System for providing a continuous communication link with a symbol reading device

Information

  • Patent Grant
  • 10863002
  • Patent Number
    10,863,002
  • Date Filed
    Friday, March 23, 2018
    6 years ago
  • Date Issued
    Tuesday, December 8, 2020
    4 years ago
Abstract
The disclosure embraces a system and method for providing a continuous communication link between a server computer and a symbol reading device, and a novel symbol reading device adapted for use in such a system. The system greatly simplifies the remote management, diagnostic evaluation, and monitoring of symbol reading devices, especially those devices connected to host devices that are not PC-based or running a complete operating system.
Description
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims the benefit of U.S. patent application Ser. No. 13/902,242 for a System for Providing a Continuous Communication Link with a Symbol Reading Device filed May 24, 2013 (and published Nov. 27, 2014 as U.S. Patent Application Publication No. 2014/0351317), now U.S. Pat. No. 9,930,142. Each of the foregoing patent application, patent publication, and patent is hereby incorporated by reference in its entirety.


BACKGROUND
Field of Disclosure

The present disclosure generally relates to information systems. More particularly, the present disclosure relates to a system for providing a continuous communication link with a symbol reading device, and a symbol reading device adapted for use in such a system.


BRIEF OVERVIEW OF THE STATE OF THE ART

A symbol reading device (e.g., barcode scanner, barcode reader, RFID reader) is a specialized input device for certain data systems commonly used by retailers, industrial businesses, and other businesses having a need to manage large amounts of inventory. Symbol reading devices are often employed to read barcodes. A barcode is a machine-readable representation of information in a graphic format. The most familiar of these graphic symbols is a series of parallel bars and spaces of varying widths, which format gave rise to the term “barcode.” The adoption of the Universal Product Code (UPC) version of barcode technology in 1973 quickly led to a revolution in logistics by obviating the need for manual entry of long number strings.


Most barcode scanners operate by projecting light from an LED or a laser onto the printed barcode, and then detecting the level of reflected light as the light beam sweeps across the barcode. Using this technique, the barcode scanner is able to distinguish between dark areas and light areas on the barcode. The barcode scanner can determine the width of each bar or white space and then decode the symbol to determine the represented data.


Although the basic concept behind barcode scanning technology has remained constant, the techniques employed continue to evolve. Recent trends include the widespread use of 2D barcodes (i.e., matrix codes), which provide for the representation of data in two dimensions. The QR Code is an example of a 2D barcode in wide use today, especially in the area of interactive marketing.


Typically, the barcode scanner transmits the data that it decodes from reading the barcode to a host device, which host device is configured to process the data in some useful way. In the retail context, where the barcode scanner is used in conjunction with the sale of products to the consumer, these host devices and their accompanying barcode scanners are often referred to as point-of-sale (POS) systems. The most ubiquitous example of the point-of-sale system is the checkout register at a supermarket, where an omni-directional barcode scanner reads the UPC code on grocery purchases. The barcode scanner passes the UPC code associated with each product along to the cash register, which then looks up the price associated with each product code. The communication link between the barcode scanner and the host device is often either an RS-232 serial connection or a universal serial bus (USB) connection.


The useful life of barcode scanners can be extended and functionality enhanced by updating the barcode scanner's software (e.g., firmware). In situations where the host device features a full-featured operating system capable of running software (e.g., Microsoft WINDOWS®) adapted to update the barcode scanner's firmware, a system administrator can update the firmware via the host device, either directly or through a network connection to the host device. Many host systems are not capable of directly supporting an upgrade of the barcode scanner firmware. Low-end retail host devices, such as certain electronic cash registers, may not be PC-based or may not be running complete operating systems. In addition, certain factors may prohibit a business from providing a network connection to certain host devices, making it impossible to remotely upgrade the barcode scanner firmware. Because these host devices cannot provide the necessary interface to upgrade the barcode scanner firmware, when performing system maintenance, it is necessary to disconnect the barcode scanner from the host device and then reconnect the barcode scanner to a suitable upgrade system, such as a PC-based laptop computer. Once the upgrade of the firmware is complete, the upgrade system is disconnected and the communication link between the barcode scanner and the host device is re-established.


The problem with this approach to upgrading a barcode scanner's firmware is that it is time-consuming, labor intensive, and results in the point-of-sale system, for example, being offline for the duration of the upgrade process. In environments employing many host device-barcode scanner pairings, the costs and delays brought about by this labor-intensive upgrade technique can be quite burdensome on a business.


What is needed is a system for providing communication to a symbol reading device, such as a barcode reader, that allows continuous access to the symbol reading device through a server computer even in situations where the host device is incapable of providing access to the symbol reading device for purposes of upgrading the symbol reading device's firmware. A system that provided an additional means of communicating with the symbol reading device beyond the communication link with the host device would not only allow for remote upgrading of the symbol reading device's firmware but would allow for the transfer of data from the symbol reading device to systems other than the host device for additional data processing or data collection purposes.


OBJECTS OF PRESENT DISCLOSURE

A primary object of the present disclosure is to provide a system for providing a continuous communication link with a symbol reading device.


Another object of the present disclosure is to provide a system for providing a continuous communication link with a symbol reading device wherein a continuous communication link exists between the symbol reading device and a server computer and a continuous communication link exists between the symbol reading device and the host device.


Another object of the present disclosure is to provide a system for providing a continuous communication link with a symbol reading device wherein the symbol reading device has a communications module having a first interface for communicating with a host device and a second interface for communicating with a server computer.


