System for processing image data for display using backward projection

Information

  • Patent Grant
  • 11910123
  • Patent Number
    11,910,123
  • Date Filed
    Wednesday, July 27, 2022
    a year ago
  • Date Issued
    Tuesday, February 20, 2024
    2 months ago
  • Inventors
    • Fluegel; Sebastian
  • Original Assignees
  • Examiners
    • Torrente; Richard T
    Agents
    • HONIGMAN LLP
Abstract
A vehicular vision system includes a first camera and a second camera. The system includes an electronic control unit (ECU) and a video display operable to display video images derived from frames of first image data captured by the first camera and frames of second image data captured by the second camera. Responsive to a view selection input selecting a view for the video display, the system (i) determines a first subset of pixels based on tracing rays from pixels of the video display the pixels of the first camera, and (ii) determines a second subset of pixels based on tracing rays from pixels of the video display to pixels of the second camera. The system buffers the first and second subset of pixels and generates display frames of image data using the buffered pixels. The system displays video images derived from the display frames of image data.
Description
FIELD OF THE INVENTION

The present invention relates generally to a vehicle vision system for a vehicle and, more particularly, to a vehicle vision system that utilizes two or more cameras at a vehicle.


BACKGROUND OF THE INVENTION

Use of imaging sensors in vehicle imaging systems is common and known. Examples of such known systems are described in U.S. Pat. Nos. 5,949,331; 5,670,935 and/or 5,550,677, which are hereby incorporated herein by reference in their entireties.


SUMMARY OF THE INVENTION

The present invention provides a driver assistance system or vision system or imaging system for a vehicle that utilizes two or more cameras (preferably two or more CMOS cameras) to capture image data representative of images exterior of the vehicle, and provides enhanced image processing of the captured image data to provide a display of images derived from image data captured by two or more cameras, utilizing backward projection and tracing rays from the display plane (pixel) grid (backwards) to one or more source camera (pixel) grid(s) under regard of the warping and unwarping schemes of the camera and the virtual view or views which are to be generated.


The projection pixel data handling is thus reduced to just those pixels that find use on the display, which saves processing capacity (FPGA, GPU or Processor), RAM space and bus resources of the image data processing system. The system or solution of the present invention thus saves about 25 percent or more of processing power or use of the processor and FPGA processing resources and reduces the Block RAM consumption.


These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a plan view of a vehicle with a vision system that incorporates cameras in accordance with the present invention;



FIGS. 2A and 2B show image data flow of a prior art system;



FIG. 3 shows image data flow in accordance with the system of the present invention;



FIG. 4 shows a projection coordinate scheme for the system of the present invention;



FIG. 5 shows mapping of a camera pixel to a top view pixel within the output [display] pixel grid in accordance with the system of the present invention;



FIG. 6 shows the display output having a top view display and a rear view image display in combination, with the top view generated from outputs of four cameras, and with an ego vehicle and driving aids overlayed on the displayed images;



FIG. 7 is a block diagram of an image projection unit in accordance with the present invention;



FIG. 8 is an accumulator block diagram and table;



FIG. 9 is an accumulator flowchart in accordance with the present invention;



FIG. 10 is a gap flowchart and block diagram in accordance with the present invention;



FIG. 11 is a schematic showing gap filling in accordance with the present invention;



FIG. 12 is an image shown as a stretched region of video images without filled gaps; and



FIG. 13 is a view of a vehicle with one master camera and three slave cameras and a display for a surround vision system in accordance with the present invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

A vehicle vision system and/or driver assist system and/or object detection system and/or alert system operates to capture images exterior of the vehicle and may process the captured image data to display images and to detect objects at or near the vehicle and in the predicted path of the vehicle, such as to assist a driver of the vehicle in maneuvering the vehicle in a rearward direction. The vision system includes an image processor or image processing system that is operable to receive image data from one or more cameras and provide an output to a display device for displaying images representative of the captured image data. Optionally, the vision system may provide display, such as a rearview display or a top down or bird's eye or surround view display or the like.


Referring now to the drawings and the illustrative embodiments depicted therein, a vehicle 10 includes an imaging system or vision system 12 that includes at least one exterior facing imaging sensor or camera, such as a rearward facing imaging sensor or camera 14a (and the system may optionally include multiple exterior facing imaging sensors or cameras, such as a forwardly facing camera 14b at the front (or at the windshield) of the vehicle, and a sidewardly/rearwardly facing camera 14c, 14d at respective sides of the vehicle), which captures images exterior of the vehicle, with the camera having a lens for focusing images at or onto an imaging array or imaging plane or imager of the camera (FIG. 1). Optionally, a forward viewing camera may be disposed at the windshield of the vehicle and view through the windshield and forward of the vehicle, such as for a machine vision system (such as for traffic sign recognition, headlamp control, pedestrian detection, collision avoidance, lane marker detection and/or the like). The vision system 12 includes a control or electronic control unit (ECU) or processor 18 that is operable to process image data captured by the camera or cameras and may detect objects or the like and/or provide displayed images at a display device 16 for viewing by the driver of the vehicle (although shown in FIG. 1 as being part of or incorporated in or at an interior rearview mirror assembly 20 of the vehicle, the control and/or the display device may be disposed elsewhere at or in the vehicle). The data transfer or signal communication from the camera to the ECU may comprise any suitable data or communication link, such as a vehicle network bus or the like of the equipped vehicle.


