | B2 |
6899718 | Gifford, III et al. | May 2005 | B2 |
6905494 | Yon et al. | Jun 2005 | B2 |
6908462 | Joye et al. | Jun 2005 | B2 |
6909009 | Koridze | Jun 2005 | B2 |
6911026 | Hall et al. | Jun 2005 | B1 |
6915806 | Pacek et al. | Jul 2005 | B2 |
6923805 | LaFontaine et al. | Aug 2005 | B1 |
6926246 | Ginggen | Aug 2005 | B2 |
6926713 | Rioux et al. | Aug 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929009 | Makower et al. | Aug 2005 | B2 |
6929632 | Nita et al. | Aug 2005 | B2 |
6929639 | Lafontaine | Aug 2005 | B2 |
6932776 | Carr | Aug 2005 | B2 |
6936047 | Nasab et al. | Aug 2005 | B2 |
6942620 | Nita et al. | Sep 2005 | B2 |
6942657 | Sinofsky et al. | Sep 2005 | B2 |
6942677 | Nita et al. | Sep 2005 | B2 |
6942692 | Landau et al. | Sep 2005 | B2 |
6949097 | Stewart et al. | Sep 2005 | B2 |
6949121 | Laguna | Sep 2005 | B1 |
6952615 | Satake | Oct 2005 | B2 |
6953425 | Brister | Oct 2005 | B2 |
6955174 | Joye et al. | Oct 2005 | B2 |
6955175 | Stevens et al. | Oct 2005 | B2 |
6959711 | Murphy et al. | Nov 2005 | B2 |
6960207 | Vanney et al. | Nov 2005 | B2 |
6962584 | Stone et al. | Nov 2005 | B1 |
6964660 | Maguire et al. | Nov 2005 | B2 |
6966908 | Maguire et al. | Nov 2005 | B2 |
6972015 | Joye et al. | Dec 2005 | B2 |
6972024 | Kilpatrick et al. | Dec 2005 | B1 |
6974456 | Edwards et al. | Dec 2005 | B2 |
6978174 | Gelfand | Dec 2005 | B2 |
6979329 | Burnside et al. | Dec 2005 | B2 |
6979420 | Weber | Dec 2005 | B2 |
6984238 | Gifford, III et al. | Jan 2006 | B2 |
6985774 | Kieval et al. | Jan 2006 | B2 |
6986739 | Warren et al. | Jan 2006 | B2 |
6989009 | Lafontaine | Jan 2006 | B2 |
6989010 | Francischelli et al. | Jan 2006 | B2 |
6991617 | Hektner et al. | Jan 2006 | B2 |
7001378 | Yon et al. | Feb 2006 | B2 |
7006858 | Silver et al. | Feb 2006 | B2 |
7022105 | Edwards | Apr 2006 | B1 |
7022120 | Lafontaine | Apr 2006 | B2 |
7025767 | Schaefer et al. | Apr 2006 | B2 |
7033322 | Silver | Apr 2006 | B2 |
7033372 | Cahalan | Apr 2006 | B1 |
7041098 | Farley et al. | May 2006 | B2 |
7050848 | Hoey et al. | May 2006 | B2 |
7063670 | Sampson et al. | Jun 2006 | B2 |
7063679 | Maguire et al. | Jun 2006 | B2 |
7063719 | Jansen et al. | Jun 2006 | B2 |
7066895 | Podany | Jun 2006 | B2 |
7066900 | Botto et al. | Jun 2006 | B2 |
7066904 | Rosenthal et al. | Jun 2006 | B2 |
7072720 | Puskas | Jul 2006 | B2 |
7074217 | Strul et al. | Jul 2006 | B2 |
7081112 | Joye et al. | Jul 2006 | B2 |
7081114 | Rashidi | Jul 2006 | B2 |
7083614 | Fjield et al. | Aug 2006 | B2 |
7084276 | Vu et al. | Aug 2006 | B2 |
7087026 | Callister et al. | Aug 2006 | B2 |
7087051 | Bourne et al. | Aug 2006 | B2 |
7087052 | Sampson et al. | Aug 2006 | B2 |
7087053 | Vanney | Aug 2006 | B2 |
7089065 | Westlund et al. | Aug 2006 | B2 |
7097641 | Arless et al. | Aug 2006 | B1 |
7100614 | Stevens et al. | Sep 2006 | B2 |
7101368 | Lafontaine | Sep 2006 | B2 |
7104983 | Grasso, III et al. | Sep 2006 | B2 |
7104987 | Biggs et al. | Sep 2006 | B2 |
7108715 | Lawrence-Brown et al. | Sep 2006 | B2 |
7112196 | Brosch | Sep 2006 | B2 |
7112198 | Satake | Sep 2006 | B2 |
7112211 | Gifford, III et al. | Sep 2006 | B2 |
7122019 | Kesten et al. | Oct 2006 | B1 |
7122033 | Wood | Oct 2006 | B2 |
7134438 | Makower et al. | Nov 2006 | B2 |
7137963 | Nita et al. | Nov 2006 | B2 |
7137980 | Buysse et al. | Nov 2006 | B2 |
7153315 | Miller | Dec 2006 | B2 |
7155271 | Halperin et al. | Dec 2006 | B2 |
7157491 | Mewshaw et al. | Jan 2007 | B2 |
7157492 | Mewshaw et al. | Jan 2007 | B2 |
7158832 | Kieval et al. | Jan 2007 | B2 |
7160296 | Pearson et al. | Jan 2007 | B2 |
7162303 | Levin | Jan 2007 | B2 |
7165551 | Edwards et al. | Jan 2007 | B2 |
7169144 | Hoey et al. | Jan 2007 | B2 |
7172589 | Lafontaine | Feb 2007 | B2 |
7172610 | Heitzmann et al. | Feb 2007 | B2 |
7181261 | Silver et al. | Feb 2007 | B2 |
7184811 | Phan et al. | Feb 2007 | B2 |
7184827 | Edwards | Feb 2007 | B1 |
7189227 | Lafontaine | Mar 2007 | B2 |
7192427 | Chapelon et al. | Mar 2007 | B2 |
7192586 | Bander | Mar 2007 | B2 |
7197354 | Sobe | Mar 2007 | B2 |
7198632 | Lim et al. | Apr 2007 | B2 |
7200445 | Dalbec et al. | Apr 2007 | B1 |
7201749 | Govari et al. | Apr 2007 | B2 |
7203537 | Mower | Apr 2007 | B2 |
7214234 | Rapacki et al. | May 2007 | B2 |
7220233 | Nita et al. | May 2007 | B2 |
7220239 | Wilson | May 2007 | B2 |
7220257 | Lafontaine | May 2007 | B1 |
7220270 | Sawhney et al. | May 2007 | B2 |
7232458 | Saadat | Jun 2007 | B2 |
7232459 | Greenberg et al. | Jun 2007 | B2 |
7238184 | Megerman et al. | Jul 2007 | B2 |
7241273 | Maguire et al. | Jul 2007 | B2 |
7241736 | Hunter et al. | Jul 2007 | B2 |
7247141 | Makin et al. | Jul 2007 | B2 |
7250041 | Chiu et al. | Jul 2007 | B2 |
7250440 | Mewshaw et al. | Jul 2007 | B2 |
7252664 | Nasab et al. | Aug 2007 | B2 |
7252679 | Fischell et al. | Aug 2007 | B2 |
7264619 | Venturelli | Sep 2007 | B2 |
7279600 | Mewshaw et al. | Oct 2007 | B2 |
7280863 | Shachar | Oct 2007 | B2 |
7282213 | Schroeder et al. | Oct 2007 | B2 |
7285119 | Stewart et al. | Oct 2007 | B2 |
7285120 | Im et al. | Oct 2007 | B2 |
7288089 | Yon et al. | Oct 2007 | B2 |
7288096 | Chin | Oct 2007 | B2 |
7291146 | Steinke et al. | Nov 2007 | B2 |
7293562 | Malecki et al. | Nov 2007 | B2 |
7294125 | Phalen et al. | Nov 2007 | B2 |
7294126 | Sampson et al. | Nov 2007 | B2 |
7294127 | Leung et al. | Nov 2007 | B2 |
7297131 | Nita | Nov 2007 | B2 |
7297475 | Koiwai et al. | Nov 2007 | B2 |
7300433 | Lane et al. | Nov 2007 | B2 |
7301108 | Egitto et al. | Nov 2007 | B2 |
7310150 | Guillermo et al. | Dec 2007 | B2 |
7313430 | Urquhart et al. | Dec 2007 | B2 |
7314483 | Landau et al. | Jan 2008 | B2 |
7317077 | Averback et al. | Jan 2008 | B2 |
7323006 | Andreas et al. | Jan 2008 | B2 |
7326206 | Paul et al. | Feb 2008 | B2 |
7326226 | Root et al. | Feb 2008 | B2 |
7326235 | Edwards | Feb 2008 | B2 |
7326237 | DePalma et al. | Feb 2008 | B2 |
7329236 | Kesten et al. | Feb 2008 | B2 |