Another object of the present disclosure is to provide a system for providing a continuous communication link with a symbol reading device wherein the symbol reading device's firmware may be updated without the need for disconnecting the symbol reading device from the host device even in situations where the host device is not suitable for providing access to the symbol reading device for the purpose of upgrading the firmware.


Another object of the present disclosure is to provide a system for providing a continuous communication link with a symbol reading device that allows for the upgrading of the symbol reading device's firmware with a reduced amount of time, labor and downtime when compared with conventional upgrade techniques.


Another object of the present disclosure is to provide a symbol reading device having the capability of separately communicating with a host device and a server computer.


Another object of the present disclosure is to provide a system whereby a server computer can collect data from a symbol reading device while the symbol reading device remains in continuous communication with a host device.


Further objects of the present disclosure will become more apparently understood hereinafter and in the claims appended hereto.





BRIEF DESCRIPTION OF THE DRAWINGS

To more fully understand the objects, the following detailed description of the illustrative embodiments should be read in conjunction with the accompanying drawings, wherein:



FIG. 1 is a schematic block diagram of an exemplary system for providing a continuous communication link with a symbol reading device according to the present disclosure.



FIG. 2 is a schematic block diagram of an exemplary system for providing a continuous communication link with a symbol reading device according to the present disclosure.



FIG. 3 is a schematic block diagram of an exemplary system for providing a continuous communication link with a symbol reading device according to the present disclosure.



FIG. 4 is a schematic block diagram of an exemplary symbol reading device according to the present disclosure.





DETAILED DESCRIPTION OF THE ILLUSTRATIVE EMBODIMENTS

Referring to the figures in the accompanying drawings, the illustrative embodiments of the system for providing a continuous communication link with a symbol reading device, and the symbol reading device according to the present disclosure will be described in great detail, wherein like elements will be indicated using like reference numerals.


It will be understood that the system for providing a continuous communication link with a symbol reading device of the illustrative embodiments may be modified in a variety of ways which will become readily apparent to those skilled in the art having the benefit of the novel teachings disclosed herein. All such modifications and variations of the illustrative embodiments thereof shall be deemed to be within the scope of the claims appended hereto.


In one aspect, the present disclosure embraces a system for providing a continuous communication link with a symbol reading device. The system includes a symbol reading device having a controller module. The system also includes a communications module in communication with the controller module of the symbol reading device. The system further includes a host device in communication with the communications module and a server computer in communication with the communications module.


In another aspect, the present disclosure embraces a symbol reading device. The symbol reading device according to the present disclosure includes a controller module for converting a symbol into data; a communications module for transmitting data, the communications module in communication with the controller module; wherein the communications module has a first interface for communicating with a host device and a second interface for communicating with a server computer.


Referring now to FIG. 1, the system 100 includes a symbol reading device 105. It will be understood that the symbol reading device may be any one of the various types of device intended for reading (e.g., decoding, interpreting) symbols (e.g., barcodes, RFID tags). Such symbol reading device 105 may be a pen-type barcode reader (e.g., wand barcode reader), laser barcode scanners, CCD barcode readers, camera-based barcode readers, omni-directional barcode scanners, RFID readers, or any similar device. It will be further understood that the term “barcode” is intended to broadly encompass insignia used to represent data, including various types of linear barcodes (i.e., 1D barcodes) and matrix barcodes (i.e., 2D barcodes). The symbol reading device 105 includes a controller module 110 that decodes the symbol, for example by converting readings of light reflected off a barcode into data (e.g., a product identification number, a shipment number, an account number, etc.).


The system 100 also includes a communications module 115. The communications module 115 is in communication with the controller module 110 by means suitable for allowing data to be transmitted from the controller module 110 to the communications module 115. Typically, the communications module 115 will be integral with the symbol reading device. The communications module 115 is adapted to communicate with a host device 120. It will be understood that the term “host device” is intended to broadly encompass the great variety of devices adapted to communicate with a symbol reading device 105. Examples of such host devices include, without limitation, electronic cash registers, inventory management systems, and inventory control systems. Typically, the communications module 115 is connected to the host device 120 via an RS-232 serial connection or a universal serial bus (USB) connection. The communications module 115 may be communicatively connected to the host device 120 in other ways, including by a wireless communication link (e.g., wireless radio (e.g., ZIGBEE, BLUETOOTH, WI-FI) and infrared transmissions).


The system 100 also includes a server computer 125. The server computer 125 is in communication with the communications module 115. The term server computer 125 is intended to be used broadly to encompass any computer or network of computers capable of running a software application adapted to upload information (e.g., updates to firmware) to the symbol reading device 105, and/or adapted to process information received from the symbol reading device 105. The communication link between the server computer 125 and the symbol reading device 105 may be established by various means, including by wired and wireless connections. This communication link between the server computer 125 and the symbol reading device 105 provides access to the scanning device 105 without the need to interrupt the communication link between the symbol reading device 105 and the host device 120. It will be understood that references in the disclosure to a continuous communication link are intended to indicate the existence of a continuing physical connection (e.g., wired or wireless connection) enabling communication (e.g., enabling the exchange of information on an as-needed basis). Such references are not intended to suggest that the system requires information to be communicated among system components at all times. Indeed, one of the advantages of the system 100 is that it allows for communication between the server computer 125 and the symbol reading device 105 as frequently or as infrequently as may be needed.


