This invention relates to a system for playing multiplayer games and in particular, but not exclusively, multiplayer zero-sum wager games such as multiplayer poker.
The game of poker is a multiplayer game, generally accommodating, for example, a minimum of four and a maximum of between eight and ten players. During the game players make wagers which are accumulated in a single pool (“the pot”). Once the wagering stages of the game have been completed, the players who remain in the game reveal the playing cards in their hands. The hands are ranked, and the player with the highest-ranking hand wins the pot.
The game of poker is a zero-sum game insofar as, in each turn of the game, a gain of the winner is equal to accumulated losses of the other players in the game. However, a party who arranges or hosts a game of poker may levy a commission (“a rake”) on the players or on the pot in order to obtain revenue. Further examples of such multiplayer zero-sum games are backgammon, bridge, gin rummy, canasta, whist or mah-jong.
A system and method for playing zero-sum games, such as poker, over a computer network is described in published PCT Application WO 03/093921 A2, published 13 Nov. 2003, which is assigned to the assignee of the present invention. The entire contents of WO 03/093921 A2 are incorporated by reference herein. The system of the '921 PCT publication includes a central gaming server accessible over the Internet and enables participation in games such as poker games by individuals accessing diverse portal websites (poker websites).
In the last several years, systems have been commercialised such as that described in the '921 patent publication wherein a gaming website provides a facility for online game playing, particularly online poker playing. Such systems have become popular and, gaming sites may host hundreds, even thousands of players at a time.
In online poker, the success of an online poker website (“virtual poker room”) is directly related to the magnitude of a pool of would-be players who desire to play a game of online poker. Simply put, the larger the pool of players (i.e. the “liquidity”), the more poker games (i.e. virtual poker tables each accommodating a maximum of, say, eight players) the system can spawn, thereby increasing its attractiveness to other would-be players. In particular, a player may join in a virtual poker game at which an unoccupied playing position, or vacancy, exists. If a virtual poker game has no vacancies available, a would-be player may have to wait a considerable time before a vacant playing position becomes available, allowing the player to join the game, which may cause frustration and which may cause the would-be player to leave the gaming website. Conversely, a would-be player may also have to wait for a considerable period before a sufficient number of other would-be players become available to establish a poker game and to enable play to commence, which can also cause frustration and lead to player attrition. Increased liquidity is generally attractive to would-be players.
In order to maximise this size advantage, some online poker rooms operate under a centralised topology, in which there is a single operating entity (“operator”) that owns and runs the gaming website and the player pool is homogeneous (i.e. all players are registered with, or “belong to”, this single operator). The operator makes money by charging a rake on the accumulated pot in each game of poker that is played in the online poker room. Under a centralised topology, a player will always be playing only with other players who are registered with the same (i.e. the only) operator. Settlement of player wagers is straightforward: 1) the operator deducts its rake from the pot; 2) the balance of the pot is paid over to the player that has won the game; and 3) the next game starts and the process repeats.
Other online poker rooms may operate under a distributed topology (also referred to, in the art, as a network topology). Under this topology, the player pool is heterogeneous, as players registered with different, possibly competing, operators are pooled together to maximise liquidity of the collective player pool, as previously discussed. This means that players registered with different operators could find themselves playing in the same poker game. In this instance, settlement of player wagers is more complex than in the centralised topology, as situations invariably arise in which funds have to be transferred, (or “cleared”) between different operators whose players are playing under a distributed topology. The principles underlying a distributed topology are set forth in the above-referenced patent application WO 03/093921 A2.
In a first aspect, a system for playing a multiplayer zero-sum game is provided. The system comprises a plurality of gaming servers and a plurality of databases. Each gaming server is able to host separate instances of the multiplayer zero-sum game, and for each such instance of the multiplayer zero-sum game the host gaming server is configured to (i) generate random events that are displayable as outcomes on client computers used by players participating in the instance of the game, (ii) enable each participating player to place a wager for each turn of the game, and (iii) determine a winner for each turn of the game. Each database is configured to store game information data regarding active instances of the multiplayer zero-sum game hosted by a respective gaming server, and at least one of the databases is configured to store game information data regarding active instances of the multiplayer zero-sum game hosted by multiple gaming servers. Each gaming server is further configured to provide the game information data stored in its respective database to client computers of prospective players.