The present invention provides enhanced vehicle multi-camera vision processing. Normal view and fish eye view cameras disposed at a vehicle so as to have exterior fields of view provide image data streams, which get communized in one or more altered or artificial views, such as a top down bird's eye view or the like, for being displayed to the driver of the vehicle on a display, projector or head up display or the like, or are processed by an advanced driver assistance system (ADAS) machine vision processing algorithm. For that, the source images get unwrapped/undistorted, cropped and mathematically projected to a virtual view plane, partially alpha blended and overlayed with augmentations. The processing is done in real time, which means frame wise image capturing and displaying at a frame rate typically at 15 f/s (frames per second), 30 f/s or 60 f/s or the like. The image processing path from the cameras to one or more artificial views requires substantial amounts of processing performance in processors, FPGAs and/or GPUs as well as vehicle communication bus capacity and RAM space may these be located in the cameras, in an ECU the cameras are connected at or at a target display device with processing capabilities such as a head unit.


In special-view systems, the 2D grid or array of camera pixels does not correspond to the 2D screen pixel grid. A projection algorithm is required to transform the 2D camera grid into the 2D screen grid. Several camera inputs may be combined at a single screen.


Current solutions are based on screen-to-camera projection. The system solution according to the present invention is implemented as backward projection, tracing rays from the display plane (pixel) grid (backwards) to one or more source camera (pixel) grid(s) under regard of the warping and unwarping schemes of the camera and the virtual view or views which are to be generated. Due to that measure, the projection pixel data handling is reduced to just these pixels which really find use on the display which saves processing capacity (FPGA, GPU or Processor), RAM space and bus resources of the image data processing system.


The following description may imply a four camera architecture with the camera's imagers connected (via monodirectional or bidirectional data busses) to an ECU which bears the processing capabilities such as having one or more microprocessor cores, one or more FPGAs and RAM either integrated or extra, such as shown in FIG. 1. An alternative architecture with having the processing capabilities fully or mostly incorporate to one camera or multiple cameras will be discussed further below.


Instead of buffering all (at a surround view vision system typically four, but more are possible) camera image pixels (of one frame) in the vision system's RAM such as the FPGAs Block RAM (optionally after passing an High Dynamic Range Image Processing (HDR ISP) algorithm) for sourcing the virtual projection processing such as shown in FIG. 2A, the system may just store the source pixels (already debayered by the ISP) that are necessary for the display output image (see FIGS. 3 and 4). In the given illustrated examples, it may be assumed an 888 RGB may find use. As an alternative option, the image processing may be done in 10-8-6 RGB or 10-7-7 RGB. For that, one or more projection units may be present behind the HDR ISP for distributing the according pixels out of the incoming image data streams. A top view image is generated out of four projection planes which may have one projection unit each (see FIG. 5). Often the display is sharing another (e.g., user chosen or selected) view such as a rear view image with the top view image (see FIG. 6) which generation requires an additional projection unit. Although shown in FIG. 6 as including a rear view image and top view image, the system may also provide a forward view image and top view image to assist the driver in parking the vehicle.


Each projection unit may comprise an undistortion table, representing the camera lens parameters followed by a 3×3 vector table which is view dependent, followed by a distortion table, representing the target view distortion (see FIG. 7). Each camera sends its each column's pixels in sequence row by row (Cc=Camera column coordinate; Cr=Camera row coordinate). The (back-) projection unit addresses each pixel into an accumulator bin (Dx=Display x coordinate, Dy=Display y coordinate), see FIG. 5 (where the regions of camera pixels are projected to the same screen pixel, and all camera pixel values in the region are averaged). The system uses W accumulators and processes image data in camera scan order. A pixel value is added to the projected accumulator. If screen_y is below accu_y, the old accu is divided by the number of pixels and the average is written to SDRAM, and a new accumulation is started with the current pixels.


By that, the camera pixel content is condensed at the time of transmission of the data stream without storing whole camera images but just the display view image instead in the desired size and resolution and possibly cropped. In some image regions, multiple camera pixels of a single camera source get projected to the same display (or screen) pixel, typically those at which the density of camera pixels exceed the density of target elements (display pixels) due to distortion. Due to that, target pixels may be generated by having accumulators (W) (or bins) at which multiple source pixels get blended into one target pixel (see FIGS. 8 and 9). The system may manage the AccuRAM (FIGS. 8 and 9) and accumulate RGB values and divide by the number of accumulated pixels. The blending may be done by arithmetic averaging. As an alternative slightly more complex option, the averaging may be done by arithmetic—geometric averaging or as preferred alternative option by geometric averaging in accordance to the x, y subpixel displacement. By that, the camera pixel projected closer to the target display pixel may be reflected stronger in the resulting bin value than those which are projected father away (two dimensional by that geometric).


As can be seen in FIG. 12, in some target image regions not for all display pixel (Dx, Dy) a camera source pixel is present (also due to distortion), these pixels get marked as ‘gaps’. The gaps may be stored in a list within the device memory. Optionally, the gaps may be expressed as a polygon, where the polygon corners are defined by the location of surrounding valid image elements. Due to economic reasons, the gap flags may be recorded primarily (see FIG. 10). The system may manage the GapRAM (projection of vectors of previous camera line) and detect gaps between projection vectors and generate gap records (grounded by lines on the screen). A consecutive stage ‘gap fill’ (see FIG. 3) may be executed consecutively to the projection unit, optionally one for each unit. The gap fill stage will fill the empty target image elements or display pixel region with a blend or interpolation of the borderlining existing pixels (flagged as ‘no gap’) (see FIG. 11). Optionally, the gap fill will be done line-by-line or column-by-column of target image elements or pixels.