As illustrated in FIG. 2, in one embodiment, the communications module 115 comprises a first interface 116 for communicating with the host device 120 and a second interface 117 for communicating with the server computer 125. The first interface 116 may be a separate component from the second interface 117 or it may be integral with the second interface 117. Typically, the first interface 116 is an RS-232 serial interface or a USB interface. Alternatively, the first interface 116 may be a wireless interface of the type that is well-known to a person of ordinary skill in the art.


The communication link between the symbol reading device 105 and the server computer 125 may be wired or wireless. Accordingly, the second interface 117 may comprise a wired technology interface (e.g., cabled Ethernet) or a wireless technology interface. A wireless connection may be advantageous in circumstances where running cable from the scanning device would be difficult or overly costly due to the nature of the building infrastructure or the distances involved, or when the use of cabling would inhibit the use of the symbol reading device 105 (e.g., when using a handheld device). For example, the second interface 117 may comprise a wireless personal area network interface (e.g., a BLUETOOTH interface or a ZIGBEE interface) allowing the symbol reading device 105 to communicate with the server computer 125 via a radio connection using a BLUETOOTH or ZIGBEE standard. A BLUETOOTH connection may also be advantageous because that standard allows for peer-to-peer connections between multiple devices in the personal area network. In this way, multiple symbol reading devices 105 could be wirelessly linked in a personal area network that is in communication with the system 100 through a master device. Alternatively, the second interface 117 may comprise a wireless local area network interface (WLAN) (e.g., WI-FI or 802.11x interface) or a wireless wide area network interface (WWAN) (e.g., GSM, CDMA, GPAS). It will be appreciated by one of ordinary skill in the art that symbol reading devices 105 connected to a server computer 125 using any of these techniques will be accessible by the server computer 125 and any computer (e.g., client computer) networked to the server computer 125. If the server computer 125 is connected to the Internet, then the symbol reading device may be assigned an Internet Protocol (IP) address, making it a uniquely identifiable node on the network. Therefore, the symbol reading device 105 can be remotely accessed by any other authorized computer on the network via the server computer 125. It will be appreciated that those systems 100 that incorporate many (e.g., hundreds) individual symbol reading devices 105 will particularly benefit from the remote access via a server computer 125, which remote access allows for much faster updating of these symbol reading devices 105 via the network than the traditional technique requiring the symbol reading device 105 to be disconnected from the host device 120 before any updating of the firmware can commence.


As depicted in FIG. 2, in one embodiment the communication link between the first interface 116 and the host device 120 is parallel to the communication link between the second interface 117 and the server computer 125. In this configuration the system 100 allows the symbol reading device 105 to transmit one set of data to the host device 120 and another set of data to the server computer 125. For example, the communication link to the host device 120 might typically carry only decoded barcode data transmissions, whereas the communication link to the server computer 120 might carry other types of data, including number of trigger pulls, time to decode, barcode quality or images of scanned barcodes.



FIG. 3 depicts an alternative configuration of the system 100 according to the present disclosure. In this configuration, the first interface 116 and the second interface 117 are connected in a serial fashion to the controller module (i.e., the second interface 117 and the second interface 117 are in shared communication with the controller module 110). In this configuration, the second interface 117 receives data from the controller module 110 and either transmits the data to the server computer 125 or passes the data through to the first interface 116 to be transmitted to the host device 120, or does both. This configuration might be advantageous in a system 100 where there is a cabled connection (e.g., RS-232 connection) between the symbol reading device 105 and the host device 120, and the second interface 117 is a wireless radio interface positioned within the cabling (e.g., a wireless radio pod incorporated into the cabling) connecting the symbol reading device 105 and the host device 120.


Turning now to FIG. 4, the disclosure alternatively embraces a symbol reading device 105 adapted for use with the system 100 according to the present disclosure. The symbol reading device 105 includes a controller module 110 for converting a symbol into data. The symbol reading device 105 also includes a communications module 115 for transmitting data. The communications module 115 is in communication with the controller module 110. The communication module 115 comprises a first interface 116 for communicating with a host device and a second interface 117 for communicating with a server computer 125. The second interface 117 may be wired (e.g., Ethernet network interface) or wireless (e.g., wireless personal area network interface, wireless local area network interface, or wireless wide area network interface).