7335180 | Nita et al. | Feb 2008 | B2 |
7335192 | Keren et al. | Feb 2008 | B2 |
7338467 | Lutter | Mar 2008 | B2 |
7341570 | Keren et al. | Mar 2008 | B2 |
7343195 | Strommer et al. | Mar 2008 | B2 |
7347857 | Anderson et al. | Mar 2008 | B2 |
7348003 | Salcedo et al. | Mar 2008 | B2 |
7352593 | Zeng et al. | Apr 2008 | B2 |
7354927 | Vu | Apr 2008 | B2 |
7359732 | Kim et al. | Apr 2008 | B2 |
7361341 | Salcedo et al. | Apr 2008 | B2 |
7364566 | Elkins et al. | Apr 2008 | B2 |
7367970 | Govari et al. | May 2008 | B2 |
7367975 | Malecki et al. | May 2008 | B2 |
7371231 | Rioux et al. | May 2008 | B2 |
7387126 | Cox et al. | Jun 2008 | B2 |
7393338 | Nita | Jul 2008 | B2 |
7396355 | Goldman et al. | Jul 2008 | B2 |
7402151 | Rosenman et al. | Jul 2008 | B2 |
7402312 | Rosen et al. | Jul 2008 | B2 |
7404824 | Webler et al. | Jul 2008 | B1 |
7406970 | Zikorus et al. | Aug 2008 | B2 |
7407502 | Strul et al. | Aug 2008 | B2 |
7407506 | Makower | Aug 2008 | B2 |
7407671 | McBride et al. | Aug 2008 | B2 |
7408021 | Averback et al. | Aug 2008 | B2 |
7410486 | Fuimaono et al. | Aug 2008 | B2 |
7413556 | Zhang et al. | Aug 2008 | B2 |
7425212 | Danek et al. | Sep 2008 | B1 |
7426409 | Casscells, III et al. | Sep 2008 | B2 |
7435248 | Taimisto et al. | Oct 2008 | B2 |
7447453 | Kim et al. | Nov 2008 | B2 |
7449018 | Kramer | Nov 2008 | B2 |
7452538 | Ni et al. | Nov 2008 | B2 |
7473890 | Grier et al. | Jan 2009 | B2 |
7476384 | Ni et al. | Jan 2009 | B2 |
7479157 | Weber et al. | Jan 2009 | B2 |
7481803 | Kesten et al. | Jan 2009 | B2 |
7485104 | Kieval | Feb 2009 | B2 |
7486805 | Krattiger | Feb 2009 | B2 |
7487780 | Hooven | Feb 2009 | B2 |
7493154 | Bonner et al. | Feb 2009 | B2 |
7494485 | Beck et al. | Feb 2009 | B2 |
7494486 | Mische et al. | Feb 2009 | B2 |
7494488 | Weber | Feb 2009 | B2 |
7494661 | Sanders | Feb 2009 | B2 |
7495439 | Wiggins | Feb 2009 | B2 |
7497858 | Chapelon et al. | Mar 2009 | B2 |
7499745 | Littrup et al. | Mar 2009 | B2 |
7500985 | Saadat | Mar 2009 | B2 |
7505812 | Eggers et al. | Mar 2009 | B1 |
7505816 | Schmeling et al. | Mar 2009 | B2 |
7507233 | Littrup et al. | Mar 2009 | B2 |
7507235 | Keogh et al. | Mar 2009 | B2 |
7511494 | Wedeen | Mar 2009 | B2 |
7512445 | Truckai et al. | Mar 2009 | B2 |
7527643 | Case et al. | May 2009 | B2 |
7529589 | Williams et al. | May 2009 | B2 |
7540852 | Nita et al. | Jun 2009 | B2 |
7540870 | Babaev | Jun 2009 | B2 |
RE40863 | Tay et al. | Jul 2009 | E |
7556624 | Laufer et al. | Jul 2009 | B2 |
7558625 | Levin et al. | Jul 2009 | B2 |
7563247 | Maguire et al. | Jul 2009 | B2 |
7566319 | McAuley et al. | Jul 2009 | B2 |
7569052 | Phan et al. | Aug 2009 | B2 |
7582111 | Krolik et al. | Sep 2009 | B2 |
7584004 | Caparso et al. | Sep 2009 | B2 |
7585835 | Hill et al. | Sep 2009 | B2 |
7591996 | Hwang et al. | Sep 2009 | B2 |
7597704 | Frazier et al. | Oct 2009 | B2 |
7598228 | Hattori et al. | Oct 2009 | B2 |
7599730 | Hunter et al. | Oct 2009 | B2 |
7603166 | Casscells, III et al. | Oct 2009 | B2 |
7604608 | Nita et al. | Oct 2009 | B2 |
7604633 | Truckai et al. | Oct 2009 | B2 |
7615015 | Coleman | Nov 2009 | B2 |
7615072 | Rust et al. | Nov 2009 | B2 |
7617005 | Demarais et al. | Nov 2009 | B2 |
7620451 | Demarais et al. | Nov 2009 | B2 |
7621902 | Nita et al. | Nov 2009 | B2 |
7621929 | Nita et al. | Nov 2009 | B2 |
7626015 | Feinstein et al. | Dec 2009 | B2 |
7626235 | Kinoshita | Dec 2009 | B2 |
7632268 | Edwards et al. | Dec 2009 | B2 |
7632845 | Vu et al. | Dec 2009 | B2 |
7635383 | Gumm | Dec 2009 | B2 |
7640046 | Pastore et al. | Dec 2009 | B2 |
7641633 | Laufer et al. | Jan 2010 | B2 |
7641679 | Joye et al. | Jan 2010 | B2 |
7646544 | Batchko et al. | Jan 2010 | B2 |
7647115 | Levin et al. | Jan 2010 | B2 |
7653438 | Deem et al. | Jan 2010 | B2 |
7655006 | Sauvageau et al. | Feb 2010 | B2 |
7662114 | Seip et al. | Feb 2010 | B2 |
7664548 | Amurthur et al. | Feb 2010 | B2 |
7670279 | Gertner | Mar 2010 | B2 |
7670335 | Keidar | Mar 2010 | B2 |
7671084 | Mewshaw et al. | Mar 2010 | B2 |
7678104 | Keidar | Mar 2010 | B2 |
7678106 | Lee | Mar 2010 | B2 |
7678108 | Chrisitian et al. | Mar 2010 | B2 |
7691080 | Seward et al. | Apr 2010 | B2 |
7699809 | Urmey | Apr 2010 | B2 |
7706882 | Francischelli et al. | Apr 2010 | B2 |
7715912 | Rezai et al. | May 2010 | B2 |
7717853 | Nita | May 2010 | B2 |
7717909 | Strul et al. | May 2010 | B2 |
7717948 | Demarais et al. | May 2010 | B2 |
7722539 | Carter et al. | May 2010 | B2 |
7725157 | Dumoulin et al. | May 2010 | B2 |
7727178 | Wilson et al. | Jun 2010 | B2 |
7736317 | Stephens et al. | Jun 2010 | B2 |
7736360 | Mody et al. | Jun 2010 | B2 |
7736362 | Eberl et al. | Jun 2010 | B2 |
7738952 | Yun et al. | Jun 2010 | B2 |
7740629 | Anderson et al. | Jun 2010 | B2 |
7741299 | Feinstein et al. | Jun 2010 | B2 |
7742795 | Stone et al. | Jun 2010 | B2 |
7744594 | Yamazaki et al. | Jun 2010 | B2 |
7753907 | DiMatteo et al. | Jul 2010 | B2 |
7756583 | Demarais et al. | Jul 2010 | B2 |
7758510 | Nita et al. | Jul 2010 | B2 |
7758520 | Griffin et al. | Jul 2010 | B2 |
7759315 | Cuzzocrea et al. | Jul 2010 | B2 |
7766833 | Lee et al. | Aug 2010 | B2 |
7766878 | Tremaglio, Jr. et al. | Aug 2010 | B2 |
7766892 | Keren et al. | Aug 2010 | B2 |
7767844 | Lee et al. | Aug 2010 | B2 |
7769427 | Shachar | Aug 2010 | B2 |
7771372 | Wilson | Aug 2010 | B2 |
7771421 | Stewart et al. | Aug 2010 | B2 |
7776967 | Perry et al. | Aug 2010 | B2 |
7777486 | Hargreaves et al. | Aug 2010 | B2 |
7780660 | Bourne et al. | Aug 2010 | B2 |
7789876 | Zikorus et al. | Sep 2010 | B2 |
7792568 | Zhong et al. | Sep 2010 | B2 |
7799021 | Leung et al. | Sep 2010 | B2 |
7803168 | Gifford et al. | Sep 2010 | B2 |
7806871 | Li et al. | Oct 2010 | B2 |
7811265 | Hering et al. | Oct 2010 | B2 |
7811281 | Rentrop | Oct 2010 | B1 |
7811313 | Mon et al. | Oct 2010 | B2 |
7816511 | Kawashima et al. | Oct 2010 | B2 |
7818053 | Kassab | Oct 2010 | B2 |
7819866 | Bednarek | Oct 2010 | B2 |
7822460 | Halperin et al. | Oct 2010 | B2 |