In a second aspect, a method is provided. In accordance with the method, a client computer receives from a local gaming server a list of active instances of a multiplayer zero-sum game, wherein the list includes active game instances hosted by the local gaming server and active instances hosted by a remote gaming server. The client computer displays the list to a player. The client computer receives from the player a selection of an active game instance on the list.
In a third aspect, a method for settlement of player wagers is provided. In accordance with the method, a host gaming server hosts a multiplayer zero-sum game involving a plurality of players associated with a plurality of gaming entities. The plurality of players includes one or more players using client computers that communicate natively with the host gaming server and one or more players using client computers that communicate with the host gaming server by means of an application programming interface (API), wherein each player is associated with a respective gaming entity with which the player has a credit account, and wherein each gaming entity has a respective clearing account. The host gaming server notifies an application server of an outcome of a turn of the game, including losses and winnings of the players participating in the turn, together with data representative of each gaming entity associated with each participating player. The application server debits the clearing account of each gaming entity associated with each player that has wagered on the turn of the game by the total amount wagered by that player. The application server credits the clearing account of each gaming entity associated with each winning player by the amount of the pot less a rake amount. The application server credits a portion of the rake amount to the clearing account of each gaming entity in proportion to the number of participating players associated with that gaming entity.
The applicant has appreciated that enhancements are possible both to a conventional system and to the system of the '921 publication in order to further increase player liquidity and reduce player waiting time.
Viewed from one aspect the invention provides a computer system for playing multiplayer games, comprising a first gaming server which runs multiple instances of a first game and to which is connected a first plurality of players, there being a minimum number of players and a maximum number of players for any instance of the first game; and a second gaming server which runs multiple instances of a second game and to which is connected a second plurality of players, there being a minimum number of players and a maximum number of players for any instance of the second game; wherein the first gaming server is in communication with the second gaming server and through the second gaming server makes available instances of the first game for players from said second plurality of players to join, and an administration facility maintains a record of players in an instance of the first game, including information indicative of whether a player is from said first plurality of players or from said second of plurality of players.
Thus, if a player who is connected to the second gaming server is unable to join an instance of the second game because current instances of the second game have the maximum number of players, and there are insufficient players for a further instance of the second game to be spawned, that player has access to any instances of the first game on the first gaming server which do not yet have the maximum number of players, and can join with one or more other players on the first gaming server to make up the minimum number of players for a new instance of the first game.
Preferably, the second gaming server is also in communication with the first gaming server and through the first gaming server makes available instances of the second game for players from said first plurality of players to join, and an administration facility maintains a record of players in an instance of the second game, including information indicative of whether a player is from said first plurality of players or from said second of plurality of players. Thus irrespective of which server a player is connected to, that player will have access to instances of a game being run on the other server.
Preferably the first game and the second game are the same. The game may be, for example, poker.
It will be appreciated that there may be more than two servers, all pooling their available game instances for players to join irrespective of the server to which they are connected, and all pooling their respective pluralities of players for one of the gaming servers so as to make up the minimum number of players for a new instance of a game on that gaming server.
Whilst in the '921 publication players may be pooled from a number of portals to access a central gaming server, in the new architecture in accordance with the present invention, separate gaming servers pool instances of games and players.
Embodiments will be described with particular reference to a system for playing a game of multiplayer poker in virtual poker rooms. It is to be clearly understood, however, that the scope of the invention is not limited to this particular application.
1. Overview
It is desirable to increase the player liquidity of virtual poker rooms. It is also desirable to reduce the waiting time for players who wish to participate in game play or tournament play in a virtual poker room. Having made this insight, the present disclosure provides for new methods of aggregating players in virtual poker rooms that address these problems, surpassing the ability of the prior art to do so.
Before describing the preferred embodiment in detail, an explanation will first be provided of computer-based systems for online game playing in which multiple distributed computing devices engage in playing of card games using a central server and, in particular, wager games such as poker. The following descriptions are offered by way of illustration and not limitation, of possible environments in which the invention can be practised.
Referring to
The game of multiplayer poker using a computing device or computer workstation 14 is facilitated by means of a workstation-stored program (not shown) referred to, for convenience, as a client process that is executable on the computer workstation 14, and a server-stored program (not shown), or server process, that is executable on the gaming server 12. The server process (not shown) generates one or more random events that affect the outcome of the game of poker, such as the dealing of cards to participating players. The client process on a computer workstation 14 of a participating player obtains the result of the random events from the gaming server 12 and displays the outcome of the game on the display monitor 15 in an intelligible manner.