The blending may be done optionally by a decreasing factor depending on how far the gap pixel is away from a borderlining source pixel, done according each borderlining pixel. As an alternative option, the blending may be done by just filling the gap pixels between the borderlining pixels with the arithmetic average of all true borderlining pixels. As an alternative option, the blending may be done by filling the gap pixels by dithering duplications of all borderlining pixels, optionally under reflection of the color and brightness average and optionally by imitating the pixel noise level of that region or the whole image. By that a more noise night view image may have a more dithered noise inserted to the gap pixels than a smooth bright daylight image. The dithering may be accurate to hide the Moire pattern-like structure caused by the distortion and stretching of the camera grid as to be seen in FIG. 12.


The gap fill processing may be done in three steps: In the first step, the image processing device may calculate the two intersection points between the current line or column and the edges of the gap polygon. In the second step, the image processing device may calculate the values of each intersection point from the values of the two corner points of the crossed polygon edge. In the third step, the image processing device may calculate the values of the target image elements between the intersections from the values of the intersection points.


The target (displayed) image possesses zones at which two camera's (partial) image borderlines overlap (on purpose). These may be blended by alpha blending as the primary step before finally displaying.


As an optional alternative, the surround vision system according to the present invention may have an architecture having the processing capabilities fully or mostly incorporated to one camera or multiple cameras instead of having it on an ECU. The ECU may be spared entirely. FIG. 13 shows a vehicle 10′ having one master-camera 15a at the vehicle's rear and three slave cameras 15b, 15c and 15d at the side and at the front of the vehicle, all viewing outward or exterior or outbound from the vehicle. Optionally, the system may have just the front and the rear camera 15a and 15b. Optionally, side rearview mirror cameras with small opening angle to the rear or shift lens optics with high pixel density to the rear and opening to the blind spot region with reduced pixel density may be used additionally or instead of the slave cameras 15c and 15d. Optionally, there may be an additional rear only side camera 15e and 15f integrated in the side mirror region, optionally combined with 15c and 15d in one wing each carrying two slave cameras.


The master camera may have a monodirectional or bidirectional vision data and control line or bus to the display device 17, which may be vehicle cluster attached or integrated, head unit attached or integrated, or a head up display, projector or TFT, optionally comprising a light field display which may be visible on the bottom or top of the windshield or at a combiner or at a screen on the rearview mirror position. The slave cameras may be connected to the master camera via a bidirectional vision data and control data line or bus. All data lines may optionally also carry the supply power. The vision data may optionally be compressed via a compression codec before transmission. The used codec may be H.264, H.262, H.263, H.265, MPEG1, MPEG2, MPEG3, JPEG2000 besides others. In case compression is used, the slave cameras may run a compression algorithm before transmitting image data to the master camera. Optionally, the slave cameras send their full image data streams to the master camera which is accumulating the required display pixels in accumulator bins (in the manner as the ECU referred above) coming from its own imager and from the slave cameras. The master camera also processes the gap filling. The master camera may decompress the data before further processing. Optionally, the master camera may compress the display image before transmission to the display device 17.


In a more advanced alternative option, the slave cameras may run the projection unit and hold the accumulator bins. The slave cameras may not send the full images but just the accumulator bins content to the master camera. The master camera may carry out the accumulation of the own imagers' image data and the gap filling before sending the display image to the display 17. The system may utilize aspects of the vision systems described in U.S. Publication No. US-2014-0152778, which is hereby incorporated herein by reference in its entirety.


The camera or sensor may comprise any suitable camera or sensor. Optionally, the camera may comprise a “smart camera” that includes the imaging sensor array and associated circuitry and image processing circuitry and electrical connectors and the like as part of a camera module, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2013/081984 and/or WO 2013/081985, which are hereby incorporated herein by reference in their entireties.


The system includes an image processor operable to process image data captured by the camera or cameras, such as for detecting objects or other vehicles or pedestrians or the like in the field of view of one or more of the cameras. For example, the image processor may comprise an image processing chip selected from the EYEQ family of image processing chips available from Mobileye Vision Technologies Ltd. of Jerusalem, Israel, and may include object detection software (such as the types described in U.S. Pat. Nos. 7,855,755; 7,720,580 and/or 7,038,577, which are hereby incorporated herein by reference in their entireties), and may analyze image data to detect vehicles and/or other objects. Responsive to such image processing, and when an object or other vehicle is detected, the system may generate an alert to the driver of the vehicle and/or may generate an overlay at the displayed image to highlight or enhance display of the detected object or vehicle, in order to enhance the driver's awareness of the detected object or vehicle or hazardous condition during a driving maneuver of the equipped vehicle.


The vehicle may include any type of sensor or sensors, such as imaging sensors or radar sensors or lidar sensors or ladar sensors or ultrasonic sensors or the like. The imaging sensor or camera may capture image data for image processing and may comprise any suitable camera or sensing device, such as, for example, a two dimensional array of a plurality of photosensor elements arranged in at least 640 columns and 480 rows (at least a 640×480 imaging array, such as a megapixel imaging array or the like), with a respective lens focusing images onto respective portions of the array. The photosensor array may comprise a plurality of photosensor elements arranged in a photosensor array having rows and columns. Preferably, the imaging array has at least 300,000 photosensor elements or pixels, more preferably at least 500,000 photosensor elements or pixels and more preferably at least 1 million photosensor elements or pixels. The imaging array may capture color image data, such as via spectral filtering at the array, such as via an RGB (red, green and blue) filter or via a red/red complement filter or such as via an RCC (red, clear, clear) filter or the like. The logic and control circuit of the imaging sensor may function in any known manner, and the image processing and algorithmic processing may comprise any suitable means for processing the images and/or image data.