7828837 | Khoury | Nov 2010 | B2 |
7832407 | Gertner | Nov 2010 | B2 |
7833220 | Mon et al. | Nov 2010 | B2 |
7837676 | Sinelnikov et al. | Nov 2010 | B2 |
7837720 | Mon | Nov 2010 | B2 |
7841978 | Gertner | Nov 2010 | B2 |
7846157 | Kozel | Dec 2010 | B2 |
7846160 | Payne et al. | Dec 2010 | B2 |
7846172 | Makower | Dec 2010 | B2 |
7849860 | Makower et al. | Dec 2010 | B2 |
7850685 | Kunis et al. | Dec 2010 | B2 |
7853333 | Demarais | Dec 2010 | B2 |
7854734 | Biggs et al. | Dec 2010 | B2 |
7857756 | Warren et al. | Dec 2010 | B2 |
7862565 | Eder et al. | Jan 2011 | B2 |
7863897 | Slocum, Jr. et al. | Jan 2011 | B2 |
7869854 | Shachar et al. | Jan 2011 | B2 |
7873417 | Demarais et al. | Jan 2011 | B2 |
7887538 | Bleich et al. | Feb 2011 | B2 |
7894905 | Pless et al. | Feb 2011 | B2 |
7896873 | Hiller et al. | Mar 2011 | B2 |
7901400 | Wham et al. | Mar 2011 | B2 |
7901402 | Jones et al. | Mar 2011 | B2 |
7901420 | Dunn | Mar 2011 | B2 |
7905862 | Sampson | Mar 2011 | B2 |
7918850 | Govari et al. | Apr 2011 | B2 |
7927370 | Webler et al. | Apr 2011 | B2 |
7937143 | Demarais et al. | May 2011 | B2 |
7938830 | Saadat et al. | May 2011 | B2 |
7942874 | Eder et al. | May 2011 | B2 |
7942928 | Webler et al. | May 2011 | B2 |
7946976 | Gertner | May 2011 | B2 |
7950397 | Thapliyal et al. | May 2011 | B2 |
7955293 | Nita et al. | Jun 2011 | B2 |
7956613 | Wald | Jun 2011 | B2 |
7959627 | Utley et al. | Jun 2011 | B2 |
7962854 | Vance et al. | Jun 2011 | B2 |
7967782 | Laufer et al. | Jun 2011 | B2 |
7967808 | Fitzgerald et al. | Jun 2011 | B2 |
7972327 | Eberl et al. | Jul 2011 | B2 |
7972330 | Alejandro et al. | Jul 2011 | B2 |
7983751 | Zdeblick et al. | Jul 2011 | B2 |
8001976 | Gertner | Aug 2011 | B2 |
8007440 | Magnin et al. | Aug 2011 | B2 |
8012147 | Lafontaine | Sep 2011 | B2 |
8019435 | Hastings et al. | Sep 2011 | B2 |
8021362 | Deem et al. | Sep 2011 | B2 |
8021413 | Dierking et al. | Sep 2011 | B2 |
8025661 | Arnold et al. | Sep 2011 | B2 |
8027718 | Spinner et al. | Sep 2011 | B2 |
8031927 | Karl et al. | Oct 2011 | B2 |
8033284 | Porter et al. | Oct 2011 | B2 |
8048144 | Thistle et al. | Nov 2011 | B2 |
8052636 | Moll et al. | Nov 2011 | B2 |
8052700 | Dunn | Nov 2011 | B2 |
8062289 | Babaev | Nov 2011 | B2 |
8075580 | Makower | Dec 2011 | B2 |
8080006 | Lafontaine et al. | Dec 2011 | B2 |
8088127 | Mayse et al. | Jan 2012 | B2 |
8116883 | Williams et al. | Feb 2012 | B2 |
8119183 | O'Donoghue et al. | Feb 2012 | B2 |
8120518 | Jang et al. | Feb 2012 | B2 |
8123741 | Marrouche et al. | Feb 2012 | B2 |
8128617 | Bencini et al. | Mar 2012 | B2 |
8131371 | Demarals et al. | Mar 2012 | B2 |
8131372 | Levin et al. | Mar 2012 | B2 |
8131382 | Asada | Mar 2012 | B2 |
8137274 | Weng et al. | Mar 2012 | B2 |
8140170 | Rezai et al. | Mar 2012 | B2 |
8143316 | Ueno | Mar 2012 | B2 |
8145316 | Deem et al. | Mar 2012 | B2 |
8145317 | Demarais et al. | Mar 2012 | B2 |
8150518 | Levin et al. | Apr 2012 | B2 |
8150519 | Demarais et al. | Apr 2012 | B2 |
8150520 | Demarais et al. | Apr 2012 | B2 |
8152830 | Gumm | Apr 2012 | B2 |
8162933 | Francischelli et al. | Apr 2012 | B2 |
8175711 | Demarais et al. | May 2012 | B2 |
8187261 | Watson | May 2012 | B2 |
8190238 | Moll et al. | May 2012 | B2 |
8192053 | Owen et al. | Jun 2012 | B2 |
8198611 | LaFontaine et al. | Jun 2012 | B2 |
8214056 | Hoffer et al. | Jul 2012 | B2 |
8221407 | Phan et al. | Jul 2012 | B2 |
8226637 | Satake | Jul 2012 | B2 |
8231617 | Satake | Jul 2012 | B2 |
8241217 | Chiang et al. | Aug 2012 | B2 |
8257724 | Cromack et al. | Sep 2012 | B2 |
8257725 | Cromack et al. | Sep 2012 | B2 |
8260397 | Ruff et al. | Sep 2012 | B2 |
8263104 | Ho et al. | Sep 2012 | B2 |
8273023 | Razavi | Sep 2012 | B2 |
8277379 | Lau et al. | Oct 2012 | B2 |
8287524 | Siegel | Oct 2012 | B2 |
8287532 | Carroll et al. | Oct 2012 | B2 |
8292881 | Brannan et al. | Oct 2012 | B2 |
8293703 | Averback et al. | Oct 2012 | B2 |
8295902 | Salahieh et al. | Oct 2012 | B2 |
8295912 | Gertner | Oct 2012 | B2 |
8308722 | Ormsby et al. | Nov 2012 | B2 |
8317776 | Ferren et al. | Nov 2012 | B2 |
8317810 | Stangenes et al. | Nov 2012 | B2 |
8329179 | Ni et al. | Dec 2012 | B2 |
8336705 | Okahisa | Dec 2012 | B2 |
8343031 | Gertner | Jan 2013 | B2 |
8343145 | Brannan | Jan 2013 | B2 |
8347891 | Demarais et al. | Jan 2013 | B2 |
8353945 | Andreas et al. | Jan 2013 | B2 |
8364237 | Stone et al. | Jan 2013 | B2 |
8366615 | Razavi | Feb 2013 | B2 |
8382697 | Brenneman et al. | Feb 2013 | B2 |
8388680 | Starksen et al. | Mar 2013 | B2 |
8396548 | Perry et al. | Mar 2013 | B2 |
8398629 | Thistle | Mar 2013 | B2 |
8401667 | Gustus et al. | Mar 2013 | B2 |
8403881 | Ferren et al. | Mar 2013 | B2 |
8406877 | Smith et al. | Mar 2013 | B2 |
8409172 | Moll et al. | Apr 2013 | B2 |
8409193 | Young et al. | Apr 2013 | B2 |
8409195 | Young | Apr 2013 | B2 |
8418362 | Zerfas et al. | Apr 2013 | B2 |
8452988 | Wang | May 2013 | B2 |
8454594 | Demarais et al. | Jun 2013 | B2 |
8460358 | Andreas et al. | Jun 2013 | B2 |
8465452 | Kassab | Jun 2013 | B2 |
8469919 | Ingle et al. | Jun 2013 | B2 |
8473067 | Hastings et al. | Jun 2013 | B2 |
8480663 | Ingle et al. | Jul 2013 | B2 |
8485992 | Griffin et al. | Jul 2013 | B2 |
8486060 | Kotmel et al. | Jul 2013 | B2 |
8486063 | Werneth et al. | Jul 2013 | B2 |
8488591 | Miali et al. | Jul 2013 | B2 |
20010007070 | Stewart et al. | Jul 2001 | A1 |
20010039419 | Francischelli et al. | Nov 2001 | A1 |
20020022864 | Mahvi et al. | Feb 2002 | A1 |
20020042639 | Murphy-Chutorian et al. | Apr 2002 | A1 |
20020045811 | Kittrell et al. | Apr 2002 | A1 |
20020045890 | Celliers et al. | Apr 2002 | A1 |
20020062146 | Makower et al. | May 2002 | A1 |
20020065542 | Lax et al. | May 2002 | A1 |
20020087151 | Mody et al. | Jul 2002 | A1 |
20020095197 | Lardo et al. | Jul 2002 | A1 |
20020107536 | Hussein | Aug 2002 | A1 |
20020147480 | Mamayek | Oct 2002 | A1 |
20020169444 | Mest et al. | Nov 2002 | A1 |
