COUNTRY APPLICATION NUMBER FILING DATE PRIORITY CLAIMED MEXICO Pa/a/2005/004958 Sep. 5, 2005 Yes
“Not Aplicable”
“Not Aplicable”
“Not Aplicable”
(1) Field of the Invention
This invention refers to a system to optimize the procedure to make refractory moulds for multiple metal castings in fixed dental prosthesis, a method to build the refractory moulds and, on the other hand, the system itself and its utilization.
In previous art, we find systems such as the one described by Abraham Cooper in 1972 with the purpose of mounting multiple wax patterns on a vertical plastic dowel; later, the same author in 1979 designs a support pattern with a T form in two levels with the same purpose; he also shows a base with a lateral fixture designed to be adjusted to a hollowground sprue which connects with two flanges that divide the casting ring laterally to dismount the refractory cylinder.
As to the design of the support for the fixed bridge wax patterns, it consists traditionally of a horizontal bar that connects to the wax patterns by means of wide wax connectors or sprues; on the opposite side two oblique bars are directed to the base.
Years later, the so called “oval casting system” gets into the market, it also includes a T bar design, an oval casting ring and a fixture to adapt the short oval casting ring to the centrifuge, later, plastic vases are used with the T bar system.
Benefit
The solicitant has developed a novel system for multiple metal castings, solving the many problems associated with the current existing systems; following, a detailed description of the terms used in this technique for a better understanding.
(2) Background Art
Induction to the system to optimize the manufacture of refractory moulds for the fabrication of multiple metal castings in dental prostheses
Motivation to improve the casting systems in conventional centrifugal machines with pivoted arm.
The motivation to find a different casting system to those utilized in the 1950-1960 is founded in the failures i had while as a student the hand held centrifugal bow was used to cast single prostheses, after graduation in 1958 at the Universidad Nacional Autonoma de Mexico, the dental bridges were sent to several commercial laboratories that were incapable of delivering properly fitting structures, when I complained about the poor results they told me that If I knew how to cast accurately then I had to demonstrate. I humbly and enraged accepted the challenge with nothing but my youth and enthusiasm and began to design different kinds of supports or crucible formers based on observation, in logic and fundamental knowledge as I knew nothing about the physics and chemistry relative to casting, crystallization, thermodynamics, flow mechanics, mechanics and centrifugal forces that are intermingled in the casting procedure.
After thousands of experiments and several years of research with special attention to the analysis of success and failures I obtained excellent results with the design of the crucible formers that were not much different to the actual ones but that were hand made in wax and it was time consuming.
Years later I decided to create an injection mould with solid plastic material in the A and B supports and the coupling attachments were made with extrusion moulds, soon I noticed that the refractory cylinders were fracturing during the burn-out process due to the thermal expansion differences between the refractory material and the plastic formers making it necessary to coat the supports with wax to avoid fractures; then, another problem arose, as the cylinders became longer in order to allow for more prostheses to be cast they didn't fit in the conventional holders of the centrifugal pivoting arm casting machines so I invented a metal-mechanic appliance to convert this machine in a special centrifugal machine that allowed the new system to be used with no change at all in the original mechanic and functional characteristics.
Years later I made an injection mould for the type A and B supports with a hollow stem to avoid the fracture of the refractory material during burn-out, I also designed a vase with special characteristics to improve its function; once I had completed the whole system and proving it thousands of times I went to the School of Engineering and the School of Chemical Engineering at the National University of Mexico, there, my system was approved by experts in the subject and reminded me that in order to scientifically sustain my project it was necessary to study all the physics and chemistry subjects without any reference to the dental articles and papers because all of the existing support systems are designed in a T bar fashion.
In 1967, at LomaLinda University a dynamic radiofluoroscopic motion picture showed some of the principles and rules but the understanding of all the defects in the castings is limited, the porosity, the flowback and the incomplete filling of the mould are due to multiple causes, the T bar among them because it has a perpendicular bar as a reservoir that receives a hard impact of the molten alloy that frequently chip pieces of the fragile refractory material and, due to its low density the chips remain in that zone so that bar also acts as a trap, another defect of the T bar is that the perpendicular bar is not well oriented in the cylinder because both ends of the bar get away from the thermal zone considering that the hot zone in a refractory cylinder is within and near the geometrical axis, another deleterious factor is the ignorance of the fluid mechanics, a subject that is to be learned not from dental literature but in engineering papers, having known this well before I could have saved years of experimentation.