The gaming server 12 includes a processing unit (such as a central processing unit, not shown) and a database 13 coupled to the processing unit that stores game information data for a plurality of instances of games playable at the computer workstations 14. The server-stored program (not shown) enables a predetermined maximum number of players, say eight, to play an instance of the game of multiplayer poker. Each instance of the game may take the form of a virtual poker table playing a particular game (e.g., Hold'em) or a virtual poker table that forms part of a tournament, such as a virtual poker tournament. When the number of players for a given instance of the game reaches this predetermined maximum number, the server-stored program initiates a further instance of the game (i.e. a new virtual poker table), the new instance of the game also being capable of accommodating a further eight players. In this manner the gaming server 12 is capable, under control of the server-stored program, of spawning as many separate instances of the multiplayer poker game as required in order to accommodate a pool of players who desire to play the game. Each instance of the game spawned in this manner is treated as totally independent of the other instances. The database 13 is updated continuously to store real-time or near real-time information as to the plurality of active game instances hosted on the gaming server 12, such as the name of each instance (e.g., a table name), the identity of players at each table, the table stakes, available seats, etc. The gaming server 12 provides this game information data to the computer workstations 14 in the form of lobby pages.
The server-stored program also provides a wagering means 17 in the form of computer instructions that enable any participating player to place wagers on a turn of the game, as well as discrimination means in the form of computer instructions 18 capable of ranking poker hands and determining a winner or winners of the turn of the game. The stored program in the gaming server 12 maintains a dynamic register 16 of all players admitted to, and participating in, any of the spawned instances of the game from time to time. The gaming server 12 also settles the wagers of the participating players in each turn of the game by debiting wagered amounts from the player accounts of losing players and crediting the amount of the pot to the accounts of winning players.
The computer workstations 14 may, for example, take the form of conventional personal computers operating under a Windows, Linux or Macintosh operating system, provisioned with a web browser and a connection to the Internet. The computer workstations 14 may also, for example, take the form of portable, handheld computing devices with a web browser and wireless Internet access.
After first registering with the gaming server 12 and establishing a player credit account, a player who desires to join the game of multiplayer poker may, by means of one of the computer workstations 14, log in to the gaming server 12 and request participation in the game. Once admitted to an instance of the game, the player may place a wager on a turn of that instance of the game. During play, each participating player is presented with an identical graphical user interface (GUI) 100 on the player's respective computer workstation 14 by the client process (not shown) in the workstation, as shown in
Referring now to
The game of multiplayer poker is facilitated by means of an executable program (not shown) on each of the computer workstations 24 (a client process), and a server-stored program (not shown), or server process, that is executable on the gaming server 22. The server process (not shown) generates one or more random events that affect the outcome of the game of poker, such as dealing cards to participating players. The client process on a computer workstation 24 of a participating player obtains the result of random events from the gaming server 22 and displays the outcome of the game on the display monitor 25 in an intelligible manner.
The example gaming server 22 includes a processing unit (such as a central processing unit, not shown) and a database 33 coupled to the processing unit that stores game information data for a plurality of instances of games playable at the computer workstations 24. The server-stored program (not shown) is capable of enabling a predetermined maximum number of players, say eight, to play an instance of the game of multiplayer poker. When the number of players reaches this predetermined maximum number, the server-stored program initiates a further instance of the game, the new instance of the game also being capable of accommodating a further eight players. In this manner the gaming server 22 is capable, under control of the server-stored program, of spawning as many separate instances of the multiplayer poker game as required in order to accommodate a pool of players who desire to play the game. Each instance of the game spawned in this manner is independent of the other instances. The database 33 is updated continuously to store real-time or near real-time information as to the plurality of active game instances hosted on the gaming server 22, such as the name of each instance (e.g., a table name), the identity of players at each table, the table stakes, available seats, etc. The gaming server 22 provides the game information data to the computer workstations 24, in the form of lobby pages.
The server-stored program also provides a wagering means 37 in the form of computer instructions that enable any participating player to place wagers during a turn of the game, as well as discrimination means in the form of computer instructions 35 capable of ranking poker hands and determining a winner or winners of the turn of the game. The server-stored program also maintains a dynamic register 36 of all players admitted to, and actively participating in, any of the spawned instances of the game from time to time, together with data representative of a corresponding poker room 23a, 23b through which each player accessed the game.