20020198520 | Coen et al. | Dec 2002 | A1 |
20030065317 | Rudie et al. | Apr 2003 | A1 |
20030092995 | Thompson | May 2003 | A1 |
20030139689 | Shturman et al. | Jul 2003 | A1 |
20030195501 | Sherman et al. | Oct 2003 | A1 |
20030199747 | Michlitsch et al. | Oct 2003 | A1 |
20040010118 | Zerhusen et al. | Jan 2004 | A1 |
20040019348 | Stevens et al. | Jan 2004 | A1 |
20040024371 | Plicchi et al. | Feb 2004 | A1 |
20040043030 | Griffiths et al. | Mar 2004 | A1 |
20040064090 | Keren et al. | Apr 2004 | A1 |
20040073206 | Foley et al. | Apr 2004 | A1 |
20040088002 | Boyle et al. | May 2004 | A1 |
20040093055 | Bartorelli et al. | May 2004 | A1 |
20040106871 | Hunyor et al. | Jun 2004 | A1 |
20040117032 | Roth | Jun 2004 | A1 |
20040147915 | Hasebe | Jul 2004 | A1 |
20040162555 | Farley et al. | Aug 2004 | A1 |
20040167506 | Chen | Aug 2004 | A1 |
20040186356 | O'Malley et al. | Sep 2004 | A1 |
20040187875 | He et al. | Sep 2004 | A1 |
20040193211 | Voegele et al. | Sep 2004 | A1 |
20040220556 | Cooper et al. | Nov 2004 | A1 |
20040243022 | Carney et al. | Dec 2004 | A1 |
20040253304 | Gross et al. | Dec 2004 | A1 |
20040267250 | Yon et al. | Dec 2004 | A1 |
20050010095 | Stewart et al. | Jan 2005 | A1 |
20050015125 | Mioduski et al. | Jan 2005 | A1 |
20050080374 | Esch et al. | Apr 2005 | A1 |
20050129616 | Salcedo et al. | Jun 2005 | A1 |
20050137180 | Robinson et al. | Jun 2005 | A1 |
20050143817 | Hunter et al. | Jun 2005 | A1 |
20050148842 | Wang et al. | Jul 2005 | A1 |
20050149069 | Bertolero et al. | Jul 2005 | A1 |
20050149080 | Hunter et al. | Jul 2005 | A1 |
20050149158 | Hunter et al. | Jul 2005 | A1 |
20050149173 | Hunter et al. | Jul 2005 | A1 |
20050149175 | Hunter et al. | Jul 2005 | A1 |
20050154277 | Tang et al. | Jul 2005 | A1 |
20050154445 | Hunter et al. | Jul 2005 | A1 |
20050154453 | Hunter et al. | Jul 2005 | A1 |
20050154454 | Hunter et al. | Jul 2005 | A1 |
20050165389 | Swain et al. | Jul 2005 | A1 |
20050165391 | Maguire et al. | Jul 2005 | A1 |
20050165467 | Hunter et al. | Jul 2005 | A1 |
20050165488 | Hunter et al. | Jul 2005 | A1 |
20050175661 | Hunter et al. | Aug 2005 | A1 |
20050175662 | Hunter et al. | Aug 2005 | A1 |
20050175663 | Hunter et al. | Aug 2005 | A1 |
20050177103 | Hunter et al. | Aug 2005 | A1 |
20050177225 | Hunter et al. | Aug 2005 | A1 |
20050181004 | Hunter et al. | Aug 2005 | A1 |
20050181008 | Hunter et al. | Aug 2005 | A1 |
20050181011 | Hunter et al. | Aug 2005 | A1 |
20050181977 | Hunter et al. | Aug 2005 | A1 |
20050182479 | Bonsignore et al. | Aug 2005 | A1 |
20050183728 | Hunter et al. | Aug 2005 | A1 |
20050186242 | Hunter et al. | Aug 2005 | A1 |
20050186243 | Hunter et al. | Aug 2005 | A1 |
20050191331 | Hunter et al. | Sep 2005 | A1 |
20050203410 | Jenkins | Sep 2005 | A1 |
20050209587 | Joye et al. | Sep 2005 | A1 |
20050214205 | Salcedo et al. | Sep 2005 | A1 |
20050214207 | Salcedo et al. | Sep 2005 | A1 |
20050214208 | Salcedo et al. | Sep 2005 | A1 |
20050214209 | Salcedo et al. | Sep 2005 | A1 |
20050214210 | Salcedo et al. | Sep 2005 | A1 |
20050214268 | Cavanagh et al. | Sep 2005 | A1 |
20050228286 | Messerly et al. | Oct 2005 | A1 |
20050228415 | Gertner | Oct 2005 | A1 |
20050228460 | Levin et al. | Oct 2005 | A1 |
20050232921 | Rosen et al. | Oct 2005 | A1 |
20050234312 | Suzuki et al. | Oct 2005 | A1 |
20050245862 | Seward | Nov 2005 | A1 |
20050251116 | Steinke et al. | Nov 2005 | A1 |
20050252553 | Ginggen | Nov 2005 | A1 |
20050256398 | Hastings et al. | Nov 2005 | A1 |
20050267556 | Shuros et al. | Dec 2005 | A1 |
20060004323 | Chang et al. | Jan 2006 | A1 |
20060018949 | Ammon et al. | Jan 2006 | A1 |
20060024564 | Manclaw | Feb 2006 | A1 |
20060025765 | Landman et al. | Feb 2006 | A1 |
20060062786 | Salcedo et al. | Mar 2006 | A1 |
20060083194 | Dhrimaj et al. | Apr 2006 | A1 |
20060089637 | Werneth et al. | Apr 2006 | A1 |
20060089638 | Carmel et al. | Apr 2006 | A1 |
20060095096 | DeBenedictis et al. | May 2006 | A1 |
20060106375 | Werneth et al. | May 2006 | A1 |
20060142790 | Gertner | Jun 2006 | A1 |
20060147492 | Hunter et al. | Jul 2006 | A1 |
20060167106 | Zhang et al. | Jul 2006 | A1 |
20060167498 | DiLorenzo | Jul 2006 | A1 |
20060171895 | Bucay-Couto | Aug 2006 | A1 |
20060184221 | Stewart et al. | Aug 2006 | A1 |
20060195139 | Gertner | Aug 2006 | A1 |
20060206150 | Demarais et al. | Sep 2006 | A1 |
20060224153 | Fischell et al. | Oct 2006 | A1 |
20060239921 | Mangat et al. | Oct 2006 | A1 |
20060240070 | Cromack et al. | Oct 2006 | A1 |
20060247266 | Yamada et al. | Nov 2006 | A1 |
20060247760 | Ganesan et al. | Nov 2006 | A1 |
20060263393 | Demopulos et al. | Nov 2006 | A1 |
20060269555 | Salcedo et al. | Nov 2006 | A1 |
20060271111 | Demarais et al. | Nov 2006 | A1 |
20060287644 | Inganas et al. | Dec 2006 | A1 |
20070016184 | Cropper et al. | Jan 2007 | A1 |
20070016274 | Boveja et al. | Jan 2007 | A1 |
20070027390 | Maschke et al. | Feb 2007 | A1 |
20070043077 | Mewshaw et al. | Feb 2007 | A1 |
20070043409 | Brian et al. | Feb 2007 | A1 |
20070049924 | Rahn | Mar 2007 | A1 |
20070066972 | Ormsby et al. | Mar 2007 | A1 |
20070073151 | Lee | Mar 2007 | A1 |
20070093710 | Maschke | Apr 2007 | A1 |
20070100405 | Thompson et al. | May 2007 | A1 |
20070106247 | Burnett et al. | May 2007 | A1 |
20070112327 | Yun et al. | May 2007 | A1 |
20070118107 | Francischelli et al. | May 2007 | A1 |
20070129760 | Demarais et al. | Jun 2007 | A1 |
20070129761 | Demarais et al. | Jun 2007 | A1 |
20070135875 | Demarais et al. | Jun 2007 | A1 |
20070149963 | Matsukuma et al. | Jun 2007 | A1 |
20070162109 | Davila et al. | Jul 2007 | A1 |
20070173805 | Weinberg et al. | Jul 2007 | A1 |
20070179496 | Swoyer et al. | Aug 2007 | A1 |
20070203480 | Mody et al. | Aug 2007 | A1 |
20070207186 | Scanlon et al. | Sep 2007 | A1 |
20070208134 | Hunter et al. | Sep 2007 | A1 |
20070208210 | Gelfand et al. | Sep 2007 | A1 |
20070208256 | Marilla | Sep 2007 | A1 |
20070208301 | Evard et al. | Sep 2007 | A1 |