To supplement the present disclosure, this application incorporates entirely by reference the following patents, patent application publications, and patent applications: U.S. Pat. No. 6,832,725; U.S. Pat. No. 7,159,783; U.S. Pat. No. 7,413,127; U.S. Pat. No. 8,390,909; U.S. Pat. No. 8,294,969; U.S. Pat. No. 8,408,469; U.S. Pat. No. 8,408,468; U.S. Pat. No. 8,381,979; U.S. Pat. No. 8,408,464; U.S. Pat. No. 8,317,105; U.S. Pat. No. 8,366,005; U.S. Pat. No. 8,424,768; U.S. Pat. No. 8,322,622; U.S. Pat. No. 8,371,507; U.S. Pat. No. 8,376,233; U.S. Pat. No. 8,457,013; U.S. Pat. No. 8,448,863; U.S. Patent Application Publication No. 2012/0111946; U.S. Patent Application Publication No. 2012/0223141; U.S. Patent Application Publication No. 2012/0193423; U.S. Patent Application Publication No. 2012/0203647; U.S. Patent Application Publication No. 2012/0248188; U.S. Patent Application Publication No. 2012/0228382; U.S. Patent Application Publication No. 2012/0193407; U.S. Patent Application Publication No. 2012/0168511; U.S. Patent Application Publication No. 2012/0168512; U.S. Patent Application Publication No. 2010/0177749; U.S. Patent Application Publication No. 2010/0177080; U.S. Patent Application Publication No. 2010/0177707; U.S. Patent Application Publication No. 2010/0177076; U.S. Patent Application Publication No. 2009/0134221; U.S. Patent Application Publication No. 2012/0318869; U.S. Patent Application Publication No. 2013/0043312; U.S. Patent Application Publication No. 2013/0068840; U.S. Patent Application Publication No. 2013/0070322; U.S. Patent Application Publication No. 2013/0075168; U.S. Patent Application Publication No. 2013/0056285; U.S. Patent Application Publication No. 2013/0075464; U.S. Patent Application Publication No. 2013/0082104; U.S. Patent Application Publication No. 2010/0225757; U.S. patent application Ser. No. 13/347,219 for an OMNIDIRECTIONAL LASER SCANNING BAR CODE SYMBOL READER GENERATING A LASER SCANNING PATTERN WITH A HIGHLY NON-UNIFORM SCAN DENSITY WITH RESPECT TO LINE ORIENTATION, filed Jan. 10, 2012 (Good); U.S. patent application Ser. No. 13/347,193 for a HYBRID-TYPE BIOPTICAL LASER SCANNING AND DIGITAL IMAGING SYSTEM EMPLOYING DIGITAL IMAGER WITH FIELD OF VIEW OVERLAPPING FIELD OF FIELD OF LASER SCANNING SUBSYSTEM, filed Jan. 10, 2012 (Kearney et al.); U.S. patent application Ser. No. 13/367,047 for LASER SCANNING MODULES EMBODYING SILICONE SCAN ELEMENT WITH TORSIONAL HINGES, filed Feb. 6, 2012 (Feng et al.); U.S. patent application Ser. No. 13/400,748 for a LASER SCANNING BAR CODE SYMBOL READING SYSTEM HAVING INTELLIGENT SCAN SWEEP ANGLE ADJUSTMENT CAPABILITIES OVER THE WORKING RANGE OF THE SYSTEM FOR OPTIMIZED BAR CODE SYMBOL READING PERFORMANCE, filed Feb. 21, 2012 (Wilz); U.S. patent application Ser. No. 13/432,197 for a LASER SCANNING SYSTEM USING LASER BEAM SOURCES FOR PRODUCING LONG AND SHORT WAVELENGTHS IN COMBINATION WITH BEAM-WAIST EXTENDING OPTICS TO EXTEND THE DEPTH OF FIELD THEREOF WHILE RESOLVING HIGH RESOLUTION BAR CODE SYMBOLS HAVING MINIMUM CODE ELEMENT WIDTHS, filed Mar. 28, 2012 (Havens et al.); U.S. patent application Ser. No. 13/492,883 for a LASER SCANNING MODULE WITH ROTATABLY ADJUSTABLE LASER SCANNING ASSEMBLY, filed Jun. 10, 2012 (Hennick et al.); U.S. patent application Ser. No. 13/367,978 for a LASER SCANNING MODULE EMPLOYING AN ELASTOMERIC U-HINGE BASED LASER SCANNING ASSEMBLY, filed Feb. 7, 2012 (Feng et al.); U.S. patent application Ser. No. 13/852,097 for a System and Method for Capturing and Preserving Vehicle Event Data, filed Mar. 28, 2013 (Barker et al.); U.S. patent application Ser. No. 13/780,356 for a Mobile Device Having Object-Identification Interface, filed Feb. 28, 2013 (Samek et al.); U.S. patent application Ser. No. 13/780,158 for a Distraction Avoidance System, filed Feb. 28, 2013 (Sauerwein); U.S. patent application Ser. No. 13/784,933 for an Integrated Dimensioning and Weighing System, filed Mar. 5, 2013 (McCloskey et al.); U.S. patent application Ser. No. 13/785,177 for a Dimensioning System, filed Mar. 5, 2013 (McCloskey et al.); U.S. patent application Ser. No. 13/780,196 for Android Bound Service Camera Initialization, filed Feb. 28, 2013 (Todeschini et al.); U.S. patent application Ser. No. 13/792,322 for a Replaceable Connector, filed Mar. 11, 2013 (Skvoretz); U.S. patent application Ser. No. 13/780,271 for a Vehicle Computer System with Transparent Display, filed Feb. 28, 2013 (Fitch et al.); U.S. patent application Ser. No. 13/736,139 for an Electronic Device Enclosure, filed Jan. 8, 2013 (Chaney); U.S. patent application Ser. No. 13/771,508 for an Optical Redirection Adapter, filed Feb. 20, 2013 (Anderson); U.S. patent application Ser. No. 13/750,304 for Measuring Object Dimensions Using Mobile Computer, filed Jan. 25, 2013; U.S. patent application Ser. No. 13/471,973 for Terminals and Methods for Dimensioning Objects, filed May 15, 2012; U.S. patent application Ser. No. 13/895,846 for a Method of Programming a Symbol Reading System, filed Apr. 10, 2013 (Corcoran); U.S. patent application Ser. No. 13/867,386 for a Point of Sale (POS) Based Checkout System Supporting a Customer-Transparent Two-Factor Authentication Process During Product Checkout Operations, filed Apr. 22, 2013 (Cunningham et al.); U.S. patent application Ser. No. 13/888,884 for an Indicia Reading System Employing Digital Gain Control, filed May 7, 2013 (Xian et al.); U.S. patent application Ser. No. 13/895,616 for a Laser Scanning Code Symbol Reading System Employing Multi-Channel Scan Data Signal Processing with Synchronized Digital Gain Control (SDGC) for Full Range Scanning, filed May 16, 2013 (Xian et al.); U.S. patent application Ser. No. 13/897,512 for a Laser Scanning Code Symbol Reading System Providing Improved Control over the Length and Intensity Characteristics of a Laser Scan Line Projected Therefrom Using Laser Source Blanking Control, filed May 20, 2013 (Brady et al.); and U.S. patent application Ser. No. 13/897,634 for a Laser Scanning Code Symbol Reading System Employing Programmable Decode Time-Window Filtering, filed May 20, 2013 (Wilz, Sr. et al.).