In order to play multiplayer poker or other games from any computer workstation 24, the client process (not shown) may first be downloaded to that computer workstation, for example, from the gaming server 22 or from a separate download server (not shown) or from the website 23a or 23b. Such a download will typically occur when the computer workstation 24 first accesses the website 23a or 23b, when the user is presented with a message inviting the user to download the client process in order to play the game. The user selects a “Yes” icon and the download then proceeds, whereafter the client process presents the user with a GUI 100 on the computer workstation 24, and communication between the computer workstation 24 and the gaming server 22 then proceeds. As indicated in
The system 20 includes, further, an administration facility 32 in the form of an application server, which is communicable with the gaming server 22 by means of a communication network 29. Although the operation of the application server 32 will be outlined briefly, for further details, the reader is directed to the published '921 PCT publication cited above for further reference. The gaming server 22, the poker room web servers (not shown) corresponding to the online poker room websites 23a, 23b, the computer workstations 24 and the application server 32 communicate with each other via the Internet, represented in
The application server 32 provides a clearing account facility 38 with a clearing account for each of the online poker rooms 23a, 23b. Analogously, each online poker room website 23a, 23b includes a credit account for each player who participates in the game through that poker room website. In the system of
Referring to
Whereas the system 10 of
The multiplayer poker games on each gaming server 202a, 202b are facilitated by means of a workstation-stored program (not shown) referred to, for convenience, as a client process that is executable on a computer workstation 204, and a server-stored program (not shown), or server process, that is executable on a gaming server. The server process (not shown) generates one or more random events that affect the outcome of a game of poker, such as the dealing of cards to participating players. The client process on a computer workstation 204 of a participating player obtains the result of the random events from a gaming server and displays the outcome of the game on the display monitor 205 of the computer workstation in an intelligible manner.
In this example embodiment, gaming servers 202a and 202b may belong to separate, possibly competing entities. It is therefore envisaged that the server-stored programs in gaming servers 202a and 202b may be different programs. As in the system of
In order to play multiplayer poker from any computer workstation 204, a client process may first be downloaded to that computer workstation, for example, from a gaming server 202 or from a separate download server (not shown). It is envisaged that the client process in computer workstations 204a that are logically connected to gaming server 202a may be different to the client process in computer workstations 204b that are logically connected to gaming server 202b. The client process in any computer workstation 204 presents the user with a GUI 100 similar to that of
As outlined above, gaming server 202a serves the game information data in its database 213a to the computer workstations 204a that are connected to that gaming server. The client process in each computer workstation 204a displays this game information data on the computer workstation in the form of lobby pages that list all active game instances hosted on gaming server 202a, thereby allowing a player to select a game instance to join. In the same manner, the client process in the computer workstation 204b of each player that is connected to gaming server 202b displays a list of active game instances hosted on gaming server 202b. Under this arrangement, a player at a computer workstation 204a is only able to see and to join a game instance that is hosted on gaming server 202a, while a player at a workstation 202b is only able to see and to join a game instance that is hosted on gaming server 202b. As a consequence, players who are logged in at computer workstations 204a are segregated from those logged in at computer workstations 204b and cannot participate in the same instance of the poker game.
In order to overcome this disadvantage, gaming server 202b transmits the game information data in database 213b to gaming server 202a at regular intervals. Gaming server 202a consolidates this received game information data into its own database 213a. With such an adaptation, the lobby pages displayed by the client process in the computer workstations 204a list all game instances currently in progress that are hosted on either gaming server 202a or 202b. A player at a computer workstation 204a is then able to join a game instance hosted on gaming server 202b, if desired. The effect of this is that players logged in to gaming server 202a are “pooled” with those of gaming server 202b for participation in game instances hosted on gaming server 202b. The converse does not apply, however; players logged in to with gaming server 202b are not pooled with those of gaming server 202a for games hosted on gaming server 202a, as the games hosted on the latter gaming server are not visible to players at computer workstations 204b.