20070213792 | Yaroslaysky et al. | Sep 2007 | A1 |
20070219576 | Cangialosi | Sep 2007 | A1 |
20070225781 | Saadat et al. | Sep 2007 | A1 |
20070233170 | Gertner | Oct 2007 | A1 |
20070239062 | Chopra et al. | Oct 2007 | A1 |
20070248639 | Demopulos et al. | Oct 2007 | A1 |
20070249703 | Mewshaw et al. | Oct 2007 | A1 |
20070254833 | Hunter et al. | Nov 2007 | A1 |
20070265687 | Deem et al. | Nov 2007 | A1 |
20070278103 | Hoerr et al. | Dec 2007 | A1 |
20070282302 | Wachsman et al. | Dec 2007 | A1 |
20070292411 | Salcedo et al. | Dec 2007 | A1 |
20070293782 | Marino | Dec 2007 | A1 |
20070299043 | Hunter et al. | Dec 2007 | A1 |
20080004673 | Rossing et al. | Jan 2008 | A1 |
20080009927 | Vilims | Jan 2008 | A1 |
20080015501 | Gertner | Jan 2008 | A1 |
20080021408 | Jacobsen et al. | Jan 2008 | A1 |
20080033049 | Mewshaw | Feb 2008 | A1 |
20080039746 | Hissong et al. | Feb 2008 | A1 |
20080039830 | Munger et al. | Feb 2008 | A1 |
20080051454 | Wang | Feb 2008 | A1 |
20080064957 | Spence | Mar 2008 | A1 |
20080071269 | Hilario et al. | Mar 2008 | A1 |
20080071306 | Gertner | Mar 2008 | A1 |
20080082109 | Moll et al. | Apr 2008 | A1 |
20080086072 | Bonutti et al. | Apr 2008 | A1 |
20080091193 | Kauphusman et al. | Apr 2008 | A1 |
20080097251 | Babaev | Apr 2008 | A1 |
20080097426 | Root et al. | Apr 2008 | A1 |
20080108867 | Zhou | May 2008 | A1 |
20080119879 | Brenneman et al. | May 2008 | A1 |
20080125772 | Stone et al. | May 2008 | A1 |
20080132450 | Lee et al. | Jun 2008 | A1 |
20080140002 | Ramzipoor et al. | Jun 2008 | A1 |
20080147002 | Gertner | Jun 2008 | A1 |
20080161662 | Golijanin et al. | Jul 2008 | A1 |
20080161717 | Gertner | Jul 2008 | A1 |
20080161801 | Steinke et al. | Jul 2008 | A1 |
20080171974 | Lafontaine et al. | Jul 2008 | A1 |
20080172035 | Starksen et al. | Jul 2008 | A1 |
20080172104 | Kieval et al. | Jul 2008 | A1 |
20080188912 | Stone et al. | Aug 2008 | A1 |
20080188913 | Stone et al. | Aug 2008 | A1 |
20080208162 | Joshi | Aug 2008 | A1 |
20080208169 | Boyle et al. | Aug 2008 | A1 |
20080213331 | Gelfand et al. | Sep 2008 | A1 |
20080215117 | Gross | Sep 2008 | A1 |
20080221448 | Khuri-Yakub et al. | Sep 2008 | A1 |
20080234790 | Bayer et al. | Sep 2008 | A1 |
20080243091 | Humphreys et al. | Oct 2008 | A1 |
20080245371 | Gruber | Oct 2008 | A1 |
20080249525 | Lee et al. | Oct 2008 | A1 |
20080249547 | Dunn | Oct 2008 | A1 |
20080255550 | Bell | Oct 2008 | A1 |
20080255642 | Zarins et al. | Oct 2008 | A1 |
20080262489 | Steinke | Oct 2008 | A1 |
20080275484 | Gertner | Nov 2008 | A1 |
20080281312 | Werneth et al. | Nov 2008 | A1 |
20080281347 | Gertner | Nov 2008 | A1 |
20080287918 | Rosenman et al. | Nov 2008 | A1 |
20080294037 | Richter | Nov 2008 | A1 |
20080300618 | Gertner | Dec 2008 | A1 |
20080312644 | Fourkas et al. | Dec 2008 | A1 |
20080312673 | Viswanathan et al. | Dec 2008 | A1 |
20080317818 | Griffith et al. | Dec 2008 | A1 |
20090018486 | Goren et al. | Jan 2009 | A1 |
20090018609 | DiLorenzo | Jan 2009 | A1 |
20090024194 | Arcot-Krishnamurthy et al. | Jan 2009 | A1 |
20090030312 | Hadjicostis | Jan 2009 | A1 |
20090036948 | Levin et al. | Feb 2009 | A1 |
20090043372 | Northrop et al. | Feb 2009 | A1 |
20090054082 | Kim et al. | Feb 2009 | A1 |
20090062873 | Wu et al. | Mar 2009 | A1 |
20090069671 | Anderson | Mar 2009 | A1 |
20090076409 | Wu et al. | Mar 2009 | A1 |
20090088735 | Abboud et al. | Apr 2009 | A1 |
20090105631 | Kieval | Apr 2009 | A1 |
20090112202 | Young | Apr 2009 | A1 |
20090118620 | Tgavalekos et al. | May 2009 | A1 |
20090118726 | Auth et al. | May 2009 | A1 |
20090125099 | Weber et al. | May 2009 | A1 |
20090131798 | Minar et al. | May 2009 | A1 |
20090143640 | Saadat et al. | Jun 2009 | A1 |
20090156988 | Ferren et al. | Jun 2009 | A1 |
20090157057 | Ferren et al. | Jun 2009 | A1 |
20090157161 | Desai et al. | Jun 2009 | A1 |
20090171333 | Hon | Jul 2009 | A1 |
20090192558 | Whitehurst et al. | Jul 2009 | A1 |
20090198223 | Thilwind et al. | Aug 2009 | A1 |
20090203962 | Miller et al. | Aug 2009 | A1 |
20090203993 | Mangat et al. | Aug 2009 | A1 |
20090204170 | Hastings et al. | Aug 2009 | A1 |
20090210953 | Moyer et al. | Aug 2009 | A1 |
20090216317 | Cromack et al. | Aug 2009 | A1 |
20090221955 | Babaev | Sep 2009 | A1 |
20090226429 | Salcedo et al. | Sep 2009 | A1 |
20090240249 | Chan et al. | Sep 2009 | A1 |
20090247933 | Maor et al. | Oct 2009 | A1 |
20090247966 | Gunn et al. | Oct 2009 | A1 |
20090248012 | Maor et al. | Oct 2009 | A1 |
20090253974 | Rahme | Oct 2009 | A1 |
20090254005 | Babaev | Oct 2009 | A1 |
20090264755 | Chen et al. | Oct 2009 | A1 |
20090270850 | Zhou et al. | Oct 2009 | A1 |
20090281533 | Ingle et al. | Nov 2009 | A1 |
20090287137 | Crowley | Nov 2009 | A1 |
20090318749 | Stolen et al. | Dec 2009 | A1 |
20100009267 | Chase et al. | Jan 2010 | A1 |
20100030061 | Canfield et al. | Feb 2010 | A1 |
20100048983 | Ball et al. | Feb 2010 | A1 |
20100049099 | Thapliyal et al. | Feb 2010 | A1 |
20100049186 | Ingle et al. | Feb 2010 | A1 |
20100049188 | Nelson et al. | Feb 2010 | A1 |
20100049191 | Habib et al. | Feb 2010 | A1 |
20100049283 | Johnson | Feb 2010 | A1 |
20100069837 | Rassat et al. | Mar 2010 | A1 |
20100076299 | Gustus et al. | Mar 2010 | A1 |
20100076425 | Carroux | Mar 2010 | A1 |
20100087782 | Ghaffari et al. | Apr 2010 | A1 |
20100106005 | Karczmar et al. | Apr 2010 | A1 |
20100114244 | Manda et al. | May 2010 | A1 |
20100130836 | Malchano et al. | May 2010 | A1 |
20100137860 | Demarais et al. | Jun 2010 | A1 |
20100137952 | Demarais et al. | Jun 2010 | A1 |
20100160903 | Krespi | Jun 2010 | A1 |
20100160906 | Jarrard | Jun 2010 | A1 |
20100168624 | Sliwa | Jul 2010 | A1 |
20100168731 | Wu et al. | Jul 2010 | A1 |
20100168739 | Wu et al. | Jul 2010 | A1 |
20100174282 | Demarais et al. | Jul 2010 | A1 |
20100191112 | Demarais et al. | Jul 2010 | A1 |
20100191232 | Boveda | Jul 2010 | A1 |
20100217162 | Hissong et al. | Aug 2010 | A1 |