For example, the vision system and/or processing and/or camera and/or circuitry may utilize aspects described in U.S. Pat. Nos. 9,233,641; 9,146,898; 9,174,574; 9,090,234; 9,077,098; 8,818,042; 8,886,401; 9,077,962; 9,068,390; 9,140,789; 9,092,986; 9,205,776; 8,917,169; 8,694,224; 7,005,974; 5,760,962; 5,877,897; 5,796,094; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978; 7,859,565; 5,550,677; 5,670,935; 6,636,258; 7,145,519; 7,161,616; 7,230,640; 7,248,283; 7,295,229; 7,301,466; 7,592,928; 7,881,496; 7,720,580; 7,038,577; 6,882,287; 5,929,786 and/or 5,786,772, which are all hereby incorporated herein by reference in their entireties. The system may communicate with other communication systems via any suitable means, such as by utilizing aspects of the systems described in International Publication Nos. WO 2010/144900; WO 2013/043661 and/or WO 2013/081985, and/or U.S. Pat. No. 9,126,525, which are hereby incorporated herein by reference in their entireties.


The imaging device and control and image processor and any associated illumination source, if applicable, may comprise any suitable components, and may utilize aspects of the cameras (such as various imaging sensors or imaging array sensors or cameras or the like, such as a CMOS imaging array sensor, a CCD sensor or other sensors or the like) and vision systems described in U.S. Pat. Nos. 5,760,962; 5,715,093; 6,922,292; 6,757,109; 6,717,610; 6,590,719; 6,201,642; 5,796,094; 6,559,435; 6,831,261; 6,822,563; 6,946,978; 7,720,580; 8,542,451; 7,965,336; 7,480,149; 5,550,677; 5,877,897; 6,498,620; 5,670,935; 5,796,094; 6,396,397; 6,806,452; 6,690,268; 7,005,974; 7,937,667; 7,123,168; 7,004,606; 6,946,978; 7,038,577; 6,353,392; 6,320,176; 6,313,454 and/or 6,824,281, and/or International Publication Nos. WO 2009/036176; WO 2009/046268; WO 2010/099416; WO 2011/028686 and/or WO 2013/016409, and/or U.S. Pat. Publication Nos. US 2010-0020170 and/or US-2009-0244361, which are all hereby incorporated herein by reference in their entireties.


The camera module and circuit chip or board and imaging sensor may be implemented and operated in connection with various vehicular vision-based systems, and/or may be operable utilizing the principles of such other vehicular systems, such as a vehicle headlamp control system, such as the type disclosed in U.S. Pat. Nos. 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 7,004,606; 7,339,149 and/or 7,526,103, which are all hereby incorporated herein by reference in their entireties, a rain sensor, such as the types disclosed in commonly assigned U.S. Pat. Nos. 6,353,392; 6,313,454; 6,320,176 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties, a vehicle vision system, such as a forwardly, sidewardly or rearwardly directed vehicle vision system utilizing principles disclosed in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,877,897; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978 and/or 7,859,565, which are all hereby incorporated herein by reference in their entireties, a trailer hitching aid or tow check system, such as the type disclosed in U.S. Pat. No. 7,005,974, which is hereby incorporated herein by reference in its entirety, a reverse or sideward imaging system, such as for a lane change assistance system or lane departure warning system or for a blind spot or object detection system, such as imaging or detection systems of the types disclosed in U.S. Pat. Nos. 7,881,496; 7,720,580; 7,038,577; 5,929,786 and/or 5,786,772, which are hereby incorporated herein by reference in their entireties, a video device for internal cabin surveillance and/or video telephone function, such as disclosed in U.S. Pat. Nos. 5,760,962; 5,877,897; 6,690,268 and/or 7,370,983, and/or U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties, a traffic sign recognition system, a system for determining a distance to a leading or trailing vehicle or object, such as a system utilizing the principles disclosed in U.S. Pat. Nos. 6,396,397 and/or 7,123,168, which are hereby incorporated herein by reference in their entireties, and/or the like.


Optionally, the vision system may include a display for displaying images captured by one or more of the imaging sensors for viewing by the driver of the vehicle while the driver is normally operating the vehicle. Optionally, for example, the vision system may include a video display device, such as by utilizing aspects of the video display systems described in U.S. Pat. Nos. 5,530,240; 6,329,925; 7,855,755; 7,626,749; 7,581,859; 7,446,650; 7,338,177; 7,274,501; 7,255,451; 7,195,381; 7,184,190; 5,668,663; 5,724,187; 6,690,268; 7,370,983; 7,329,013; 7,308,341; 7,289,037; 7,249,860; 7,004,593; 4,546,551; 5,699,044; 4,953,305; 5,576,687; 5,632,092; 5,677,851; 5,708,410; 5,737,226; 5,802,727; 5,878,370; 6,087,953; 6,173,508; 6,222,460; 6,513,252 and/or 6,642,851, and/or U.S. Publication Nos. US-2012-0162427; US-2006-0050018 and/or US-2006-0061008, which are all hereby incorporated herein by reference in their entireties. Optionally, the video display screen or device may be operable to display images captured by a rearward viewing camera of the vehicle during a reversing maneuver of the vehicle (such as responsive to the vehicle gear actuator being placed in a reverse gear position or the like) to assist the driver in backing up the vehicle, and optionally may be operable to display the compass heading or directional heading character or icon when the vehicle is not undertaking a reversing maneuver, such as when the vehicle is being driven in a forward direction along a road (such as by utilizing aspects of the display system described in International Publication No. WO 2012/051500, which is hereby incorporated herein by reference in its entirety).


