In summary, the present invention is directed to a plastic container having a structure that reduces the internal volume of the container in order to create a positive pressure inside the container. The positive pressure inside the container serves to reinforce the container, thereby reducing the need for reinforcing structures such as ribs in the sidewall. This allows the plastic container to have the approximate strength characteristics of a glass container and at the same time maintain the smooth, sleek appearance of a glass container.
In one exemplary embodiment, the present invention provides a plastic container comprising an upper portion including a finish adapted to receive a closure, a lower portion including a base, a sidewall extending between the upper portion and the lower portion, wherein the upper portion, the lower portion, and the sidewall define an interior volume for storing liquid contents. A pressure panel is located on the container and is moveable between an initial position and an activated position, wherein the pressure panel is located in the initial position prior to filling the container and is moved to the activated position after filling and sealing the container. Moving the pressure panel from the initial position to the activated position reduces the internal volume of the container and creates a positive pressure inside the container. The positive pressure reinforces the sidewall.
According to another exemplary embodiment, the present invention provides a plastic container comprising an upper portion having a finish adapted to receive a closure, a lower portion including a base, and a sidewall extending between the upper portion and the lower portion, a substantial portion of the sidewall being free of structural reinforcement elements, and a pressure panel located on the container and moveable between an initial position and an activated position. After the container is filled and sealed, the sidewall is relatively flexible when the pressure panel is in the initial position, and the sidewall becomes relatively stiffer after the pressure panel is moved to the activated position.
According to yet another exemplary embodiment, the present invention provides a method of processing a container comprising providing a container comprising a sidewall and a pressure panel, the container defining an internal volume, filling the container with a liquid contents, capping the container to seal the liquid contents inside the container, and moving the pressure panel from an initial position to an activated position in which the pressure panel reduces the internal volume of the container, thereby creating a positive pressure inside the container that reinforces the sidewall.
Further objectives and advantages, as well as the structure and function of preferred embodiments, will become apparent from a consideration of the description, drawings, and examples.
The foregoing and other features and advantages of the invention will be apparent from the following, more particular description of a preferred embodiment of the invention, as illustrated in the accompanying drawings wherein like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements.
Embodiments of the invention are discussed in detail below. In describing embodiments, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected. While specific exemplary embodiments are discussed, it should be understood that this is done for illustration purposes only. A person skilled in the relevant art will recognize that other components and configurations can be used without departing from the spirit and scope of the invention. All references cited herein are incorporated by reference as if each had been individually incorporated.
The present invention relates to a plastic container having one or more structures that allow the internal volume of the container to be reduced after the container has been filled and sealed. Reducing the internal volume of the container may result in an increase in pressure inside the container, for example, by compressing the headspace of the filled container. The pressure increase inside the container can have the effect of strengthening the container, for example, increasing the container's top-load capacity or hoop strength. The pressure increase can also help ward off deformation of the container that may occur over time, for example, as the container loses pressure due to vapor loss. In addition, the reduction in internal volume can be adjusted to compensate for the internal vacuum that often develops in hot-filled containers as a result of the cooling of the liquid contents after filling and capping. As a result, plastic containers according to the present invention can be designed with relatively less structural reinforcing elements than prior art containers. For example, plastic containers according to the present invention may have fewer reinforcing elements in the sidewall as compared to prior art designs.
Referring to
Referring to
Referring to
Referring to
Pressure panel 22 can be activated by moving it from an initial position (shown in
Container 10 can be filled with the pressure panel 22 in the initial position, and then the pressure panel 22 can be moved to the activated position after container 10 is filled and sealed, causing a reduction in internal volume in container 10. This reduction in the internal volume can create a positive pressure inside container 10. For example, the reduction in internal volume can compress the headspace in the container, which in turn will exert pressure back on the liquid contents and the container walls. It has been found that this positive pressure reinforces container 10, and in particular, stiffens sidewall 20 as compared to before the pressure panel 22 is activated. Thus, the positive pressure created as a result of pressure panel 22 allows plastic container 10 to have a relatively thin sidewall yet have substantial portions that are free of structural reinforcements as compared to prior art containers. One of ordinary skill in the art will appreciate that pressure panel 22 may be located on other areas of container 10 besides base 18, such as sidewall 20. In addition, one of ordinary skill in the art will appreciate that the container can have more than one pressure panel 22, for example, in instances where the container is large and/or where a relatively large positive pressure is required inside the container.