20100222786 | Kassab | Sep 2010 | A1 |
20100222851 | Deem et al. | Sep 2010 | A1 |
20100222854 | Demarais et al. | Sep 2010 | A1 |
20100228122 | Keenan et al. | Sep 2010 | A1 |
20100249604 | Hastings et al. | Sep 2010 | A1 |
20100249773 | Clark et al. | Sep 2010 | A1 |
20100256616 | Katoh et al. | Oct 2010 | A1 |
20100268217 | Habib | Oct 2010 | A1 |
20100268307 | Demarais et al. | Oct 2010 | A1 |
20100284927 | Lu et al. | Nov 2010 | A1 |
20100286684 | Hata et al. | Nov 2010 | A1 |
20100298821 | Garbagnati | Nov 2010 | A1 |
20100305036 | Barnes et al. | Dec 2010 | A1 |
20100312141 | Keast et al. | Dec 2010 | A1 |
20100324472 | Wulfman | Dec 2010 | A1 |
20110009750 | Taylor et al. | Jan 2011 | A1 |
20110021976 | Li et al. | Jan 2011 | A1 |
20110034832 | Cioanta et al. | Feb 2011 | A1 |
20110040324 | McCarthy et al. | Feb 2011 | A1 |
20110044942 | Puri et al. | Feb 2011 | A1 |
20110060324 | Wu et al. | Mar 2011 | A1 |
20110071400 | Hastings et al. | Mar 2011 | A1 |
20110071401 | Hastings et al. | Mar 2011 | A1 |
20110077498 | McDaniel | Mar 2011 | A1 |
20110092781 | Gertner | Apr 2011 | A1 |
20110092880 | Gertner | Apr 2011 | A1 |
20110104061 | Seward | May 2011 | A1 |
20110112400 | Emery et al. | May 2011 | A1 |
20110118600 | Gertner | May 2011 | A1 |
20110118726 | De La Rama et al. | May 2011 | A1 |
20110130708 | Perry et al. | Jun 2011 | A1 |
20110137155 | Weber et al. | Jun 2011 | A1 |
20110144479 | Hastings et al. | Jun 2011 | A1 |
20110146673 | Keast et al. | Jun 2011 | A1 |
20110166499 | Demarais et al. | Jul 2011 | A1 |
20110178570 | Demarais | Jul 2011 | A1 |
20110200171 | Beetel et al. | Aug 2011 | A1 |
20110202098 | Demarais et al. | Aug 2011 | A1 |
20110207758 | Sobotka et al. | Aug 2011 | A1 |
20110208096 | Demarais et al. | Aug 2011 | A1 |
20110257523 | Hastings et al. | Oct 2011 | A1 |
20110257564 | Demarais et al. | Oct 2011 | A1 |
20110257622 | Salahieh et al. | Oct 2011 | A1 |
20110257641 | Hastings et al. | Oct 2011 | A1 |
20110257642 | Griggs, III | Oct 2011 | A1 |
20110263921 | Vrba et al. | Oct 2011 | A1 |
20110264011 | Wu et al. | Oct 2011 | A1 |
20110264075 | Leung et al. | Oct 2011 | A1 |
20110264086 | Ingle | Oct 2011 | A1 |
20110264116 | Kocur et al. | Oct 2011 | A1 |
20110270238 | Rizq et al. | Nov 2011 | A1 |
20110306851 | Wang | Dec 2011 | A1 |
20110319809 | Smith | Dec 2011 | A1 |
20120029496 | Smith | Feb 2012 | A1 |
20120029500 | Jenson | Feb 2012 | A1 |
20120029505 | Jenson | Feb 2012 | A1 |
20120029509 | Smith | Feb 2012 | A1 |
20120029510 | Haverkost | Feb 2012 | A1 |
20120029511 | Smith et al. | Feb 2012 | A1 |
20120029512 | Willard et al. | Feb 2012 | A1 |
20120029513 | Smith et al. | Feb 2012 | A1 |
20120059241 | Hastings et al. | Mar 2012 | A1 |
20120059286 | Hastings et al. | Mar 2012 | A1 |
20120065506 | Smith | Mar 2012 | A1 |
20120065554 | Pikus | Mar 2012 | A1 |
20120095461 | Herscher et al. | Apr 2012 | A1 |
20120101413 | Beetel et al. | Apr 2012 | A1 |
20120101490 | Smith | Apr 2012 | A1 |
20120101538 | Ballakur et al. | Apr 2012 | A1 |
20120109021 | Hastings et al. | May 2012 | A1 |
20120116382 | Ku et al. | May 2012 | A1 |
20120116383 | Mauch et al. | May 2012 | A1 |
20120116392 | Willard | May 2012 | A1 |
20120116438 | Salahieh et al. | May 2012 | A1 |
20120116486 | Naga et al. | May 2012 | A1 |
20120123243 | Hastings | May 2012 | A1 |
20120123258 | Willard | May 2012 | A1 |
20120123261 | Jenson et al. | May 2012 | A1 |
20120123303 | Sogard et al. | May 2012 | A1 |
20120123406 | Edmunds et al. | May 2012 | A1 |
20120130289 | Demarais et al. | May 2012 | A1 |
20120130345 | Levin et al. | May 2012 | A1 |
20120130359 | Turovskiy | May 2012 | A1 |
20120130360 | Buckley et al. | May 2012 | A1 |
20120130362 | Hastings et al. | May 2012 | A1 |
20120130368 | Jenson | May 2012 | A1 |
20120130458 | Ryba et al. | May 2012 | A1 |
20120136344 | Buckley et al. | May 2012 | A1 |
20120136349 | Hastings | May 2012 | A1 |
20120136350 | Goshgarian et al. | May 2012 | A1 |
20120136417 | Buckley et al. | May 2012 | A1 |
20120136418 | Buckley et al. | May 2012 | A1 |
20120143181 | Demarais et al. | Jun 2012 | A1 |
20120143293 | Mauch et al. | Jun 2012 | A1 |
20120143294 | Clark et al. | Jun 2012 | A1 |
20120150267 | Buckley et al. | Jun 2012 | A1 |
20120157986 | Stone et al. | Jun 2012 | A1 |
20120157987 | Steinke et al. | Jun 2012 | A1 |
20120157988 | Stone et al. | Jun 2012 | A1 |
20120157989 | Stone et al. | Jun 2012 | A1 |
20120157992 | Smith et al. | Jun 2012 | A1 |
20120157993 | Jenson et al. | Jun 2012 | A1 |
20120158101 | Stone et al. | Jun 2012 | A1 |
20120158104 | Huynh et al. | Jun 2012 | A1 |
20120172837 | Demarais et al. | Jul 2012 | A1 |
20120172870 | Jenson et al. | Jul 2012 | A1 |
20120184952 | Jenson et al. | Jul 2012 | A1 |
20120197198 | Demarais et al. | Aug 2012 | A1 |
20120197252 | Deem et al. | Aug 2012 | A1 |
20120232409 | Stahmann | Sep 2012 | A1 |
20120265066 | Crow et al. | Oct 2012 | A1 |
20120265198 | Crow et al. | Oct 2012 | A1 |
20130012844 | Demarais et al. | Jan 2013 | A1 |
20130012866 | Deem et al. | Jan 2013 | A1 |
20130012867 | Demarais et al. | Jan 2013 | A1 |
20130013024 | Levin et al. | Jan 2013 | A1 |
20130023865 | Steinke et al. | Jan 2013 | A1 |
20130035681 | Subramanaim et al. | Feb 2013 | A1 |
20130066316 | Steinke et al. | Mar 2013 | A1 |
20130085489 | Fain et al. | Apr 2013 | A1 |
20130090563 | Weber | Apr 2013 | A1 |
20130090578 | Smith et al. | Apr 2013 | A1 |
20130090647 | Smith | Apr 2013 | A1 |
20130090649 | Smith et al. | Apr 2013 | A1 |
20130090650 | Jenson et al. | Apr 2013 | A1 |
20130090651 | Smith | Apr 2013 | A1 |
20130090652 | Jenson | Apr 2013 | A1 |
20130096550 | Hill | Apr 2013 | A1 |
20130096553 | Hill et al. | Apr 2013 | A1 |
20130096554 | Groff et al. | Apr 2013 | A1 |
20130096604 | Hanson et al. | Apr 2013 | A1 |
20130110106 | Richardson | May 2013 | A1 |
20130116687 | Willard | May 2013 | A1 |
20130165764 | Scheuermann et al. | Jun 2013 | A1 |