It will be appreciated, however, that game information in database 213a can be consolidated in a similar manner into game information database 213b of gaming server 202b. The contents of game information databases 213a and 213b will then be identical, permitting players at computer workstations 204b to also see and to participate in game instances hosted on gaming server 202a in addition to those hosted on gaming server 202b. In this variation of the embodiment, the players logged in to either gaming server 202a, 202b are fully pooled, without restriction.
Turning now to
The gaming servers 302a and 302b may belong to separate, possibly competing, entities. It is envisaged that the server-stored programs in gaming servers 302a and 302b may be different programs. Furthermore, gaming server 302b is accessible to players from a number of different portals (i.e. poker room websites) 303a, 303b. For illustrative purposes, poker room website 303a is shown as being logically connected to one computer workstation 304b, while poker room website 303b is shown as being logically connected to two computer workstations 304b. Naturally, both poker room websites 303a, 303b can accommodate any desired number of computer workstations 304b, limited primarily by considerations of processing power, website hardware and network bandwidth. The gaming server 302b provides a facility for pooling players from the separate online poker rooms 303a and 303b which may themselves be competing entities. The gaming server 302b may, of course, permit pooling of players from a greater number of separate online poker rooms that just those of poker rooms 303a and 303b.
Each gaming server 302a, 302b includes a respective database 313a, 313b that stores game information data for game instances hosted on that gaming server. Each database 313a, 313b is updated continuously to store real-time or near real-time information relating to active game instances hosted on the corresponding gaming server 302a, 302b such as the name of each instance (e.g., a table name), the identity of players at each table, the table stakes, etc.
Gaming server 302a serves the game information data in its database 313a to the computer workstations 304a connected to that gaming server. The client process in each computer workstation 304a displays the game information data from gaming server 302a in the form of lobby pages that list all active game instances hosted on gaming server 302a, thereby allowing a player to select an active game instance to join. Similarly, the client process in each computer workstation 304b connected to gaming server 302b displays a list of active game instances hosted on that gaming server, utilising the game information data from database 313b served to the workstations by gaming server 302b.
Game information data in database 313b relating to game instances hosted on gaming server 302b is mirrored by the gaming servers 302a, 302b in game information database 313a, enabling the client process on computer workstations 304a to list all current game instances hosted on either gaming server 302a or 302b. Analogously, game information data in database 313a relating to game instances hosted on gaming server 302a may be mirrored in game information database 313b, thereby enabling the client process on computer workstations 304b to display all active game instances hosted on either gaming server. In effect, players logged in to either gaming server 302a, 302b are pooled, allowing any player to participate in any currently active game, irrespective of which gaming server the game is hosted on.
Each gaming server 402a, 402b includes a respective database 413a, 413b that stores game information data for game instances hosted on that gaming server. Each database 413a, 413b is updated continuously to store real-time or near real-time information relating to active game instances hosted on the corresponding gaming server 402a, 402b such as the name of each instance (e.g., a table name), the identity of players at each table, the table stakes, etc.
Game information data in database 413b relating to game instances hosted on gaming server 402b is mirrored by the gaming servers 402a, 402b in game information database 413a, enabling the client process on computer workstations 404a to list all current game instances hosted on either gaming server 402a or 402b. Analogously, game information data in database 413a relating to game instances hosted on gaming server 402a may be mirrored in game information database 413b, thereby enabling the client process on computer workstations 404b to display all active game instances hosted on either gaming server.
Thus, players at the workstations 404a can participate in active game instances on either gaming server, i.e. the players logged in to server 404a are made available to participate in game instances hosted on gaming server 402b together with players at computer workstations 404b who are logged in to gaming server 404b. Conversely, players at computer workstations 404b may be pooled with players at computer workstations 404a to participate in game instances hosted on gaming server 404a.
Although the system of
Although the systems of
2. Game Play
As described above with reference to the embodiment of
The set of messages that conform to the API can be sufficiently extensive to enable the player at computer workstation 204b to effect different game play decisions and other actions that may be required in order to play the selected game. For example, the message set may include the following distinct message types:
It will be appreciated that the set of messages that conform to the API associated with the server-stored program in gaming server 202b may be different to that in the above example and may include additional messages, or may omit one or more messages described.
If the player at workstation 204a selects a game instance to join that is hosted on local gaming server 202a, the player is authenticated on the local gaming server 202a by means of a conventional login process. If, however, the player selects a game instance to join that is hosted on the remote gaming server 202b, the player is authenticated by means of a login process on the remote gaming server 202b which returns the player's login credentials to the player's local gaming server 202a for validation. Once authenticated, the player is admitted to the game instance and is able to commence play.