The size and shape of pressure panel 22 can depend on several factors. For example, it may be determined for a specific container that a certain level of positive pressure is required to provide the desired strength characteristics (e.g., hoop strength and top load capacity). The pressure panel 22 can thus be shaped and configured to reduce the internal volume of the container 10 by an amount that creates the predetermined pressure level. For containers that are filled at ambient temperature, the predetermined amount of pressure (and/or the amount of volume reduction by pressure panel 22) can depend at least on the strength/flexibility of the sidewall, the shape and/or size of the container, the density of the liquid contents, the expected shelf life of the container, and/or the amount of headspace in the container. Another factor to consider may be the amount of pressure loss inside the container that results from vapor loss during storage of the container. Yet another factor may be volume reduction of the liquid contents due to refrigeration during storage. For containers that are “hot filled” (i.e., filled at an elevated temperature), additional factors may need to be considered to compensate for the reduction in volume of the liquid contents that often occurs when the contents cool to ambient temperature (and the accompanying vacuum that may form in the container). These additional factors can include at least the coefficient of thermal expansion of the liquid contents, the magnitude of the temperature changes that the contents undergo, and/or water vapor transmission. By considering all or some of the above factors, the size and shape of pressure panel 22 can be calculated to achieve predictable and repeatable results. It should be noted that the positive pressure inside the container 10 is not a temporary condition, but rather, should last for at least 60 days after the pressure panel is activated, and preferably, until the container 10 is opened.
Referring to
Once the container 10 is filled and sealed, the pressure panel 22 can be activated by moving it to the activated position. For example, as shown in
In the exemplary embodiment shown in
As discussed above, moving the pressure panel 22 to the activated position reduces the internal volume of container 10 and creates a positive pressure therein that reinforces the sidewall 20. As also discussed above, the positive pressure inside container 10 can permit at least a substantial portion of sidewall 20 to be free of structural reinforcements, as compared to prior art containers.
Referring to
Containers according to the present invention may have sidewall profiles that are optimized to compensate for the pressurization imparted by the pressure panel. For example, containers 10, 110, 210, 310, and 410, and particularly the sidewalls 20, 120, 220, 320, 420, may be adapted to expand radially outwardly in order to absorb some of the pressurization. This expansion can increase the amount of pressurization that the container can withstand. This can be advantageous, because the more the container is pressurized, the longer it will take for pressure loss (e.g., due to vapor transmission through the sidewall) to reduce the strengthening effects of the pressurization. The increased pressurization also increases the stacking strength of the container.
Referring to
Referring to
One of ordinary skill in the art will know that the above-described sidewall shapes (e.g., teardrop, pendant, S-shaped, fluted) are not the only sidewall configurations that can be adapted to expand radially outwardly in order to absorb some of the pressurization created by the pressure panel. Rather, one of ordinary skill in the art will know from the present application that other shapes and configurations can alternatively be used, such as concertina and/or faceted configurations.