In 1980, Volume 2 of Quintessence Book on Bridge Design and Laboratory Procedures, John W. McLean and other authors do not approve de T bar design (p. 227-236) and describe accurately the thermal zone (p. 228), shows the convenience for a constriction of the sprue in the joint to the pattern and the location of the patterns within the vase, although violating the rules that he himself describes (p. 219 and 224). In 1990 the book Precision Fixed Prosthodontics Clinical and Laboratory Aspects by Dr. Martignoni and the Dental Technician G Lattburg, Quintessence Books written and showing both extraordinary methodology and statistics is wrong in stating that only half of the refractory cylinder is adequate for a proper filling of the alloy in the mould due to the centrifugal and centripetal resultant forces.
Another of the important readings is Beely's Foundry Technology, it considers all of the subjects before mentioned and also the authorized spanish version of Julian Szekely's Fluid Flow Phenomena in Metal Processing Academic Press Inc. Isbn Massachusetts Institute of Technology.
When lecturing I begin showing the failures with different kinds of designs, then I explain the thermodynamics of an apple at determined temperatures and times in an oven, the skin and central temperatures of the apple are exactly the same but, when it is taken out from the oven the loss of heat occurs from the exterior and to the core, the geometric center of the apple and a spheric zone near to it is the thermal or hot zone, and asking then about a cylinder that is removed from the oven the most frequent answer is that the thermal zone is the geometrical axis, adding to this that the molten alloy enters via the cylinder crucible access and the mould is filled staying longer in a liquid as John McLean suggests whilst the alloy in the pattern moulds nearer to the surface begin to crystallize resulting in a directional guided crystallization ensuring that there is always molten alloy at the stem guaranteeing a continues flow towards the external walls of the cylinder and avoiding the backflow of the alloy in the patterns due to the centrifugal forces. As to the fluid flow I ask as an analogy what happens when a water hose is directed to the floor and everybody answer that it will splash and our pants and shoes will get wet, this is what is called a turbulent flow; on the other hand if we position the hose in the floor the water will flow smoothly without splashing forming a laminar or layering flow; as to the placement of the sprue in relation to the pattern, something that I consider of the utmost importance in this claimed invented system I ask the audience what happens if we diminish the diameter of the hose end and they answer that the water flow will get farther, that is, the speed of the flow will increase without changes in the water pressure. If we correlate the angle of the attachment to the wall of the pattern with the mentioned concepts where form and function are indivisible and then highlighting the design of a bevel in the type a attachment in a tangential position thus ensuring that the molten alloy will fill the pattern mould with a soft but fast flow.
In this way, the audience is understanding by themselves, getting to conclusions and reasoning and accepting the merits and advantages of this system and getting knowledge in an area, that has not advanced for many years, assuring that predictable results can be achieved with this claimed invented system, at a lower cost, time efficiently and with a lower contamination of the environment.
Essentially, the objectives of this invention are based upon the disadvantages of the existing techniques, as follows.
To avoid the loss of physical properties of the alloy referring to: fracture resistance, modulus of elasticity, elongation, etc.
It is the purpose of this invention to avoid defects in the outcoming casting such as porosities, tears, imprecision, and blunt or incomplete margins as well.
It is also the objective of this invention to solve the problems derived from the subutilization of the space of the refractory vase, which counts for a great amount of refractory material and alloy waste, all of this will be discussed further in great detail. Electrical energy costs will also be reduced, as well as grinding and cutting implements, working time and environmental contamination.
This invention has been developed following strictly the physical principles of melting, casting, fluid behaviour, thermodynamics, and metallurgy
The results obtained have been outstanding and excellent
There are many techniques to elaborate fixed metal dental prostheses, they involve different designs to provide spruing to the wax patterns, so many criterion related to the type of material, width and longitude, site of placement of the sprue, angles and location within the casting ring; all of this making a confusing time for the technician and providing non consistent and non confident results adding to a great waste in materials and working time.
the female attachment with the support male
Terminology
We have no Universal terms in the field of lost-wax casting technique, every country utilize local terms, hence, the terminology as used in the United States of America will be used as I consider to be an accurate and correct one.