In the specification and figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.

Claims
  • 1. A symbol reading device, comprising: a controller;a first interface in data communication with the controller, wherein the first interface is adapted to establish a first communication link to communicate symbol data with a host device, and wherein the symbol data comprises data, decoded by the controller, that is representative of a captured reading of light reflected by a barcode; anda second interface in data communication with the controller, wherein the second interface is adapted to establish a second communication link to communicate with a server computer, wherein the second communication link is operable to communicate firmware communications data for updating firmware of the symbol reading device, wherein the first communication link is parallel to the second communication link, andwherein the symbol reading device prevents firmware communications data transmitted via the second communication link between the server computer and the second interface from interrupting data communications transmitted via the first communication link between the host device and the first interface.
  • 2. The symbol reading device of claim 1, wherein the second interface comprises a wireless personal area network interface.
  • 3. The symbol reading device of claim 1, wherein the second interface comprises a wireless local area network interface.
  • 4. The symbol reading device of claim 1, wherein the second interface comprises a wireless wide area network interface.
  • 5. The symbol reading device of claim 1, wherein the first interface comprises an RS-232 serial interface.
  • 6. The symbol reading device of claim 1, wherein the first interface comprises a universal serial bus interface.
  • 7. The symbol reading device of claim 1, wherein the first interface comprises an RS-232 serial interface and the second interface comprises a wireless personal area network interface.
  • 8. The symbol reading device of claim 1, wherein the first interface comprises an RS-232 serial interface and the second interface comprises a wireless local area network interface.
  • 9. A system, comprising: a symbol reading device comprising a first interface and a second interface;a host device in communication with the first interface via a first communication link to receive, from the symbol reading device, data decoded by the controller, that is representative of a captured reading of light reflected by a barcode; anda server computer in communication with the second interface via a second communication link for updating firmware of the symbol reading device, wherein the first communication link is parallel to the second communication link, andwherein the symbol reading device prevents communications transmitted via the second communication link from interrupting communications transmitted via the first communication link.
  • 10. The system of claim 9, wherein the second interface comprises a wireless personal area network interface.
  • 11. The system of claim 9, wherein the second interface comprises a wireless local area network interface.
  • 12. The system of claim 9, wherein the second interface comprises a wireless wide area network interface.
  • 13. The system of claim 9, wherein the first interface comprises an RS-232 serial interface.
  • 14. The system of claim 9, wherein the first interface comprises a universal serial bus interface.
  • 15. The system of claim 9, wherein the first interface comprises an RS-232 serial interface and the second interface comprises a wireless personal area network interface.
  • 16. The system of claim 9, wherein the first interface comprises an RS-232 serial interface and the second interface comprises a wireless local area network interface.