The processing of a container, for example in the manner described with respect to
Similarly, container holding devices H are fed in and spaced by a second feed scroll 526, which feeds in and spaces container holding devices H to match the spacing on a second feed-in wheel 528, which also comprises a generally star-shaped wheel. Feed-in wheel 528 similarly includes a fixed plate 528a for supporting container holding devices H while they are fed into turret system 530. Container holding devices H are fed into main turret system 530 where containers C are placed in container holding devices H, with holding devices H providing a stable bottom surface for processing the containers. In the illustrated embodiment, main turret system 530 rotates in a clock-wise direction to align the respective containers over the container holding devices fed in by star wheel 528. However, it should be understood that the direction of rotation may be changed. Wheels 522a and 528 are driven by a motor 529 (
Container holding devices H comprise disc-shaped members with a first recess with an upwardly facing opening for receiving the lower end of a container and a second recess with downwardly facing opening, which extends upwardly from the downwardly facing side of the disc-shaped member through to the first recess to form a transverse passage through the disc-shaped member. The second recess is smaller in diameter than the first so as to form a shelf in the disc-shaped member on which at least the perimeter of the container can rest. As noted above, when a container is deactivated, its vacuum panels will be extended or projecting from the bottom surface. The extended or projecting portion is accommodated by the second recess. In addition, the containers can then be activated through the transverse passage formed by the second recess, as will be appreciated more fully in reference to
In order to provide extra volume and accommodation of pressure changes needed when the containers are filled with a hot product, such as a hot liquid or a partly solid product, the inverted projection of the blow-molded containers should be pushed back out of the container (deactivated). For example, a mechanical operation employing a rod that enters the neck of the blow-molded container and pushes against the inverted projection of the blow-molded container causing the inverted projection to move out and project from the bottom of the base, as shown in
Referring to
As best seen in
Again as best seen in
Referring again to
If the container holding devices are not used, the containers according to the invention may be supported at the neck of each container during the filling and capping operations to provide maximum control of the container processes. This may be achieved by rails R, which support the neck of the container, and a traditional cleat and chain drive, or any other known like-conveying modes for moving the containers along the rails R of the production line. The extendable projection 512 may be positioned outside the container C by an actuator as described above.
The process of repositioning the projection outside of the container preferably should occur right before the filling of the hot product into the container. According to one embodiment of the invention, the neck of a container would be sufficiently supported by rails so that the repositioning operation could force or pop the inverted base outside of the container without causing the container to fall off the rail conveyor system. In some instances, it may not be necessary to invert the projection prior to leaving the blow-molding operation and these containers are moved directly to a filling station. The container with an extended projection, still supported by its neck, may be moved by a traditional neck rail drive to the filling and capping operations, as schematically shown in
Referring to
As previously noted, turret assembly 588 is of similar construction to turret assembly 530 and includes container holder wheel 590, upper and lower cam assemblies 5100 and 5102, respectively, a plurality of actuator assemblies 5104 for griping the containers, and a plurality of actuator assemblies 5106 for activating the containers. In addition, turret system 588 includes a support plate 5107, which supports the container holders and containers as they are moved by turret system 588. As best seen in
Looking at
Similar to upper cam assembly 550, upper cam assembly 5100 includes an upper plate 5110 and a lower plate 5112, which define therebetween a cam surface or recess 5114, which guides guide members 572 of actuator assemblies 5104 to thereby extend and retract extendable rods 538 and in turn to extend and retract container grippers 5108. As the containers are conveyed through turret assembly 588, a respective gripper 5108 is lowered onto a respective container by its respective extendable rod 538. Once the gripper is positioned on the respective container, actuator assemblies 5106 are then actuated to extend their respective extendable rods 5116, which extend through plate 5107 and holders H, to apply a compressive force onto the invertible projections of the containers to move the projections to their recessed or retracted positions to thereby activate the containers. As would be understood, the upward force generated by extendable rod 5116 is counteracted by the downward force of a gripper 5108 on container C. After the activation of each container is complete, the container then can be removed from the holder by its respective gripper 5108.
Referring to
The physics of manipulating the activation panel P or extendable rod 5116 is a calculated science recognizing 1) Headspace in a container; 2) Product density in a hot-filled container; 3) Thermal differences from the fill temperature through the cooler temperature through the ambient storage temperature and finally the refrigerated temperature; and 4) Water vapor transmission. By recognizing all of these factors, the size and travel of the activation panel P or extendable rod 5116 is calculated so as to achieve predictable and repeatable results. With the vacuum removed from the hot-filled container, the container can be light-weighted because the need to add weight to resist a vacuum or to build vacuum panels is no longer necessary. Weight reduction of a container can be anticipated to be approximately 10%.
The embodiments illustrated and discussed in this specification are intended only to teach those skilled in the art the best way known to the inventors to make and use the invention. Nothing in this specification should be considered as limiting the scope of the present invention. All examples presented are representative and non-limiting. The above-described embodiments of the invention may be modified or varied, without departing from the invention, as appreciated by those skilled in the art in light of the above teachings. It is therefore to be understood that, within the scope of the claims and their equivalents, the invention may be practiced otherwise than as specifically described.