Optionally, the vision system (utilizing the forward facing camera and a rearward facing camera and other cameras disposed at the vehicle with exterior fields of view) may be part of or may provide a display of a top-down view or birds-eye view system of the vehicle or a surround view at the vehicle, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2010/099416; WO 2011/028686; WO 2012/075250; WO 2013/019795; WO 2012/075250; WO 2012/145822; WO 2013/081985; WO 2013/086249 and/or WO 2013/109869, and/or U.S. Publication No. US-2012-0162427, which are hereby incorporated herein by reference in their entireties.


Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.

Claims
  • 1. A vehicular vision system, the vehicular vision system comprising: a first camera disposed at a vehicle equipped with the vehicular vision system and viewing exterior of the vehicle, wherein the first camera comprises a first two dimensional array of photosensing pixels, and wherein the first camera captures frames of first image data;a second camera disposed at the vehicle and viewing exterior of the vehicle, wherein the second camera comprises a second two dimensional array of photosensing pixels, and wherein the second camera captures frames of second image data;an electronic control unit (ECU) comprising electronic circuitry and associated software;wherein the electronic circuitry of the ECU comprises an image processor for processing frames of first image data captured by the first camera and frames of second image data captured by the second camera;a video display disposed in the vehicle and operable to display video images derived from frames of first image data captured by the first camera and frames of second image data captured by the second camera;wherein, responsive to a view selection input selecting a view for the video display, the vehicular vision system (i) determines a first subset of the first two dimensional array of photosensing pixels based on tracing rays from pixels of the video display using the selected view to the first two dimensional array of photosensing pixels, and (ii) determines a second subset of the second two dimensional array of photosensing pixels based on tracing rays from pixels of the video display using the selected view to the second two dimensional array of photosensing pixels;wherein the vehicular vision system, while capturing first frames of first image data with the first camera, buffers the first subset of the first two dimensional array of photosensing pixels of each first frame of first image data;wherein the vehicular vision system, while capturing second frames of second image data with the second camera, buffers the second subset of the second two dimensional array of photosensing pixels of each second frame of second image data;wherein the vehicular vision system, using the ECU, generates display frames of image data using the buffered first subset of the first two dimensional array of photosensing pixels of the first frames of first image data and the buffered second subset of the second two dimensional array of photosensing pixels of the second frames of second image data; andwherein the video display displays video images derived from the display frames of image data.
  • 2. The vehicular vision system of claim 1, wherein a field of view of the first camera partially overlaps the field of view of the second camera.
  • 3. The vehicular vision system of claim 1, wherein pixels of the first two dimensional array of photosensing pixels that are not within the first subset of the first two dimensional array of photosensing pixels are not buffered.
  • 4. The vehicular vision system of claim 3, wherein pixels of the second two dimensional array of photosensing pixels that are not within the second subset of the second two dimensional array of photosensing pixels are not buffered.
  • 5. The vehicular vision system of claim 1, wherein a single pixel of the video display traces to a plurality of pixels of the first two dimensional array of photosensing pixels.
  • 6. The vehicular vision system of claim 5, wherein a value of the single pixel of the video display is based on a blending of each of the plurality of pixels of the first two dimensional array of photosensing pixels.
  • 7. The vehicular vision system of claim 6, wherein the blending comprises averaging each of the plurality of pixels of the first two dimensional array of photosensing pixels.
  • 8. The vehicular vision system of claim 1, wherein the vehicular vision system determines a pixel of the video display that fails to trace to any pixel of the first two dimensional array of photosensing pixels and the second two dimensional array of photosensing pixels.
  • 9. The vehicular vision system of claim 8, wherein the vehicular vision system, responsive to determining the pixel of the video display that fails to trace to any pixel, interpolates a value for the pixel of the video display based on two or more pixels of the first two dimensional array of photosensing pixels or the second two dimensional array of photosensing pixels.
  • 10. The vehicular vision system of claim 8, wherein the vehicular vision system determines a plurality of pixels of the video display that fail to trace to any pixel of the first two dimensional array of photosensing pixels and the second two dimensional array of photosensing pixels, and wherein the vehicular vision system represents the plurality of pixels of the video display as a polygon.