  • 17. A symbol reading device, comprising: a controller; anda first interface in data communication with the controller, wherein the first interface is adapted to establish a first communication link to communicate symbol data with a host device and wherein the symbol data comprises data, decoded by the controller, that is representative of a captured reading of light reflected by a barcode; anda second interface in data communication with the controller, wherein the second interface is adapted to establish a second communication link to communicate with a server computer, wherein the second communication link is operable to communicate firmware communications data for updating firmware of the symbol reading device, wherein the first communication link is parallel to the second communication link, andwherein the symbol reading device prevents communications transmitted via the second interface from interrupting communications transmitted via the first interface.
  • 18. The symbol reading device of claim 17, wherein the second interface comprises a wireless personal area network interface.
  • 19. The symbol reading device of claim 17, wherein the second interface comprises a wireless local area network interface.
  • 20. The symbol reading device of claim 17, wherein the second interface comprises a wireless wide area network interface.
US Referenced Citations (643)
Number Name Date Kind
6832725 Gardiner et al. Dec 2004 B2
7128266 Zhu et al. Oct 2006 B2
7159783 Walczyk et al. Jan 2007 B2
7413127 Ehrhart et al. Aug 2008 B2
7726575 Wang et al. Jun 2010 B2
8294969 Plesko Oct 2012 B2
8317105 Kotlarsky et al. Nov 2012 B2
8322622 Liu Dec 2012 B2
8366005 Kotlarsky et al. Feb 2013 B2
8371507 Haggerty et al. Feb 2013 B2
8376233 Van Horn et al. Feb 2013 B2
8381979 Franz Feb 2013 B2
8390909 Plesko Mar 2013 B2
8408464 Zhu et al. Apr 2013 B2
8408468 Horn et al. Apr 2013 B2
8408469 Good Apr 2013 B2
8424768 Rueblinger et al. Apr 2013 B2
8448863 Xian et al. May 2013 B2
8457013 Essinger et al. Jun 2013 B2
8459557 Havens et al. Jun 2013 B2
8469272 Kearney Jun 2013 B2
8474712 Kearney et al. Jul 2013 B2
8479992 Kotlarsky et al. Jul 2013 B2
8490877 Kearney Jul 2013 B2
8517271 Kotlarsky et al. Aug 2013 B2
8523076 Good Sep 2013 B2
8528818 Ehrhart et al. Sep 2013 B2
8544737 Gomez et al. Oct 2013 B2
8548420 Grunow et al. Oct 2013 B2
8550335 Samek et al. Oct 2013 B2
8550354 Gannon et al. Oct 2013 B2
8550357 Kearney Oct 2013 B2
8556174 Kosecki et al. Oct 2013 B2
8556176 Van Horn et al. Oct 2013 B2
8556177 Hussey et al. Oct 2013 B2
8559767 Barber et al. Oct 2013 B2
8561895 Gomez et al. Oct 2013 B2
8561903 Sauerwein Oct 2013 B2
8561905 Edmonds et al. Oct 2013 B2
8565107 Pease et al. Oct 2013 B2
8571307 Li et al. Oct 2013 B2
8579200 Samek et al. Nov 2013 B2
8583924 Caballero et al. Nov 2013 B2
8584945 Wang et al. Nov 2013 B2
8587595 Wang Nov 2013 B2
8587697 Hussey et al. Nov 2013 B2
8588869 Sauerwein et al. Nov 2013 B2
8590789 Nahill et al. Nov 2013 B2
8596539 Havens et al. Dec 2013 B2
8596542 Havens et al. Dec 2013 B2
8596543 Havens et al. Dec 2013 B2
8599271 Havens et al. Dec 2013 B2
8599957 Peake et al. Dec 2013 B2
8600158 Li et al. Dec 2013 B2
8600167 Showering Dec 2013 B2
8602309 Longacre et al. Dec 2013 B2
8608053 Meier et al. Dec 2013 B2
8608071 Liu et al. Dec 2013 B2
8611309 Wang et al. Dec 2013 B2
8615487 Gomez et al. Dec 2013 B2
8621123 Caballero Dec 2013 B2
8622303 Meier et al. Jan 2014 B2
8628013 Ding Jan 2014 B2
8628015 Wang et al. Jan 2014 B2
8628016 Winegar Jan 2014 B2
8629926 Wang Jan 2014 B2
8630491 Longacre et al. Jan 2014 B2
8635309 Berthiaume et al. Jan 2014 B2
8636200 Kearney Jan 2014 B2
8636212 Nahill et al. Jan 2014 B2
8636215 Ding et al. Jan 2014 B2
8636224 Wang Jan 2014 B2
8638806 Wang et al. Jan 2014 B2
8640958 Lu et al. Feb 2014 B2
8640960 Wang et al. Feb 2014 B2
8643717 Li et al. Feb 2014 B2
8646692 Meier et al. Feb 2014 B2
8646694 Wang et al. Feb 2014 B2
8657200 Ren et al. Feb 2014 B2
8659397 Vargo et al. Feb 2014 B2
8668149 Good Mar 2014 B2
8678285 Kearney Mar 2014 B2
8678286 Smith et al. Mar 2014 B2
8682077 Longacre Mar 2014 B1
D702237 Oberpriller et al. Apr 2014 S
8687282 Feng et al. Apr 2014 B2
8692927 Pease et al. Apr 2014 B2
8695880 Bremer et al. Apr 2014 B2
8698949 Grunow et al. Apr 2014 B2
8702000 Barber et al. Apr 2014 B2
8717494 Gannon May 2014 B2
8720783 Biss et al. May 2014 B2
8723804 Fletcher et al. May 2014 B2
8723904 Marty et al. May 2014 B2
8727223 Wang May 2014 B2
8740082 Wilz Jun 2014 B2
8740085 Furlong et al. Jun 2014 B2
8746563 Hennick et al. Jun 2014 B2
8750445 Peake et al. Jun 2014 B2