Number | Date | Country | Kind |
---|---|---|---|
521694 | Sep 2002 | NZ | national |
The present application is a continuation of U.S. patent application Ser. No. 11/413,124, filed Apr. 28, 2006, published as US20060255005 now U.S. Pat. No. 8,381,940 (“the '124 patent application”). The '124 patent application is a continuation-in-part of U.S. patent application Ser. No. 10/529,198, filed on Dec. 15, 2005, now U.S. Pat. No. 8,152,010, which is the U.S. National Phase of International Application No. PCT/NZ2003/000220, filed on Sep. 30, 2003, which claims priority of New Zealand Application No. 521694, filed on Sep. 30, 2002. The '124 patent application is also a continuation-in-part of U.S. patent application Ser. No. 10/566,294, filed on Sep. 5, 2006, now U.S. Pat. No. 7,726,106, which is the U.S. National Phase of International Application No. PCT/US2004/024581, filed on Jul. 30, 2004, which claims priority of U.S. Provisional Patent Application No. 60/551,771, filed Mar. 11, 2004, and U.S. Provisional Patent Application No. 60/491,179, filed Jul. 30, 2003. The entire contents of the aforementioned applications and publications are incorporated herein by reference. 1. Field of the Invention The present invention related generally to plastic containers, and more specifically, to plastic containers in which the contents are pressurized to reinforce the walls of the containers. 2. Related Art In order to acheieve the strength characteristics of a glass bottle, coventional lightweight plastic containers are typically provided with rib structures, recessed waists, or other structures that reinforce the sidewall of the container. While known reinforcing structures usually provide the necessary strength, they tend to clutter the sidewall of the container and detract from the desired smooth, sleek appearance of a glass container. In addition, the known reinforcing structures often limit the number of shapes and configurations that are available to bottle designers. Thus, there remains a need in the art for a relatively lightweight plastic container that has the strength characteristics of a glass container as well as the smooth, sleek appearance of a glass container, and offeres increased design opportunities.
Number | Name | Date | Kind |
---|---|---|---|
1499239 | Malmquist | Jun 1924 | A |
D110624 | Mekeel, Jr. | Jul 1938 | S |
2124959 | Vogel | Jul 1938 | A |
2378324 | Ray et al. | Jun 1945 | A |
2880902 | Owsen | Apr 1959 | A |
2960248 | Kuhlman | Nov 1960 | A |
2971671 | Shakman | Feb 1961 | A |
2982449 | Szyman et al. | May 1961 | A |
3043461 | Glassco | Jul 1962 | A |
3081002 | Tauschinski et al. | Mar 1963 | A |
3174655 | Hurschman | Mar 1965 | A |
3301293 | Santelli | Jan 1967 | A |
3325031 | Singier | Jun 1967 | A |
3397724 | Bolen et al. | Aug 1968 | A |
3409167 | Blanchard | Nov 1968 | A |
3426939 | Young | Feb 1969 | A |
3468443 | Marcus | Sep 1969 | A |
3483908 | Donovan | Dec 1969 | A |