It is anticipated that the operation of the client process on computer workstation 204a will be transparent to the user, irrespective of whether it is communicating natively with local gaming server 202a when the player is participating in a game instance hosted on the local gaming server, or communicating according to the API with remote gaming server 202b when the player is participating in a game instance hosted on the remote gaming server.
If it is desired to also allow players at workstations 204b to participate in games hosted on gaming server 202a (i.e. now in the role of remote server) the client process in computer workstation 204b displays to a player a consolidated list of active game instances hosted on both gaming servers 202a and 202b. The client process on workstations 204b communicates natively with gaming server 202b (i.e. now acting as a local server) and with the remote gaming server 202a by means of an API associated with the server-stored program in gaming server 204a. If the server-stored programs in gaming servers 204a and 204b are different, the corresponding APIs of the two gaming servers will differ and the client processes of computer workstations 204a and 204b may utilise different sets of messages that conform to the different APIs, respectively.
Analogous descriptions apply in respect of the embodiments of
3. Settlement of Player Wagers
The example embodiment of
During each turn of the game, the gaming server on which the game is hosted debits the credit account of each participating player by the amounts wagered by the player and, once the turn of the game is complete, credits the credit account to the winning player by the amount of the pot less an applicable rake amount. Such debits and credits are done directly for participating players logged in to the gaming server on which the game is hosted, and indirectly through the other gaming server for participating players logged into that other gaming server.
Furthermore:
Turning now to the embodiment of
During each turn of the game, the gaming server on which the game is hosted debits the credit account of each participating player by the amounts wagered by that player and, once the turn of the game is complete, credits the credit account of the winning player by the amount of the pot less an applicable rake amount. Such debits and credits are done directly in the case of participating players logged in to the gaming server on which the game is hosted, and indirectly through the non-hosting gaming server for the participating players logged in to the non-hosting gaming server.
Furthermore:
The embodiment of
During each turn of the game, the gaming server on which the game is hosted debits the credit account of each participating player by the amounts wagered by that player and, once the turn of the game is complete, credits the credit account of the winning player by the amount of the pot less an applicable rake amount. Such debits and credits are done directly in the case of the participating players logged in to the gaming server on which the game is hosted, and indirectly through the non-hosting gaming server for participating players logged in to the non-hosting gaming server.
Furthermore:
Number | Date | Country | Kind |
---|---|---|---|
1108118.9 | May 2011 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
3810627 | Levy | May 1974 | A |
4335809 | Wain | Jun 1982 | A |
4614342 | Takashima | Sep 1986 | A |
4636951 | Harlick | Jan 1987 | A |
4760527 | Sidley | Jul 1988 | A |
4926327 | Sidley | May 1990 | A |
5038022 | Lucero | Aug 1991 | A |
5083271 | Thacher et al. | Jan 1992 | A |
5096195 | Gimmon | Mar 1992 | A |
5159549 | Hallman, Jr. et al. | Oct 1992 | A |
5457305 | Akel et al. | Oct 1995 | A |