20130165844 | Shuros et al. | Jun 2013 | A1 |
20130165916 | Mathur et al. | Jun 2013 | A1 |
20130165917 | Mathur et al. | Jun 2013 | A1 |
20130165920 | Weber et al. | Jun 2013 | A1 |
20130165923 | Mathur et al. | Jun 2013 | A1 |
20130165924 | Mathur et al. | Jun 2013 | A1 |
20130165925 | Mathur et al. | Jun 2013 | A1 |
20130165926 | Mathur et al. | Jun 2013 | A1 |
20130165990 | Mathur et al. | Jun 2013 | A1 |
20130172815 | Perry et al. | Jul 2013 | A1 |
20130172872 | Subramaniam et al. | Jul 2013 | A1 |
20130172877 | Subramaniam et al. | Jul 2013 | A1 |
20130172878 | Smith | Jul 2013 | A1 |
20130172879 | Sutermeister | Jul 2013 | A1 |
20130172880 | Willard | Jul 2013 | A1 |
20130172881 | Hill et al. | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
10038737 | Feb 2002 | DE |
1053720 | Nov 2000 | EP |
1180004 | Feb 2002 | EP |
1335677 | Aug 2003 | EP |
1874211 | Jan 2008 | EP |
1906853 | Apr 2008 | EP |
1961394 | Aug 2008 | EP |
1620156 | Jul 2009 | EP |
2076193 | Jul 2009 | EP |
2091455 | Aug 2009 | EP |
2197533 | Jun 2010 | EP |
2208506 | Jul 2010 | EP |
1579889 | Aug 2010 | EP |
2092957 | Jan 2011 | EP |
2349044 | Aug 2011 | EP |
2027882 | Oct 2011 | EP |
2378956 | Oct 2011 | EP |
2037840 | Dec 2011 | EP |
2204134 | Apr 2012 | EP |
2320821 | Oct 2012 | EP |
2456301 | Jul 2009 | GB |
9858588 | Dec 1998 | WO |
9900060 | Jan 1999 | WO |
0047118 | Aug 2000 | WO |
03026525 | Apr 2003 | WO |
2004100813 | Nov 2004 | WO |
2004110258 | Dec 2004 | WO |
2006105121 | Oct 2006 | WO |
2008014465 | Jan 2008 | WO |
2009121017 | Oct 2009 | WO |
2010067360 | Jun 2010 | WO |
2010102310 | Sep 2010 | WO |
2011005901 | Jan 2011 | WO |
2011046879 | Apr 2011 | WO |
2011053757 | May 2011 | WO |
2011053772 | May 2011 | WO |
2011091069 | Jul 2011 | WO |
2011130534 | Oct 2011 | WO |
2012019156 | Feb 2012 | WO |
2012120495 | Sep 2012 | WO |
2013049601 | Apr 2013 | WO |
Entry |
---|
US 8,398,630 B2, 03/2013, Demarais et al. (withdrawn) |
CardioVascular Technologies Inc., “Heated Balloon Device Technology,” 11 pages, 2008. |
Strategic Business Development, Inc., “Thermal and Disruptive Angioplasty: A Physician's Guide,” 8 pages, 1990. |
Zhang et al., “Non-contact Radio-Frequency Ablation for Obtaining Deeper Lesions,” IEEE Transaction on Biomedical Engineering, vol. 50, No. 2, 6 pages, Feb. 2003. |
Lazebnik et al., “Tissue Strain Analytics Virtual Touch Tissue Imaging and Qualification,” Siemens Whitepaper, Oct. 2008, 7 pages. |
Han et al., “Third-Generation Cryosurgery for Primary and Recurrent Prostate Caner,” BJU International, vol. 93, pp. 14-18, 2004. |
Zhou et al., “Mechanism Research of Cryoanalgesia,” Forefront Publishing Group, 1995. |
Florete, “Cryoblative Procedure for Back Pain,” Jacksonville Medicine, Oct. 1998, 10 pages. |
Stevenson, “Irrigated RF Ablation: Power Titration and Fluid Management for Optimal Safety Efficacy,” 2005, 4 pages. |
Giliatt et al., “The Cause of Nerve Damage in Acute Compression,” Trans Am Neurol Assoc, 1974: 99; 71-4. |
Omura et al., “A Mild Acute Compression Induces Neurapraxia in Rat Sciatic Nerve,” The International Journal of Neuroscience, vol. 114 (12), pp. 1561-1572, Dec. 2004. |
Baun, “Interaction with Soft Tissue,” Principles of General & Vascular Sonography, Chapter 2, pp. 23-24, Before Mar. 2012. |
Blue Cross Blue Shield Medicaly Policy, “Surgery Section—MRI-Guided Focused Ultrasound (MRgFUS) for the Treatment of Uterine Fibroids and Other Tumors,” 2005, 5 pages. |
Gentry et al., “Combines 3D Intracardiac Echo and Ultrasound Ablation,” Medical Imaging 2003: Ultrasonic and Signal Processing, vol. 5035, 2003, pp. 166-173. |
Lafon et al., “Optmizing the Shape of Ultrasound Transducers for Interstitial Thermal Ablations,” MEd Phys. Mar. 2002; 29(3): 290-7 (abstract only). |
G. Ter Haar, “Ultrasound Focal Beam Surgery,” Ultrasound in Med. & Biol., 1995, vol. 21, No. 9, pp. 1089-1100. |
Seip et al., “Transurethral High Intensity Focused Ultrasound: Catheter Based Prototypes and Experimental Results,” IEEE Ultrasonics Symposium Proceeding, 2000, 4 pages. |
Toytman et al., “Tissue Dissection with Ultrafast Laser Using Extended and Multiple Foci,” SPIE Proceeding, Optical Interactions with Tissues and Cells XXI, vol. 7562, 2010, 10 pages. |
Zhoue et al., “Non-Thermal Ablation of Rabbit Liver VX2 Tumore by Pulsed High Intensity Focused Ultrasound Contrast Agent: Pathological Characteristics,” World Journal of Gastroenterology, vol. 14(43), Nov. 21, 2008, pp. 6743-6747. |
Van Den Berg, “Light echoes image the human body,” OLE, Oct. 2001, p. 35-37. |
“IntraLuminal: Products,” IntraLuminal Therapeutics, Inc., 2003, p. 1-9. |
“Laser Catheter to Aid Coronary Surgery,” TechTalk: MIT, Jan. 9, 1991, p. 1-4. |
“Optical Coherence Tomography: Advantages of OCT,” LightLab Imaging Technology, printed Sep. 3, 2003. |
“Optical Coherence Tomography: Image Gallery Cardiovascular Procedures,” LightLab Imaging Technology, printed Sep. 3, 2003. |
“Optical Coherence Tomography: LightLab Imaging Starts US Cardiology Clinical Investigations,” LightLab Imaging Technology, 2002. |
“Optical Coherence Tomography: LightLab Sees Bright Prospects for Cardiac Application of OCT Technology,” LightLab Imaging Technology, 2001, vol. 27, No. 35. |
“Optical Coherence Tomography: What is OCT?,” LightLab Imaging Technology, printed Sep. 3, 2003. |
“Optical Coherence Tomography: Why Use OCT?,” LightLab Imaging Technology, printed Sep. 3, 2003. |
“Products—Functional Measurement,” VOLCANO Functional Measurement Products US, Mar. 24, 2003, p. 1-2. |
Brown et al., “Radiofrequency capacitive heaters: the effect of coupling medium resistivity on power absorption along a mouse leg,” Physics in Medicine and Biology, 1993, p. 1-12, vol. 38. |
Carrington, “Future of CVI: It's all about plaque: Identification of vulnerable lesions, not ‘rusty pipes,’ could become cornerstone of preventive cardiology,” Diagnostic Imaging, 2001, p. 1-8. |