3485355 | Stewart | Dec 1969 | A |
3693828 | Kneusel et al. | Sep 1972 | A |
3704140 | Petit et al. | Nov 1972 | A |
3727783 | Carmichael | Apr 1973 | A |
3819789 | Parker | Jun 1974 | A |
3883033 | Brown | May 1975 | A |
3904069 | Toukmanian | Sep 1975 | A |
3918920 | Barber | Nov 1975 | A |
3935955 | Das | Feb 1976 | A |
3941237 | Macgregor, Jr. | Mar 1976 | A |
3942673 | Lyu et al. | Mar 1976 | A |
3949033 | Uhlig | Apr 1976 | A |
3956441 | Uhlig | May 1976 | A |
4036926 | Chang | Jul 1977 | A |
4037752 | Dulmaine et al. | Jul 1977 | A |
4117062 | Uhlig | Sep 1978 | A |
4123217 | Fischer et al. | Oct 1978 | A |
4125632 | Vosti et al. | Nov 1978 | A |
4134510 | Chang | Jan 1979 | A |
4170622 | Uhlig et al. | Oct 1979 | A |
4174782 | Obsomer | Nov 1979 | A |
4219137 | Hutchens | Aug 1980 | A |
4231483 | Dechenne et al. | Nov 1980 | A |
4247012 | Alberghini | Jan 1981 | A |
4301933 | Yoshino et al. | Nov 1981 | A |
4318489 | Snyder et al. | Mar 1982 | A |
4318882 | Agrawal et al. | Mar 1982 | A |
4321483 | Dugan | Mar 1982 | A |
4338765 | Ohmori et al. | Jul 1982 | A |
4355728 | Yoshino et al. | Oct 1982 | A |
4377191 | Yamaguchi | Mar 1983 | A |
4378328 | Przytulla | Mar 1983 | A |
4381061 | Cerny et al. | Apr 1983 | A |
D269158 | Gaunt et al. | May 1983 | S |
4386701 | Galer | Jun 1983 | A |
4412866 | Schoenrock et al. | Nov 1983 | A |
4436216 | Chang | Mar 1984 | A |
4444308 | MacEwen | Apr 1984 | A |
4450878 | Takada et al. | May 1984 | A |
4465199 | Aoki | Aug 1984 | A |
4497855 | Agrawal et al. | Feb 1985 | A |
4542029 | Caner et al. | Sep 1985 | A |
4610366 | Estes et al. | Sep 1986 | A |
4628669 | Herron et al. | Dec 1986 | A |
4642968 | McHenry et al. | Feb 1987 | A |
4645078 | Reyner | Feb 1987 | A |
4667454 | McHenry et al. | May 1987 | A |
4684025 | Copland et al. | Aug 1987 | A |
4685273 | Caner et al. | Aug 1987 | A |
D292378 | Brandt et al. | Oct 1987 | S |
4749092 | Sugiura et al. | Jun 1988 | A |
4773458 | Touzani | Sep 1988 | A |
4785949 | Krishnakumar et al. | Nov 1988 | A |
4785950 | Miller et al. | Nov 1988 | A |
4807424 | Robinson et al. | Feb 1989 | A |
4813556 | Lawrence | Mar 1989 | A |
4831050 | Cassidy et al. | May 1989 | A |
4836398 | Leftault, Jr. et al. | Jun 1989 | A |
4840289 | Fait et al. | Jun 1989 | A |
4850493 | Howard, Jr. | Jul 1989 | A |
4850494 | Howard, Jr. | Jul 1989 | A |
4865206 | Behm et al. | Sep 1989 | A |
4867323 | Powers | Sep 1989 | A |
4880129 | McHenry et al. | Nov 1989 | A |
4887730 | Touzani | Dec 1989 | A |
4892205 | Powers et al. | Jan 1990 | A |
4896205 | Weber | Jan 1990 | A |
4921147 | Poirier | May 1990 | A |
4967538 | Leftault, Jr. et al. | Nov 1990 | A |
4976538 | Ake | Dec 1990 | A |
4978015 | Walker | Dec 1990 | A |
4997692 | Yoshino | Mar 1991 | A |
5004109 | Bartley | Apr 1991 | A |
5005716 | Eberle | Apr 1991 | A |
5014868 | Wittig et al. | May 1991 | A |
5024340 | Alberghini et al. | Jun 1991 | A |
5033254 | Zenger | Jul 1991 | A |