  • 11. A vehicular vision system, the vehicular vision system comprising: a plurality of cameras disposed at a vehicle equipped with the vehicular vision system and viewing exterior of the vehicle, wherein each camera of the plurality of cameras comprises a respective two dimensional array of photosensing pixels, and wherein each camera of the plurality of cameras captures frames of image data;an electronic control unit (ECU) comprising electronic circuitry and associated software;wherein the electronic circuitry of the ECU comprises an image processor for processing frames of image data captured by each camera of the plurality of cameras;a video display disposed in the vehicle and operable to display video images derived from frames of image data captured by the plurality of cameras;wherein, responsive to a view selection input selecting a view for the video display, the vehicular vision system, for at least some of the plurality of cameras, determines a respective subset of the respective two dimensional array of photosensing pixels based on tracing rays from pixels of the video display using the selected view to the respective two dimensional array of photosensing pixels;wherein the vehicular vision system, while capturing frames of image data with the at least some of the plurality of cameras, buffers the respective subset of the respective two dimensional array of photosensing pixels of each frame of image data;wherein the vehicular vision system, using the ECU, generates display frames of image data using each respective buffered subset of the respective two dimensional array of photosensing pixels of the frames of image data; andwherein the video display displays video images derived from the display frames of image data.
  • 12. The vehicular vision system of claim 11, wherein a field of view of each camera of the plurality of cameras partially overlaps the field of view of at least one other camera of the plurality of cameras.
  • 13. The vehicular vision system of claim 11, wherein pixels of each respective two dimensional array of photosensing pixels that are not within the respective subset of the respective two dimensional array of photosensing pixels are not buffered.
  • 14. The vehicular vision system of claim 11, wherein the vehicular vision system determines a pixel of the video display that fails to trace to any pixel of any of the respective two dimensional arrays of photosensing pixels.
  • 15. The vehicular vision system of claim 14, wherein the vehicular vision system, responsive to determining the pixel of the video display that fails to trace to any pixel, interpolates a value for the pixel of the video display based on two or more pixels of one of the respective two dimensional arrays.
  • 16. A vehicular vision system, the vehicular vision system comprising: a first camera disposed at a vehicle equipped with the vehicular vision system and viewing exterior of the vehicle, wherein the first camera comprises a first two dimensional array of photosensing pixels, and wherein the first camera captures frames of first image data;a second camera disposed at the vehicle and viewing exterior of the vehicle, wherein the second camera comprises a second two dimensional array of photosensing pixels, and wherein the second camera captures frames of second image data, and wherein a field of view of the first camera partially overlaps the field of view of the second camera;an electronic control unit (ECU) comprising electronic circuitry and associated software;wherein the electronic circuitry of the ECU comprises an image processor for processing frames of first image data captured by the first camera and frames of second image data captured by the second camera;a video display disposed in the vehicle and operable to display video images derived from frames of first image data captured by the first camera and frames of second image data captured by the second camera;wherein, responsive to a view selection input selecting a view for the video display, the vehicular vision system (i) determines a first subset of the first two dimensional array of photosensing pixels based on tracing rays from pixels of the video display using the selected view to the first two dimensional array of photosensing pixels, and (ii) determines a second subset of the second two dimensional array of photosensing pixels based on tracing rays from pixels of the video display using the selected view to the second two dimensional array of photosensing pixels;wherein the vehicular vision system, while capturing first frames of first image data with the first camera, buffers the first subset of the first two dimensional array of photosensing pixels of each first frame of first image data;wherein the vehicular vision system, while capturing second frames of second image data with the second camera, buffers the second subset of the second two dimensional array of photosensing pixels of each second frame of second image data;wherein the vehicular vision system, using the ECU, generates display frames of image data using the buffered first subset of the first two dimensional array of photosensing pixels of the first frames of first image data and the buffered second subset of the second two dimensional array of photosensing pixels of the second frames of second image data, and wherein at least one pixel of the display frames of image data is derived from a plurality of pixels of the first two dimensional array of photosensing pixels; andwherein the video display displays video images derived from the display frames of image data.
  • 17. The vehicular vision system of claim 16, wherein pixels of the first two dimensional array of photosensing pixels that are not within the first subset of the first two dimensional array of photosensing pixels are not buffered.
  • 18. The vehicular vision system of claim 17, wherein pixels of the second two dimensional array of photosensing pixels that are not within the second subset of the second two dimensional array of photosensing pixels are not buffered.
  • 19. The vehicular vision system of claim 16, wherein a single pixel of the video display traces to a plurality of pixels of the first two dimensional array of photosensing pixels.
  • 20. The vehicular vision system of claim 19, wherein a value of the single pixel of the video display is based on a blending of each of the plurality of pixels of the first two dimensional array of photosensing pixels.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 16/252,871, filed Jan. 21, 2019, which is a continuation of U.S. patent application Ser. No. 15/334,365, filed Oct. 26, 2016, now U.S. Pat. No. 10,187,590, which claims the filing benefits of U.S. provisional application Ser. No. 62/246,870, filed Oct. 27, 2015, which are hereby incorporated herein by reference in their entireties.