Pattern. It is the wax or plastic model of a unit or many units joined together to be reproduced in metal alloy. It can be a coping, an inlay, onlay, full crown, a bridge or a splint.
Single pattern. It is a unit, and it is named as such to differentiate from complex structures composed by two or more patterns.
To invest: To cover with a layer
Investment: The material to cover something with
Refractory investment: Heath resistant materials that are used as moulds to receive the molten alloy during the casting process, the setting hygroscopic expansion as well as the thermal expansion compensate for the shrinking of the alloy during the crystallization and solidifying phases.
Refractory cylinder: A solid limited by a cylindrical surface and two parallel planes segmented by the generatrices. It is formed when the refractory material is poured while in a liquid state that will crystallize in the flask.
Refractory cylinder crucible: An end of the cylinder which is conformed with the characteristics of the crucible former when the liquid refractory material crystallize in the flask.
Flask or vase: It is composed of two elements, the ring and the crucible former, if the ring is made of plastic, a cylinder without a metallic ring can be obtained since the plastic can be removed, if the ring is metallic it cannot be removed. In both types of ring, the cylinders are no more than 60 mm in length in the existing systems.
To cast: The method to reproduce an object by means of a mould.
Casting machine: A device designed to impale the molten metal to the interior of the refractory cylinder mould. The most common device is a centrifugal machine which generally has two articulated extensions, one of them is a counterweight intended for balancing and the other has an adjustable plate that holds the crucible for melting the alloy and a casting ring holder. The refractory cylinder will be placed with its crucible aligned so that it faces the melting crucible.
There are also more sophisticated machines intended to melt the alloy by induction processes and force the molten metal either by air pressure or vacuum.
Casting machine crucible: A refractory rectangular tray with a hollow receptacle and a funnel located on one of the extremes. The hollow receptacle will receive the alloy to be molten and the funnel will function as a corridor for the expulsion of the molten alloy which will enter the mould via the refractory cylinder crucible.
Base or support (Sprue former). A simple or complex model of different forms and materials with many functions; a) support for mounting the patterns, b) sprue former to conform the entry duct in the cylinder crucible, c) compensation chamber or reservoir to compensate for the crystallization shrinkage, d) sprue former to the patterns that will connect the ducts to the patterns.
Obviously, the terminology of the system of the invention does not exist, in the description of the invention an effort was made to find the more adequate terms to be revealed in the description.
Thermal Zone
With the purpose to understand the differences, the rationale for the design, the shape, dimensions and position of the supports in the cylinder of the present invention, we have to consider the thermal zone of the refractory cylinder, that is, the warmest zone corresponding to the geometrical axis and its closest zones, and a less warm region located in the external surface and the zones close to it; all of this is related because when the refractory cylinder is taken from the furnace after the contents of the cylinder had been burnt out to conform the mould, it begins to cool from the surface towards the center, even though this happens in a few seconds during the transportation from the furnace to the cylinder holder of the casting machine just before the molten alloy in the crucible is injected trough the thermal zone which is the sprue former located in the cylinder axis. This determines that the molten alloy will crystallize in this zone after the alloy in the patterns located peripherically and near the surface (cool zone) pushing the still molten alloy to the patterns and compensating the effect of sucking or shrinking inherent to all alloys during the solidifying phase. We achieve in this way an unidirectional guided crystallization that maintain the structural characteristics like the distribution and grain size as well as the physical properties of every alloy. This compensation is essential in the precision and fit of the prostheses, having in mind that we are talking of microns.
Another advantage of the system is that the gases will escape not only via the cylinder crucible but trough all the surface of the cylinder due to the proximity of the patterns to the external area.
The big error in all existing systems is to consider the location of the thermal zone in a position that does not correspond to its shape, it has been considered that the thermal zone in a cylinder is located horizontally.