8752766 Xian et al. Jun 2014 B2
8756059 Braho et al. Jun 2014 B2
8757495 Qu et al. Jun 2014 B2
8760563 Koziol et al. Jun 2014 B2
8763909 Reed Jul 2014 B2
8777108 Coyle Jul 2014 B2
8777109 Oberpriller et al. Jul 2014 B2
8779898 Havens et al. Jul 2014 B2
8781520 Payne et al. Jul 2014 B2
8783573 Havens et al. Jul 2014 B2
8789757 Barten Jul 2014 B2
8789758 Hawley et al. Jul 2014 B2
8789759 Xian et al. Jul 2014 B2
8794520 Wang et al. Aug 2014 B2
8794522 Ehrhart Aug 2014 B2
8794525 Amundsen et al. Aug 2014 B2
8794526 Wang et al. Aug 2014 B2
8798367 Ellis Aug 2014 B2
8807431 Wang et al. Aug 2014 B2
8807432 Van Horn et al. Aug 2014 B2
8820630 Qu et al. Sep 2014 B2
8822848 Meagher Sep 2014 B2
8824692 Sheerin et al. Sep 2014 B2
8824696 Braho Sep 2014 B2
8842849 Wahl et al. Sep 2014 B2
8844822 Kotlarsky et al. Sep 2014 B2
8844823 Fritz et al. Sep 2014 B2
8849019 Li et al. Sep 2014 B2
D716285 Chaney et al. Oct 2014 S
8851383 Yeakley et al. Oct 2014 B2
8854633 Laffargue Oct 2014 B2
8866963 Grunow et al. Oct 2014 B2
8868421 Braho et al. Oct 2014 B2
8868519 Maloy et al. Oct 2014 B2
8868802 Barten Oct 2014 B2
8868803 Caballero Oct 2014 B2
8870074 Gannon Oct 2014 B1
8879639 Sauerwein Nov 2014 B2
8880426 Smith Nov 2014 B2
8881983 Havens et al. Nov 2014 B2
8881987 Wang Nov 2014 B2
8903172 Smith Dec 2014 B2
8908995 Benos et al. Dec 2014 B2
8910870 Li et al. Dec 2014 B2
8910875 Ren et al. Dec 2014 B2
8914290 Hendrickson et al. Dec 2014 B2
8914788 Pettinelli et al. Dec 2014 B2
8915439 Feng et al. Dec 2014 B2
8915444 Havens et al. Dec 2014 B2
8916789 Woodburn Dec 2014 B2
8918250 Hollifield Dec 2014 B2
8918564 Caballero Dec 2014 B2
8925818 Kosecki et al. Jan 2015 B2
8939374 Jovanovski et al. Jan 2015 B2
8942480 Ellis Jan 2015 B2
8944313 Williams et al. Feb 2015 B2
8944327 Meier et al. Feb 2015 B2
8944332 Harding et al. Feb 2015 B2
8950678 Germaine et al. Feb 2015 B2
D723560 Zhou et al. Mar 2015 S
8967468 Gomez et al. Mar 2015 B2
8971346 Sevier Mar 2015 B2
8976030 Cunningham et al. Mar 2015 B2
8976368 Akel et al. Mar 2015 B2
8978981 Guan Mar 2015 B2
8978983 Bremer et al. Mar 2015 B2
8978984 Hennick et al. Mar 2015 B2
8985456 Zhu et al. Mar 2015 B2
8985457 Soule et al. Mar 2015 B2
8985459 Kearney et al. Mar 2015 B2
8985461 Gelay et al. Mar 2015 B2
8988578 Showering Mar 2015 B2
8988590 Gillet et al. Mar 2015 B2
8991704 Hopper et al. Mar 2015 B2
8996194 Davis et al. Mar 2015 B2
8996384 Funyak et al. Mar 2015 B2
8998091 Edmonds et al. Apr 2015 B2
9002641 Showering Apr 2015 B2
9007368 Laffargue et al. Apr 2015 B2
9010641 Qu et al. Apr 2015 B2
9015513 Murawski et al. Apr 2015 B2
9016576 Brady et al. Apr 2015 B2
D730357 Fitch et al. May 2015 S
9022288 Nahill et al. May 2015 B2
9030964 Essinger et al. May 2015 B2
9033240 Smith et al. May 2015 B2
9033242 Gillet et al. May 2015 B2
9036054 Koziol et al. May 2015 B2
9037344 Chamberlin May 2015 B2
9038911 Xian et al. May 2015 B2
9038915 Smith May 2015 B2
D730901 Oberpriller et al. Jun 2015 S
D730902 Fitch et al. Jun 2015 S
9047098 Barten Jun 2015 B2
9047359 Caballero et al. Jun 2015 B2
9047420 Caballero Jun 2015 B2
9047525 Barber Jun 2015 B2
9047531 Showering et al. Jun 2015 B2
9049640 Wang et al. Jun 2015 B2
9053055 Caballero Jun 2015 B2
9053378 Hou et al. Jun 2015 B1
9053380 Xian et al. Jun 2015 B2
9057641 Amundsen et al. Jun 2015 B2
9058526 Powilleit Jun 2015 B2
9061527 Tobin et al. Jun 2015 B2
9064165 Havens et al. Jun 2015 B2
9064167 Xian et al. Jun 2015 B2
9064168 Todeschini et al. Jun 2015 B2
9064254 Todeschini et al. Jun 2015 B2
9066032 Wang Jun 2015 B2
9070032 Corcoran Jun 2015 B2
D734339 Zhou et al. Jul 2015 S
D734751 Oberpriller et al. Jul 2015 S
9076459 Braho et al. Jul 2015 B2
9079423 Bouverie et al. Jul 2015 B2
9080856 Laffargue Jul 2015 B2
9082023 Feng et al. Jul 2015 B2
9084032 Rautiola et al. Jul 2015 B2
9087250 Coyle Jul 2015 B2
9092681 Havens et al. Jul 2015 B2
9092682 Wilz et al. Jul 2015 B2
9092683 Koziol et al. Jul 2015 B2
9093141 Liu Jul 2015 B2
9098763 Lu et al. Aug 2015 B2
9104929 Todeschini Aug 2015 B2
9104934 Li et al. Aug 2015 B2
9107484 Chaney Aug 2015 B2
9111159 Liu et al. Aug 2015 B2
9111166 Cunningham Aug 2015 B2
9135483 Liu et al. Sep 2015 B2
9137009 Gardiner Sep 2015 B1