5060453 | Alberghini et al. | Oct 1991 | A |
5067622 | Garver et al. | Nov 1991 | A |
5090180 | Sorensen | Feb 1992 | A |
5092474 | Leigner | Mar 1992 | A |
5133468 | Brunson et al. | Jul 1992 | A |
5141121 | Brown et al. | Aug 1992 | A |
5178290 | Ota et al. | Jan 1993 | A |
5199587 | Ota et al. | Apr 1993 | A |
5199588 | Hayashi | Apr 1993 | A |
5201438 | Norwood et al. | Apr 1993 | A |
5217737 | Gygax et al. | Jun 1993 | A |
5234126 | Jonas et al. | Aug 1993 | A |
5244106 | Takacs | Sep 1993 | A |
5251424 | Zenger et al. | Oct 1993 | A |
5255889 | Collette et al. | Oct 1993 | A |
5261544 | Weaver, Jr. | Nov 1993 | A |
5279433 | Krishnakumar et al. | Jan 1994 | A |
5281387 | Collette et al. | Jan 1994 | A |
5333761 | Davis et al. | Aug 1994 | A |
5341946 | Vailliencourt et al. | Aug 1994 | A |
5392937 | Prevot et al. | Feb 1995 | A |
5411699 | Collette et al. | May 1995 | A |
5454481 | Hsu | Oct 1995 | A |
5472105 | Krishnakumar et al. | Dec 1995 | A |
5472181 | Lowell | Dec 1995 | A |
RE35140 | Powers, Jr. | Jan 1996 | E |
5484052 | Pawloski et al. | Jan 1996 | A |
5503283 | Semersky | Apr 1996 | A |
5593063 | Claydon et al. | Jan 1997 | A |
5598941 | Semersky et al. | Feb 1997 | A |
5632397 | Fandeux et al. | May 1997 | A |
5642826 | Melrose | Jul 1997 | A |
5672730 | Cottman | Sep 1997 | A |
5690244 | Darr | Nov 1997 | A |
5704504 | Bueno | Jan 1998 | A |
5713480 | Petre et al. | Feb 1998 | A |
5730314 | Wiemann et al. | Mar 1998 | A |
5730914 | Ruppman, Sr. | Mar 1998 | A |
5737827 | Kuse et al. | Apr 1998 | A |
5758802 | Wallays | Jun 1998 | A |
5762221 | Tobias et al. | Jun 1998 | A |
5780130 | Hansen et al. | Jul 1998 | A |
5785197 | Slat | Jul 1998 | A |
5819507 | Kaneko et al. | Oct 1998 | A |
5829614 | Collette et al. | Nov 1998 | A |
5858300 | Shimizu et al. | Jan 1999 | A |
5860556 | Robbins, III | Jan 1999 | A |
5887739 | Prevot et al. | Mar 1999 | A |
5888598 | Brewster et al. | Mar 1999 | A |
5897090 | Smith et al. | Apr 1999 | A |
5906286 | Matsuno et al. | May 1999 | A |
5908128 | Krishnakumar et al. | Jun 1999 | A |
D415030 | Searle et al. | Oct 1999 | S |
5976653 | Collette et al. | Nov 1999 | A |
RE36639 | Okhai | Apr 2000 | E |
6065624 | Steinke | May 2000 | A |
6077554 | Wiemann et al. | Jun 2000 | A |
6105815 | Mazda et al. | Aug 2000 | A |
6213325 | Cheng et al. | Apr 2001 | B1 |
6228317 | Smith et al. | May 2001 | B1 |
6230912 | Rashid | May 2001 | B1 |
6277321 | Vailliencourt et al. | Aug 2001 | B1 |
6298638 | Bettle | Oct 2001 | B1 |
6375025 | Mooney | Apr 2002 | B1 |
6390316 | Mooney | May 2002 | B1 |
6413466 | Boyd et al. | Jul 2002 | B1 |
6439413 | Prevot et al. | Aug 2002 | B1 |
6467639 | Mooney | Oct 2002 | B2 |
6485669 | Boyd et al. | Nov 2002 | B1 |
6502369 | Andison et al. | Jan 2003 | B1 |
6514451 | Boyd et al. | Feb 2003 | B1 |
6585124 | Boyd et al. | Jul 2003 | B2 |
6595380 | Silvers | Jul 2003 | B2 |
6612451 | Tobias et al. | Sep 2003 | B2 |
6662960 | Hong et al. | Dec 2003 | B2 |