US Referenced Citations (244)
Number Name Date Kind
5550677 Schofield et al. Aug 1996 A
5670935 Schofield et al. Sep 1997 A
5949331 Schofield et al. Sep 1999 A
6020704 Buschur Feb 2000 A
6049171 Stam et al. Apr 2000 A
6052124 Stein et al. Apr 2000 A
6066933 Ponziana May 2000 A
6084519 Coulling et al. Jul 2000 A
6091833 Yasui et al. Jul 2000 A
6097024 Stam et al. Aug 2000 A
6100811 Hsu et al. Aug 2000 A
6116743 Hoek Sep 2000 A
6139172 Bos et al. Oct 2000 A
6144022 Tenenbaum et al. Nov 2000 A
6148120 Sussman Nov 2000 A
6173087 Kumar et al. Jan 2001 B1
6175300 Kendrick Jan 2001 B1
6184781 Ramakesavan Feb 2001 B1
6198409 Schofield et al. Mar 2001 B1
6201642 Bos Mar 2001 B1
6226061 Tagusa May 2001 B1
6259412 Duroux Jul 2001 B1
6259423 Tokito et al. Jul 2001 B1
6266082 Yonezawa et al. Jul 2001 B1
6266442 Laumeyer et al. Jul 2001 B1
6285393 Shimoura et al. Sep 2001 B1
6285778 Nakajima et al. Sep 2001 B1
6294989 Schofield et al. Sep 2001 B1
6297781 Turnbull et al. Oct 2001 B1
6302545 Schofield et al. Oct 2001 B1
6310611 Caldwell Oct 2001 B1
6313454 Bos et al. Nov 2001 B1
6317057 Lee Nov 2001 B1
6320176 Schofield et al. Nov 2001 B1
6320282 Caldwell Nov 2001 B1
6329925 Skiver et al. Dec 2001 B1
6333759 Mazzilli Dec 2001 B1
6353392 Schofield et al. Mar 2002 B1
6359392 He Mar 2002 B1
6370329 Teuchert Apr 2002 B1
6396397 Bos et al. May 2002 B1
6411204 Bloomfield et al. Jun 2002 B1
6411328 Franke et al. Jun 2002 B1
6424273 Gutta et al. Jul 2002 B1
6430303 Naoi et al. Aug 2002 B1
6433817 Guerra Aug 2002 B1
6442465 Breed et al. Aug 2002 B2
6485155 Duroux et al. Nov 2002 B1
6497503 Dassanayake et al. Dec 2002 B1
6498620 Schofield et al. Dec 2002 B2
6513252 Schierbeek et al. Feb 2003 B1
6515378 Drummond et al. Feb 2003 B2
6523964 Schofield et al. Feb 2003 B2
6539306 Turnbull Mar 2003 B2
6553130 Lemelson et al. Apr 2003 B1
6559435 Schofield et al. May 2003 B2
6570998 Ohtsuka et al. May 2003 B1
6574033 Chui et al. Jun 2003 B1
6578017 Ebersole et al. Jun 2003 B1
6587573 Stam et al. Jul 2003 B1
6589625 Kothari et al. Jul 2003 B1
6593011 Liu et al. Jul 2003 B2
6593698 Stam et al. Jul 2003 B2
6594583 Ogura et al. Jul 2003 B2
6611202 Schofield et al. Aug 2003 B2
6611610 Stam et al. Aug 2003 B1
6631316 Stam et al. Oct 2003 B2
6631994 Suzuki et al. Oct 2003 B2
6636258 Strumolo Oct 2003 B2
6672731 Schnell et al. Jan 2004 B2
6678056 Downs Jan 2004 B2
6690268 Schofield et al. Feb 2004 B2
6693524 Payne Feb 2004 B1
6700605 Toyoda et al. Mar 2004 B1
6703925 Steffel Mar 2004 B2
6704621 Stein et al. Mar 2004 B1
6711474 Treyz et al. Mar 2004 B1
6714331 Lewis et al. Mar 2004 B2
6717610 Bos et al. Apr 2004 B1
6735506 Breed et al. May 2004 B2
6744353 Sjonell Jun 2004 B2
6757109 Bos Jun 2004 B2
6762867 Lippert et al. Jul 2004 B2
6795221 Urey Sep 2004 B1
6802617 Schofield et al. Oct 2004 B2
6806452 Bos et al. Oct 2004 B2
6807287 Hermans Oct 2004 B1
6822563 Bos et al. Nov 2004 B2
6823241 Shirato et al. Nov 2004 B2
6831261 Schofield et al. Dec 2004 B2
6864930 Matsushita et al. Mar 2005 B2
6882287 Schofield Apr 2005 B2
6889161 Winner et al. May 2005 B2
6891563 Schofield et al. May 2005 B2
6909753 Meehan et al. Jun 2005 B2
6946978 Schofield Sep 2005 B2
6953253 Schofield et al. Oct 2005 B2
6975775 Rykowski et al. Dec 2005 B2
7004593 Weller et al. Feb 2006 B2
7004606 Schofield Feb 2006 B2
7005974 McMahon et al. Feb 2006 B2
7038577 Pawlicki et al. May 2006 B2
7062300 Kim Jun 2006 B1
7065432 Moisel et al. Jun 2006 B2
7085637 Breed et al. Aug 2006 B2
7092548 Laumeyer et al. Aug 2006 B2
7113867 Stein Sep 2006 B1
7116246 Winter et al. Oct 2006 B2
7123168 Schofield Oct 2006 B2
7133661 Hatae et al. Nov 2006 B2
7149613 Stam et al. Dec 2006 B2
7151996 Stein Dec 2006 B2
7202776 Breed Apr 2007 B2
7227459 Bos et al. Jun 2007 B2
7227611 Hull et al. Jun 2007 B2
7253723 Lindahl et al. Aug 2007 B2
7307655 Okamoto et al. Dec 2007 B1
7311406 Schofield et al. Dec 2007 B2
7325934 Schofield et al. Feb 2008 B2
7325935 Schofield et al. Feb 2008 B2
7339149 Schofield et al. Mar 2008 B1
7375803 Bamji May 2008 B1
7380948 Schofield et al. Jun 2008 B2
7388182 Schofield et al. Jun 2008 B2
7423821 Bechtel et al. Sep 2008 B2
7425076 Schofield et al. Sep 2008 B2
7526103 Schofield et al. Apr 2009 B2
7541743 Salmeen et al. Jun 2009 B2