5476259 | Weingardt | Dec 1995 | A |
5505449 | Eberhardt et al. | Apr 1996 | A |
5559312 | Lucero | Sep 1996 | A |
5586257 | Perlman | Dec 1996 | A |
5613912 | Slater | Mar 1997 | A |
5655961 | Acres et al. | Aug 1997 | A |
5674128 | Holch et al. | Oct 1997 | A |
5735525 | McCrea, Jr. | Apr 1998 | A |
5761647 | Boushy | Jun 1998 | A |
5762552 | Vuong et al. | Jun 1998 | A |
5768382 | Schneier et al. | Jun 1998 | A |
5770533 | Franchi | Jun 1998 | A |
RE35864 | Weingardt | Jul 1998 | E |
5779549 | Walker et al. | Jul 1998 | A |
5800268 | Molnick | Sep 1998 | A |
5800269 | Holch et al. | Sep 1998 | A |
5809482 | Strisower | Sep 1998 | A |
5823879 | Goldberg et al. | Oct 1998 | A |
5833540 | Miodunski et al. | Nov 1998 | A |
5841980 | Waters et al. | Nov 1998 | A |
5851149 | Xidos et al. | Dec 1998 | A |
5857911 | Fioretti | Jan 1999 | A |
5970143 | Schneier et al. | Oct 1999 | A |
5974566 | Ault et al. | Oct 1999 | A |
6001016 | Walker et al. | Dec 1999 | A |
6012984 | Roseman | Jan 2000 | A |
6015348 | Lambright et al. | Jan 2000 | A |
6089982 | Holch et al. | Jul 2000 | A |
6117011 | Lvov | Sep 2000 | A |
6165072 | Davis et al. | Dec 2000 | A |
6183362 | Boushy | Feb 2001 | B1 |
6183366 | Goldberg et al. | Feb 2001 | B1 |
6196920 | Spaur et al. | Mar 2001 | B1 |
6224486 | Walker et al. | May 2001 | B1 |
6241608 | Torango | Jun 2001 | B1 |
6257981 | Acres et al. | Jul 2001 | B1 |
6264560 | Goldberg et al. | Jul 2001 | B1 |
6302793 | Fertitta, III et al. | Oct 2001 | B1 |
6352479 | Sparks, II | Mar 2002 | B1 |
6371852 | Acres | Apr 2002 | B1 |
6394907 | Rowe | May 2002 | B1 |
6435968 | Torango | Aug 2002 | B1 |
6532448 | Higginson et al. | Mar 2003 | B1 |
6626757 | Oliveras | Sep 2003 | B2 |
6656040 | Brosnan et al. | Dec 2003 | B1 |
6679777 | Pfeiffer et al. | Jan 2004 | B2 |
6692353 | Walker et al. | Feb 2004 | B2 |
6712702 | Goldberg et al. | Mar 2004 | B2 |
6767284 | Koza | Jul 2004 | B1 |
6837789 | Garahi et al. | Jan 2005 | B2 |
6866586 | Oberberger et al. | Mar 2005 | B2 |
6884166 | Leen et al. | Apr 2005 | B2 |
6887151 | Leen et al. | May 2005 | B2 |
6887159 | Leen et al. | May 2005 | B2 |
6893347 | Zilliacus et al. | May 2005 | B1 |
6899628 | Leen et al. | May 2005 | B2 |
6979267 | Leen et al. | Dec 2005 | B2 |
7113975 | Nakayama et al. | Sep 2006 | B2 |
7128652 | Lavoie et al. | Oct 2006 | B1 |
7186181 | Rowe | Mar 2007 | B2 |
7240093 | Danieli et al. | Jul 2007 | B1 |
7384336 | Torango | Jun 2008 | B2 |
7387571 | Walker et al. | Jun 2008 | B2 |
7419428 | Rowe | Sep 2008 | B2 |
7699702 | Daniel | Apr 2010 | B2 |
7722466 | Rothschild | May 2010 | B2 |
8047913 | Moshal | Nov 2011 | B2 |
20010037253 | Kensey | Nov 2001 | A1 |
20020094869 | Harkham | Jul 2002 | A1 |
20020138594 | Rowe | Sep 2002 | A1 |
20020147047 | Letovsky et al. | Oct 2002 | A1 |
20030069071 | Britt et al. | Apr 2003 | A1 |
20040254010 | Fine | Dec 2004 | A1 |
20060084499 | Moshal | Apr 2006 | A1 |
20060211479 | Walker | Sep 2006 | A1 |
20080032801 | Brunet de Courssou | Feb 2008 | A1 |
20090264202 | Chen et al. | Oct 2009 | A1 |
20100228619 | Goldberg et al. | Sep 2010 | A1 |
20110034240 | Naicker et al. | Feb 2011 | A1 |
20130247039 | Tsutsui | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
1 739 639 | Jan 2007 | EP |
1 895 484 | Mar 2008 | EP |
1 903 522 | Mar 2008 | EP |
1 912 185 | Apr 2008 | EP |
2 284 812 | Feb 2011 | EP |
WO 03093921 | Nov 2003 | GB |
0150391 | Jul 2001 | WO |
03093921 | Nov 2003 | WO |
03093921 | Nov 2003 | WO |
2004050201 | Jun 2004 | WO |
2005033825 | Apr 2005 | WO |
Entry |
---|
European Search Report and European Search Opinion for EP 12 16 7537 dated May 14, 2013, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20120289341 A1 | Nov 2012 | US |