6749780 | Tobias | Jun 2004 | B2 |
6763968 | Boyd et al. | Jul 2004 | B1 |
6769561 | Futral et al. | Aug 2004 | B2 |
6779673 | Melrose et al. | Aug 2004 | B2 |
6923334 | Melrose et al. | Aug 2005 | B2 |
6935524 | Wilhite | Aug 2005 | B2 |
6942116 | Lisch et al. | Sep 2005 | B2 |
6983858 | Slat et al. | Jan 2006 | B2 |
7051889 | Boukobza | May 2006 | B2 |
7077279 | Melrose | Jul 2006 | B2 |
7137520 | Melrose | Nov 2006 | B1 |
7150372 | Lisch et al. | Dec 2006 | B2 |
7159374 | Abercrombie, III et al. | Jan 2007 | B2 |
7367365 | Slat et al. | May 2008 | B2 |
7520400 | Young et al. | Apr 2009 | B2 |
7717282 | Melrose | May 2010 | B2 |
7726106 | Kelley et al. | Jun 2010 | B2 |
7735304 | Kelley et al. | Jun 2010 | B2 |
7926243 | Kelley et al. | Apr 2011 | B2 |
8127955 | Denner et al. | Mar 2012 | B2 |
8152010 | Melrose | Apr 2012 | B2 |
8381940 | Melrose et al. | Feb 2013 | B2 |
20010035391 | Young et al. | Nov 2001 | A1 |
20020074336 | Silvers | Jun 2002 | A1 |
20020096486 | Bourque et al. | Jul 2002 | A1 |
20020153343 | Tobias et al. | Oct 2002 | A1 |
20020158038 | Heisel et al. | Oct 2002 | A1 |
20030015491 | Melrose et al. | Jan 2003 | A1 |
20030186006 | Schmidt et al. | Oct 2003 | A1 |
20030196926 | Tobias et al. | Oct 2003 | A1 |
20030217947 | Ishikawa et al. | Nov 2003 | A1 |
20040016716 | Melrose et al. | Jan 2004 | A1 |
20040074864 | Melrose et al. | Apr 2004 | A1 |
20040149677 | Slat et al. | Aug 2004 | A1 |
20040173565 | Semersky et al. | Sep 2004 | A1 |
20040173656 | Seong | Sep 2004 | A1 |
20040211746 | Trude | Oct 2004 | A1 |
20040232103 | Lisch et al. | Nov 2004 | A1 |
20060006133 | Lisch et al. | Jan 2006 | A1 |
20060138074 | Melrose | Jun 2006 | A1 |
20060231985 | Kelley | Oct 2006 | A1 |
20060243698 | Melrose | Nov 2006 | A1 |
20060255005 | Melrose et al. | Nov 2006 | A1 |
20060261031 | Melrose | Nov 2006 | A1 |
20070017892 | Melrose | Jan 2007 | A1 |
20070045312 | Abercrombie, III et al. | Mar 2007 | A1 |
20070051073 | Kelley et al. | Mar 2007 | A1 |
20070084821 | Bysick et al. | Apr 2007 | A1 |
20070125743 | Pritchett et al. | Jun 2007 | A1 |
20070181403 | Sheets et al. | Aug 2007 | A1 |
20070199915 | Denner et al. | Aug 2007 | A1 |
20070199916 | Denner et al. | Aug 2007 | A1 |
20070215571 | Trude | Sep 2007 | A1 |
20070235905 | Trude et al. | Oct 2007 | A1 |
20080047964 | Denner et al. | Feb 2008 | A1 |
20090126323 | Kelley et al. | May 2009 | A1 |
Number | Date | Country |
---|---|---|
2002257159 | Apr 2003 | AU |
2077717 | Mar 1993 | CA |
1761753 | Jan 1972 | DE |
2102319 | Aug 1972 | DE |
3215866 | Nov 1983 | DE |
346518 | Dec 1989 | EP |
0521642 | Jan 1993 | EP |
0551788 | Jul 1993 | EP |
0666222 | Aug 1995 | EP |
0609348 | Jan 1997 | EP |
0916406 | May 1999 | EP |
0957030 | Nov 1999 | EP |
1063076 | Dec 2000 | EP |
1571499 | Jun 1969 | FR |
2607109 | May 1988 | FR |
0781103 | Aug 1957 | GB |
1113988 | May 1968 | GB |
2050919 | Jan 1981 | GB |
2372977 | Sep 2002 | GB |
200677 | Aug 2000 | GE |