7561181 Schofield et al. Jul 2009 B2
7565006 Stam et al. Jul 2009 B2
7566851 Stein et al. Jul 2009 B2
7602412 Cutler Oct 2009 B2
7605856 Imoto Oct 2009 B2
7633383 Dunsmoir et al. Dec 2009 B2
7639149 Katoh Dec 2009 B2
7655894 Schofield et al. Feb 2010 B2
7676087 Dhua et al. Mar 2010 B2
7710463 Foote May 2010 B2
7720580 Higgins-Luthman May 2010 B2
7786898 Stein et al. Aug 2010 B2
7792329 Schofield et al. Sep 2010 B2
7843451 Lafon Nov 2010 B2
7855755 Weller et al. Dec 2010 B2
7855778 Yung et al. Dec 2010 B2
7881496 Camilleri et al. Feb 2011 B2
7914187 Higgins-Luthman et al. Mar 2011 B2
7929751 Zhang et al. Apr 2011 B2
7930160 Hosagrahara et al. Apr 2011 B1
7949486 Denny et al. May 2011 B2
8017898 Lu et al. Sep 2011 B2
8064643 Stein et al. Nov 2011 B2
8082101 Stein et al. Dec 2011 B2
8098142 Schofield et al. Jan 2012 B2
8150210 Chen et al. Apr 2012 B2
8164628 Stein et al. Apr 2012 B2
8224031 Saito Jul 2012 B2
8233045 Luo et al. Jul 2012 B2
8254635 Stein et al. Aug 2012 B2
8300886 Hoffmann Oct 2012 B2
8378851 Stein et al. Feb 2013 B2
8421865 Euler et al. Apr 2013 B2
8446470 Lu et al. May 2013 B2
8452055 Stein et al. May 2013 B2
8553088 Stein et al. Oct 2013 B2
8643724 Schofield et al. Feb 2014 B2
8692659 Schofield et al. Apr 2014 B2
9900522 Lu Feb 2018 B2
10187590 Fluegel Jan 2019 B2
20010002451 Breed May 2001 A1
20020005778 Breed et al. Jan 2002 A1
20020011611 Huang et al. Jan 2002 A1
20020113873 Williams Aug 2002 A1
20030068098 Rondinelli et al. Apr 2003 A1
20030085999 Okamoto et al. May 2003 A1
20030103142 Hitomi et al. Jun 2003 A1
20030137586 Lewellen Jul 2003 A1
20030222982 Hamdan et al. Dec 2003 A1
20040164228 Fogg et al. Aug 2004 A1
20050078052 Morichika Apr 2005 A1
20050219852 Stam et al. Oct 2005 A1
20050237385 Kosaka et al. Oct 2005 A1
20060015554 Umezaki et al. Jan 2006 A1
20060018511 Stam et al. Jan 2006 A1
20060018512 Stam et al. Jan 2006 A1
20060029255 Ozaki Feb 2006 A1
20060066730 Evans et al. Mar 2006 A1
20060091813 Stam et al. May 2006 A1
20060103727 Tseng May 2006 A1
20060125921 Foote Jun 2006 A1
20060250501 Wildmann et al. Nov 2006 A1
20070024724 Stein et al. Feb 2007 A1
20070041659 Nobori et al. Feb 2007 A1
20070104476 Yasutomi et al. May 2007 A1
20070236595 Pan et al. Oct 2007 A1
20070242339 Bradley Oct 2007 A1
20070291189 Harville Dec 2007 A1
20080012879 Clodfelter Jan 2008 A1
20080043099 Stein et al. Feb 2008 A1
20080147321 Howard et al. Jun 2008 A1
20080170803 Forutanpour Jul 2008 A1
20080192132 Bechtel et al. Aug 2008 A1
20080266396 Stein Oct 2008 A1
20090022422 Sorek et al. Jan 2009 A1
20090113509 Tseng et al. Apr 2009 A1
20090153549 Lynch et al. Jun 2009 A1
20090160987 Bechtel et al. Jun 2009 A1
20090175492 Chen et al. Jul 2009 A1
20090190015 Bechtel et al. Jul 2009 A1
20090256938 Bechtel et al. Oct 2009 A1
20090290032 Zhang et al. Nov 2009 A1
20100014770 Huggett et al. Jan 2010 A1
20100134325 Gomi et al. Jun 2010 A1
20110032357 Kitaura et al. Feb 2011 A1
20110156887 Shen et al. Jun 2011 A1
20110164108 Bates et al. Jul 2011 A1
20110175752 Augst Jul 2011 A1
20110216201 McAndrew et al. Sep 2011 A1
20120045112 Lundblad et al. Feb 2012 A1
20120069185 Stein Mar 2012 A1
20120154591 Baur Jun 2012 A1
20120200707 Stein et al. Aug 2012 A1
20120212480 Cho et al. Aug 2012 A1
20120314071 Rosenbaum et al. Dec 2012 A1
20120320209 Vico et al. Dec 2012 A1
20130141580 Stein et al. Jun 2013 A1
20130147957 Stein Jun 2013 A1
20130162828 Higgins-Luthman Jun 2013 A1
20130169812 Lu et al. Jul 2013 A1
20130286193 Pflug Oct 2013 A1
20140022378 Higgins-Luthman Jan 2014 A1
20140043473 Gupta et al. Feb 2014 A1
20140063254 Shi et al. Mar 2014 A1
20140098229 Lu Apr 2014 A1
20140152778 Ihlenburg et al. Jun 2014 A1
20140247352 Rathi et al. Sep 2014 A1
20140247354 Knudsen Sep 2014 A1
20140320658 Pliefke Oct 2014 A1
20140333729 Pflug Nov 2014 A1
20140347486 Okouneva Nov 2014 A1
20140350834 Turk Nov 2014 A1
20160096477 Biemer Apr 2016 A1
20160253883 Westmacott Sep 2016 A1
20190199937 Fluegel Jun 2019 A1
20200310537 Simmons Oct 2020 A1
Related Publications (1)
Number Date Country
20220368839 A1 Nov 2022 US
Provisional Applications (1)
Number Date Country
62246870 Oct 2015 US
Continuations (2)
Number Date Country
Parent 16252871 Jan 2019 US
Child 17815307 US
Parent 15334365 Oct 2016 US
Child 16252871 US