The present disclosure generally relates to earthmoving machines. More particularly, the present disclosure relates to a system and method for operating a circle drive gear of an earthmoving machine e.g., a motor grader.
Numerous earthmoving machines are known to include a blade or a moldboard as their primary work implement for shaping or moving soil on a ground surface. An example of one such earthmoving machine may include a motor grader that is typically used for grading soil with the help of a moldboard. In some cases, during operation of the motor grader, the moldboard may impact with an immovable object, for example, a rock that is at least partially embedded within and protruding from the earth. The moldboard may consequently transmit the forces encountered during such impacts into a driving arrangement of the machine, for example, an output shaft of a hydraulic motor that is configured to rotatively drive a circle drive gear of the motor grader.
Given the speed of the machine and its momentum when travelling on the ground surface, these forces could cause failure of one or more components associated with the driving arrangement of the machine. Hence, it would be advantageous to provide a system that mitigates a susceptibility of components in the driving arrangement from being exposed to such forces when the moldboard encounters immovable objects in its path of travel.
In an aspect of this disclosure, a system for operating a circle drive gear of a machine includes a pump, an implement control valve, a bi-directional hydraulic motor, and a brake. The pump is configured to output pressurized fluid therefrom. The implement control valve is fluidly coupled to the pump via a supply line. The bi-directional hydraulic motor is located downstream of the implement control valve and fluidly coupled to the implement control valve via a first delivery line and a second delivery line. The hydraulic motor has an output shaft associated therewith. The output shaft is configured to be rotatively driven by pressurized fluid output by the pump. The brake is disposed on the output shaft of the hydraulic motor. The brake is configured to engage with the output shaft with the help of a spring force for reducing a rotational speed of the output shaft in a brake engage state, and operatively disengage from the output shaft in a brake release state with the help of fluid pressure in at least one of the first delivery line and the second delivery line.
In another aspect of this disclosure, a machine includes a moldboard and a circle drive gear coupled to the moldboard. The machine also includes a pump, an implement control valve, a bi-directional hydraulic motor, and a brake. The pump is configured to output pressurized fluid therefrom. The implement control valve is fluidly coupled to the pump via a supply line. The bi-directional hydraulic motor located downstream of the implement control valve and fluidly coupled to the implement control valve via a first delivery line and a second delivery line. The hydraulic motor has an output shaft associated therewith. The output shaft is configured to be rotatively driven by pressurized fluid output by the pump. The brake is disposed on the output shaft of the hydraulic motor. The brake is configured to engage with the output shaft with the help of a spring force for reducing a rotational speed of the output shaft in a brake engage state, and operatively disengage from the output shaft in a brake release state with the help of fluid pressure in at least one of the first delivery line and the second delivery line.
In yet another aspect of this disclosure, a method for operating a circle drive gear associated with a moldboard of a machine includes providing fluid pressure from a pump via one of a first delivery line and a second delivery line to operatively drive an output shaft of a bi-directional hydraulic motor in which the output shaft has a brake that is disengaged from the output shaft by means of the fluid pressure in at least one of the first and second delivery lines. The method includes determining, by means of a controller, whether a command signal for rotating the output shaft of the hydraulic motor has been provided, and in response to determining that no command signal has been provided, the method further includes actuating the implement control valve, by means of the controller, such that the implement control valve operatively de-pressurizes the first and second delivery lines to facilitate the brake to engage with the output shaft of the hydraulic motor for providing a holding torque to the output shaft of the hydraulic motor.
Other features and aspects of this disclosure will be apparent from the following description and the accompanying drawings.
The features and advantages of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings.
With reference to
Further, the front frame 104 is pivotally coupled to the rear frame 106 with the help of an articulation joint (not shown) to allow steering of the front frame 104 relative to the rear frame 106. Moreover, the rear frame 106 is configured to support a prime mover 114 thereon. The prime mover 114 disclosed herein may be, for example, an engine, a motor, or any other type of prime mover known to persons skilled in the art. An operator cab 116 is disposed on an inclined portion 118 of the front frame 104. The operator cab 116 is configured to house control levers, joysticks, push buttons, and other types of control elements typically known in the art for operating the motor grader 102.
The motor grader 102 also includes a drawbar 120 having a first end 122 that is coupled to an aft portion 124 of the front frame 104 with the help of a rotatable joint 126, for example, a ball and socket joint. A second end 128 of the drawbar 120 is coupled to a mid-portion 130 of the front frame 104 with the help of actuators 132, 134. The drawbar 120 is configured to rotatably support a circle drive gear 136 thereon. A portion 138 of the circle drive gear 136 extends downwardly to pivotally support a moldboard 140 thereon.
As shown in
The drawbar 120, the circle drive gear 136, and the moldboard 140 can be caused to move in a number of directions. For instance, operation of the system 142 disclosed herein may rotate the circle drive gear 136 and cause the moldboard 140 to move in a clockwise or counterclockwise direction. Additionally, operation of the actuators 132 may cause the drawbar 120 and hence, the circle drive gear 136 to be raised or lowered relative to the front frame 104. Also, operation of the actuator 134 may cause the drawbar 120 and hence, the circle drive gear 136 to be tilted relative to the front frame 104 such that one end of the moldboard 140 is lower or higher than another end of the moldboard 140.