48-31050 | Sep 1973 | JP |
49-28628 | Jul 1974 | JP |
54-72181 | Jun 1979 | JP |
56-072730 | Jun 1981 | JP |
55-114717 | Feb 1982 | JP |
63-189224 | Aug 1988 | JP |
64-009146 | Jan 1989 | JP |
03-43342 | Feb 1991 | JP |
03-076625 | Apr 1991 | JP |
05-193694 | Aug 1992 | JP |
06-336238 | Dec 1994 | JP |
07-300121 | Nov 1995 | JP |
8053115 | Feb 1996 | JP |
08-253220 | Oct 1996 | JP |
09-039934 | Feb 1997 | JP |
09-110045 | Apr 1997 | JP |
10-167226 | Jun 1998 | JP |
10-181734 | Jul 1998 | JP |
10-230919 | Sep 1998 | JP |
2000-168756 | Jun 2000 | JP |
2000-229615 | Aug 2000 | JP |
2002-127237 | May 2002 | JP |
2006-501109 | Jan 2006 | JP |
240448 | Jun 1995 | NZ |
296014 | Oct 1998 | NZ |
335565 | Oct 1999 | NZ |
506684 | Aug 2000 | NZ |
512423 | Jun 2001 | NZ |
521694 | Oct 2003 | NZ |
2021956 | Oct 1994 | RU |
2096288 | Nov 1997 | RU |
WO 9309031 | May 1993 | WO |
WO 9312975 | Jul 1993 | WO |
WO 9405555 | Mar 1994 | WO |
WO 9703885 | Feb 1997 | WO |
WO 9714617 | Apr 1997 | WO |
WO 9734808 | Sep 1997 | WO |
WO 99021770 | May 1999 | WO |
WO 0051895 | Sep 2000 | WO |
WO 0140081 | Jun 2001 | WO |
WO 0202418 | Jan 2002 | WO |
WO 0218213 | Mar 2002 | WO |
WO 02085755 | Oct 2002 | WO |
WO 2004028910 | Apr 2004 | WO |
WO 2004106175 | Dec 2004 | WO |
WO 2004106176 | Dec 2004 | WO |
WO 2005012091 | Feb 2005 | WO |
WO 2006113428 | Oct 2006 | WO |
WO 2007127337 | Nov 2007 | WO |
Entry |
---|
ISR for PCT/US 2004/024581 dated Jul. 25, 2005, cited by other, 1 page. |
IPRP (including Written Opinion) for PCT/US/2004/024581 dated Jan. 30, 2006, cited by other, 5 pages. |
National Intellectual Property Center of Georgia “SAKPATENTI”, Search Report in Filing No. 8770/01, Application No. AP2003 008770, GE19049, Mar. 1, 2006, cited by other, 2 pages. |
IPRP for PCT/NZ03/00220, completed Jan. 11, 2005, cited by other, 10 pages. |
ISR for PCT/NZ01/000176 (WO 02/018213) mailed Nov. 8, 2001, cited by other, 3 pages. |
ISR for PCT/NZ03/00220, mailed Nov. 27, 2003, cited by other, 3 pages. |
Office Action for European App. No. 07794381.9 dated Nov. 21, 2012, 3 pages. |
Office Action for European App. No. 07794381.9 dated Dec. 8, 2011, 5 pages. |
U.S. Appl. No. 10/566,294, Kelley File History. |
U.S. Appl. No. 10/529,198, Melrose File History. |
U.S. Appl. No. 11/704,338, Denner File History. |
U.S. Appl. No. 11/413,124, Melrose File History. |
U.S. Appl. No. 11/704,368, Melrose File History. |
U.S. Appl. No. 12/178,186, Kelley File History. |
U.S. Appl. No. 12/325,452, Kelley File History. |
Number | Date | Country | |
---|---|---|---|
20110210133 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
60551771 | Mar 2004 | US | |
60491179 | Jul 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11413124 | Apr 2006 | US |
Child | 12885533 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10529198 | US | |
Child | 11413124 | US | |
Parent | 11413124 | US | |
Child | 11413124 | US | |
Parent | 10566294 | US | |
Child | 11413124 | US |