Even though it is well known that the location of the thermal zone in a refractory cylinder coincides with the geometrical axis and this should be the basis for the design and orientation of the sprues, this has not been considered and the ducts have been oriented in a T bar design and others, in a very disadvantageous position considering a horizontal thermal zone highly compromised in which the extremes of the horizontal bar (That will act as a reservoir) will be outside the thermal zone due to its proximity to the external surface of the cylinder (cool zone). Frequently the alloy will crystallize in this zone and avoids the alloy to fill the moulds of the prostheses, the results are catastrophic. This is then avoided by increasing the diameter of the cylinders but this means that great quantities of refractory material has to be used; with the main duct perpendicular to the horizontal bar in which the patterns are to be mounted with wide connectors, once the mould has been made, the alloy will change direction brusquely thus diminishing its velocity to fill the mould and provoking a turbulent flow resulting in defects of the final cast. The width of the sprues make it difficult to cut the casts and to calibrate them. Due to the wrong position of the support in the vase, it is only possible to mount the patterns in one plane (at the extreme of the cylinder) thus limiting the number of patterns to be made. The emission of ammoniacal vapors and other gases when the cylinders are in the burn out process to obtain the same number of castings as with the present invention is more than 700%, or what is the same, the savings on refractory material is more than 700%, this contributes to less contamination and savings of alloy, electricity, cutting and grinding instruments in the same proportion. It also solves the problem of sub-utilization of the cylinder because it is possible to mount 21 units in one of the supports of the system and 12 in the other support consuming only 160 g of refractory material, while in the existing systems up to 450 g of refractory material is used to invest a 6 unit bridge pattern. Another objective of the present invention is to considerably diminish working time and to obtain predictable and repeatable results.
More objectives and advantages of the invention are cited:
The Invention
This present invention refers to a modality of a system to optimize the manufacture of refractory moulds to fabricate multiple metal castings in dental fixed prostheses, another aspect of the invention is constituted by:
1. Two designs for sprue forming supports (One type A, one type B and two new designs of beveled female attachments (Type a and type b), the type a beveled female attachment is to be used in both A and B supports, the type b is intended for the type B support only.
2. A design of a vase is described composed by a crucible former and a designed modified ring to be inserted in the crucible former and create the vase
3. A novel metalo-mechanic component is described to modify horizontal conventional casting centrifuges in convertible machines to allow for the positioning of large (80 mm) casting cylinders.
The type A support (FIG. 2,3,4,8,9) is a burnout plastic tube that is 62 mm long, an external diameter 5 mm to 6 mm and 1 mm thick walls closed by a plug in one end, The plug may be of the same material or solid wax with the same dimensions and characteristics; from this tube arise troncoconical protuberances 2 to make a total of round-ended cylindrical fixtures 3 two to three millimeters long with acute angles distributed through and in the length of the support up to 47 mm leaving for al 5 mm long stem 4 The male attachments are distributed in four rows opposed two of them from another at the same level and denominated north and south while the other two (east and west) are located between north and south, each of the male attachments are located 8 mm. from each other.
This support is intended to mount straight bridge patterns 5 and or single patterns 6. To attach straight bridge patterns 5
The type B support
Crucible former, also mentioned as forming element because up to this moment it has been used as a base but in the subsequent steps will be utilized to give form to the refractory cylinder crucible.
In FIGS. 21,24,25,26 the crucible former works as a base, however, it also acts a mould to give form to the refractory cylinder crucible and as the base or bottom of the vase once the ring is inserted. The crucible former, with a circular structure has in its upper face a conical protuberance 14 with a notch in its upper end 13 to receive the lower end of the support 4, it is also characterized by two opposed domes 18 opposed one to another and separated by the cone 14 as forming elements to provide two channels to the refractory ring crucible 19
The Ring
A plastic ring is described FIGS. 1,27,28. It has the characteristic of a high elasticity to allow for the setting expansion of the refractory material
Metal-Mechanic Dispositive
As an indispensable part of the system a novel dispositive has been developed that allows to place longer refractory cylinders (80 mm) in the conventional horizontal centrifugal casting machines in comparison of preestablished 60 mm cylinders in order to obtain more dental castings in one single operation.
This dispositive includes:
Two metallic plaques, two screws, six bolts and a template.
Installation
The template 26
A replica of the original plaque
In to what the process is pertained, a detailed description of the novelty of the Invention is described.
Number | Date | Country | Kind |
---|---|---|---|
PA/A/2005/004958 | Sep 2005 | MX | national |