Referring to
Further, as shown in
Referring to
As shown in
Furthermore, the system 142 may also include a worm 160, and a pinion 162 as shown in
Moreover, as shown schematically in
In an embodiment as shown in
Moreover, as shown in the illustrated embodiment of
Further, as shown, the system 142 also includes a tank 198 located downstream and fluidly coupled to the outlet port 194 of the pressure reducing valve 186 via a return line 200. The system 142 additionally includes an orifice 202 disposed in the return line 200. The pressure reducing valve 186 disclosed herein is a spring biased pilot operated valve that is set to open when a pressure of fluid in the brake control line 196 downstream of the pressure reducing valve 186 is less than or equal to a first predetermined value. Moreover, in embodiments of this disclosure, a size of the orifice 202 is selected to maintain a pressure in the brake control line 196 within a predetermined range of difference with respect to a pressure of fluid in the return line 200 downstream of the orifice 202.
Moreover, as shown schematically in the illustrated embodiment of
If the controller 176 determines that no command signal has been received at the input device 174 for rotating the output shaft 156 of the hydraulic motor 150, then the controller 176 is configured to actuate the implement control valve 146 such that the implement control valve 146 operatively de-pressurizes the first and second delivery lines 152, 154 to facilitate a closing of the pressure reducing valve 186 when the pressure of fluid in the brake control line 196 downstream of the pressure reducing valve 186 is greater than the first predetermined value, and allow the brake 158 to engage with the output shaft 156 of the hydraulic motor 150 for providing a holding torque to the output shaft 156 of the hydraulic motor 150.
In embodiments herein, it may be noted that a size of the orifice 202 is selected to maintain a pressure in the brake control line 196 to lie within a predetermined range of difference with respect to a pressure of fluid in the return line 200 downstream of the orifice 202. This way, the orifice 202 ensures that a large amount of fluid does not flow past the orifice 202 towards the tank 198 and hence, an adequate amount of fluid pressure is always present in the brake control line 196 to accomplish subsequent applications of the brake 158 onto the output shaft 156 of the hydraulic motor 150.
At step 504, the method 500 includes determining, by means of the controller 176, whether a command signal for rotating the output shaft 156 of the hydraulic motor 150 has been provided. At step 506, the method 500, in response to determining that no command signal has been provided at the input device 174, further includes actuating the implement control valve 146, by means of the controller 176, such that the implement control valve 146 operatively de-pressurizes the first and second delivery lines 152, 154 to facilitate the brake 158 to engage with the output shaft 156 of the hydraulic motor 150 for providing a holding torque to the output shaft 156 of the hydraulic motor 150.
Previously known circle drive systems were typically formed using mechanical components that could allow forces from the moldboard of an earthmoving machine to be transmitted into a hydraulic circuit that is configured to operatively drive the mechanical components. Consequently, in some cases, if the amount of forces encountered by the moldboard were large, such large amount of forces may have the ability to potentially cause a failure of components associated with the mechanical components that may or may not form part of the hydraulic circuit. For example, if the magnitude of an impact force encountered by the moldboard is greater than an amount of torque associated with an output shaft of the hydraulic motor, then the output shaft may fail leading to a loss of further transmission of power from the hydraulic motor to the moldboard for performing subsequent operations.
With use of the system disclosed herein, the brakes are spring biased into engagement with the output shaft of the hydraulic motor and released from engagement in response to a pressure of fluid in the first and second delivery lines. By allowing the brakes to engage with the output shaft of the motor, an amount of resistive torque on the output shaft of the hydraulic motor may be increased so that failure of one or more components associated with the hydraulic motor may be prevented. Therefore, with implementation of the system disclosed herein, manufacturers of circle drive systems using hydraulic motors can improve a reliability of components in use and reduce downtimes that were typically incurred from failure of components in previously known configurations of circle drive systems. Consequently, with use of the system disclosed herein, users of earthmoving machines such as motor graders may be able to offset costs, time, and effort that was previously associated with replacement and repair of failed components.
While aspects of the present disclosure have been particularly shown and described with reference to the embodiments above, it will be understood by those skilled in the art that various additional embodiments may be contemplated by the modification of the disclosed machines, systems and methods without departing from the spirit and scope of what is disclosed. Such embodiments should be understood to tall within the scope of the present disclosure as determined based upon the claims and any equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
3448816 | Beals et al. | Jun 1969 | A |
3819018 | Muller et al. | Jun 1974 | A |
3989112 | Cole et al. | Nov 1976 | A |
7874377 | Graeve | Jan 2011 | B1 |
9228316 | Staade | Jan 2016 | B2 |
9540787 | West et al. | Jan 2017 | B2 |
20080229626 | Bertoni | Sep 2008 | A1 |
20120073890 | Bindl | Mar 2012 | A1 |
20160024750 | Yoshimura | Jan 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20190186101 A1 | Jun 2019 | US |