Chen et al., “Percutaneous pulmonary artery denervation completely abolishes experimental pulmonary arterial hypertension in vivo,” EuroIntervention, 2013, p. 1-8. |
Cimino, “Preventing plaque attack,” Mass High Tech, 2001, p. 1-2. |
Dahm et al., “Relation of Degree of Laser Debulking of In-Stent Restenosis as a Predictor of Restenosis Rate,” The American Journal of Cardiology, 2002, p. 68-70, vol. 90. |
De Korte et al., “Characterization of Plaque Components With Intravascular Ultrasound Elastography in Human Femoral and Coronary Arteries In Vitro,” Circulation, Aug. 8, 2000, p. 617-623. |
Durney et al., “Radiofrequency Radiation Dosimetry Handbook,” Oct. 1986, p. 1-2, Fourth Edition. |
Durney et al., “Radiofrequency Radiation Dosimetry Handbook: Contents,” Oct. 1986, p. 1-5, Fourth Edition. |
Fournier-Desseux et al., “Assessment of 1-lead and 2-lead electrode patterns in electrical impedance endotomography,” Physiological Measurement, 2005, p. 337-349. Vo. 26, Institute of Physics Publishing. |
Fram et al., “Feasibility of Radiofrequency Powered, Thermal Balloon Ablation of Atrioventricular Bypass Tracts Via the Coronary Sinus: In Vivo Canine Studies,” PACE, Aug. 1995, p. 1518-1530, vol. 18. |
Fram et al., “Low Pressure Radiofrequency Balloon Angioplasty: Evaluation in Porcine Peripheral Arteries,” JACC, 1993, p. 1512-1521, vol. 21, No. 6, American College of Cardiology. |
Fujimori et al., “Significant Prevention of In-Stent Restenosis by Evans Blue in Patients with Acute Myocardial Infarction,” American Heart Association, 2002. |
Fujita et al., “Sarpogrelate, An Antagonist of 5-HT(2A) Receptor, Treatment Reduces Restenosis After Coronary Stenting,” American Heart Association, 2002. |
Gabriel, “Appendix A: Experimental Data,” 1999, p. 1-21. |
Gabriel, “Appendix C: Modeling the frequency dependence of the dielectric properties to a 4 dispersions spectrum,” p. 1-6, Nov. 6, 1997. |
Gregory et al., “Liquid Core Light Guide for Laser Angioplasty,” The Journal of Quantum Electronics, Dec. 1990, p. 2289-2296, vol. 26, No. 12. |
Kaplan et al., “Healing after Arterial Dilatation with Radiofrequency Thermal and Nonthermal Balloon Angioplasty Sytems,” Journal of Investigative Surgery, 1993, p. 33-52, vol. 6. |
Kolata, “New Studies Question Value of Opening Arteries,” The New York Times, Mar. 21, 2004, p. 1-5. |
Konings et al., “Development of an Intravascular Impedance Catheter for Detection of Fatty Lesions in Arteries,” IEEE Transactions on Medical Imaging, Aug. 1997, p. 439-446, vol. 16, No. 4. |
Kurtz et al., “Lamellar Refractive Surgery with Scanned Intrastromal Picosecond and Femtosecond Laser Pulses in Animal Eyes,” Journal of Refractive Surgery, Sep./Oct. 1998, p. 541-548. |
Lee et al., “Thermal Compression and Molding of Atherosclerotic Vascular Tissue With Use of Radiofrequency Energy: Implications for Radiofrequency Balloon Angioplasty,” JACC, 1989, p. 1167-1175, vol. 13, No. 5, American College of Cardiology. |
Lima et al., “Efficacy and Safety of Oral Sirolimus to Treat and Prevent In-Stent Restenosis: A Pilot Study Results,” American Heart Association, 2002, p. 2929. |
Lima et al., “Systemic Immunosuppression Inhibits In-Stent Coronary Intimal Proliferation in Renal Transplant Patients,” American Heart Association, 2002, p. 2928. |
Morice et al., “A Randomized Comparison of a Sirolimus-Eluting Stent With a Standard Stent for Coronary Revascularization,” The New England Journal of Medicine, Jun. 6, 2012, p. 1773-1780, vol. 346, No. 23. |
Muller-Leisse et al., “Effectiveness and Safety of Ultrasonic Atherosclerotic Plaque Ablation: In Vitro Investigation,” CardioVascular and Interventional Radiology, 1993, p. 303-307, vol. 16. |
Nair et al., “Regularized Autoregressive Analysis of Intravascular Ultrasound Backscatter: Improvement in Spatial Accuracy of Tissue Maps,” IEEE Transactions on Ultrasonics, Apr. 2004, p. 420-431, vol. 51, No. 4. |
Popma et al., “Percutaneous Coronary and Valvular Intervention,” p. 1364-1405, 2005. |
Resar et al., “Endoluminal Sealing of Vascular Wall Disruptions With Radiofrequency-Heated Balloon Angioplasty,” Catheterization and Cardiovascular Diagnosis, 1993, p. 161-167, vol. 29. |
Romer et al., “Histopathology of Human Coronary Atherosclerosis by Quantifying Its Chemical Composition With Raman Spectroscopy,” Circulation, 1998, p. 878-885, vol. 97. |
Schauerte et al., “Catheter Ablation of Cardiac Autonomic Nerves for Prevention of Vagal Atrial Fibrillation,” Circulation, 2000, p. 2774-2780, vol. 102. |
Scheller et al., “Intracoronary Paclitaxel Added to Contrast Media Inhibits In-Stent Restenosis of Porcine Coronary Arteries,” American Heart Association, 2002, p. 2227. |
Scheller et al., “Potential solutions to the current problem: coated balloon,” EuroIntervention, 2008, p. C63-C66, vol. 4 (Supplement C). |
Shaffer, “Scientific basis of laser energy,” Clinics in Sports Medicine, 2002, p. 585-598, vol. 21. |
Shmatukha et al., “MRI temperature mapping during thermal balloon angioplasty,” Physics in Medicine and Biology, 2006, p. N163-N171, vol. 51. |
Slager et al., “Vaporization of Atherosclerotic Plaques by Spark Erosion,” J Am Coll Cardiol, 1985, p. 21-25. |
Stiles et al., “Simulated Characterization of Atherosclerotic Lesions in the Coronary Arteries by Measurement of Bioimpedance,” IEEE Transactions on Biomedical Engineering, Jul. 2003, p. 916-921, vol. 50, No. 7. |
Suselbeck et al., “In vivo intravascular electric impedance spectroscopy using a new catheter with integrated microelectrodes,” Basic Res Cardiol, 2005, p. 28-34, vol. 100. |
Suselbeck et al., “Intravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance catheter system,” Basic Res Cardiol, 2005, p. 446-452, vol. 100. |
Tepe et al., “Local Delivery of Paclitaxel to Inhibit Restenosis during Angioplasty of the Leg,” The New England Journal of Medicine, 2008, p. 689-699, vol. 358. |
Number | Date | Country | |
---|---|---|---|
20140088629 A1 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
61704169 | Sep 2012 | US |