9141839 Xian et al. Sep 2015 B2
9147096 Wang Sep 2015 B2
9148474 Skvoretz Sep 2015 B2
9158000 Sauerwein Oct 2015 B2
9158340 Reed et al. Oct 2015 B2
9158952 Jovanovski et al. Oct 2015 B2
9158953 Gillet et al. Oct 2015 B2
9159059 Daddabbo et al. Oct 2015 B2
9165174 Huck Oct 2015 B2
9171543 Emerick et al. Oct 2015 B2
9183425 Wang Nov 2015 B2
9189669 Zhu et al. Nov 2015 B2
9195844 Todeschini et al. Nov 2015 B2
9202458 Braho et al. Dec 2015 B2
9208366 Liu Dec 2015 B2
9208367 Wangu Dec 2015 B2
9219836 Bouverie et al. Dec 2015 B2
9224022 Ackley et al. Dec 2015 B2
9224024 Bremer et al. Dec 2015 B2
9224027 Van Horn et al. Dec 2015 B2
D747321 London et al. Jan 2016 S
9230140 Ackley Jan 2016 B1
9235553 Fitch et al. Jan 2016 B2
9239950 Fletcher Jan 2016 B2
9245492 Ackley et al. Jan 2016 B2
9443123 Hejl Jan 2016 B2
9248640 Heng Feb 2016 B2
9250652 London et al. Feb 2016 B2
9250712 Todeschini Feb 2016 B1
9251411 Todeschini Feb 2016 B2
9258033 Showering Feb 2016 B2
9262633 Todeschini et al. Feb 2016 B1
9262660 Lu et al. Feb 2016 B2
9262662 Chen et al. Feb 2016 B2
9269036 Bremer Feb 2016 B2
9270782 Hala et al. Feb 2016 B2
9274812 Doren et al. Mar 2016 B2
9275388 Havens et al. Mar 2016 B2
9277668 Feng et al. Mar 2016 B2
9280693 Feng et al. Mar 2016 B2
9286496 Smith Mar 2016 B2
9292723 Lu et al. Mar 2016 B2
9297900 Jiang Mar 2016 B2
9298964 Li et al. Mar 2016 B2
9301427 Feng et al. Mar 2016 B2
9304376 Anderson Apr 2016 B2
9310609 Rueblinger et al. Apr 2016 B2
9313377 Todeschini et al. Apr 2016 B2
9317037 Byford et al. Apr 2016 B2
D757009 Oberpriller et al. May 2016 S
9342723 Liu et al. May 2016 B2
9342724 McCloskey May 2016 B2
9361882 Ressler et al. Jun 2016 B2
9365381 Colonel et al. Jun 2016 B2
9373018 Colavito et al. Jun 2016 B2
9375945 Bowles Jun 2016 B1
9378403 Wang et al. Jun 2016 B2
D760719 Zhou et al. Jul 2016 S
9360304 Chang et al. Jul 2016 B2
9383848 Daghigh Jul 2016 B2
9384374 Bianconi Jul 2016 B2
9390596 Todeschini Jul 2016 B1
D762604 Fitch et al. Aug 2016 S
9411386 Sauerwein Aug 2016 B2
9412242 Van Horn et al. Aug 2016 B2
9418269 Havens et al. Aug 2016 B2
9418270 Van Volkinburg et al. Aug 2016 B2
9423318 Lui et al. Aug 2016 B2
D766244 Zhou et al. Sep 2016 S
9443222 Singel et al. Sep 2016 B2
9454689 McCloskey et al. Sep 2016 B2
9464885 Lloyd et al. Oct 2016 B2
9465967 Xian et al. Oct 2016 B2
9478113 Xie et al. Oct 2016 B2
9478983 Kather et al. Oct 2016 B2
D771631 Fitch et al. Nov 2016 S
9481186 Bouverie et al. Nov 2016 B2
9488986 Solanki Nov 2016 B1
9489782 Payne et al. Nov 2016 B2
9490540 Davies et al. Nov 2016 B1
9491729 Rautiola et al. Nov 2016 B2
9497092 Gomez et al. Nov 2016 B2
9507974 Todeschini Nov 2016 B1
9519814 Cudzilo Dec 2016 B2
9521331 Bessettes et al. Dec 2016 B2
9530038 Xian et al. Dec 2016 B2
D777166 Bidwell et al. Jan 2017 S
9558386 Yeakley Jan 2017 B2
9572901 Todeschini Feb 2017 B2
9606581 Howe et al. Mar 2017 B1
D783601 Schulte et al. Apr 2017 S
D785617 Bidwell et al. May 2017 S
D785636 Oberpriller et al. May 2017 S
9646189 Lu et al. May 2017 B2
9646191 Unemyr et al. May 2017 B2
9652648 Ackley et al. May 2017 B2
9652650 Pasik May 2017 B2
9652653 Todeschini et al. May 2017 B2
9656487 Ho et al. May 2017 B2
9659198 Giordano et al. May 2017 B2
D790505 Vargo et al. Jun 2017 S
D790546 Zhou et al. Jun 2017 S
9680282 Hanenburg Jun 2017 B2
9697401 Feng et al. Jul 2017 B2
9701140 Alaganchetty et al. Jul 2017 B1
9930142 Smith et al. Mar 2018 B2
20020128037 Schmidt Sep 2002 A1
20030209605 Walczyk et al. Nov 2003 A1
20040206821 Longacre, Jr. Oct 2004 A1
20040254013 Quraishi Dec 2004 A1
20040256465 Longacre, Jr. Dec 2004 A1
20050044172 Philyaw Feb 2005 A1
20060006231 Anson et al. Jan 2006 A1
20060026304 Price Feb 2006 A1
20070005849 Oliver Jan 2007 A1
20070063048 Havens et al. Mar 2007 A1
20080035734 Challa et al. Feb 2008 A1
20080093456 Pasik et al. Apr 2008 A1
20090134221 Zhu et al. May 2009 A1
20100177076 Essinger et al. Jul 2010 A1
20100177080 Essinger et al. Jul 2010 A1
20100177707 Essinger et al. Jul 2010 A1
20100177749 Essinger et al. Jul 2010 A1
20110169999 Grunow et al. Jul 2011 A1
20110202554 Powilleit et al. Aug 2011 A1
20110246284 Chaikin Oct 2011 A1
20120093039 Rofougaran Apr 2012 A1
20120111946 Golant May 2012 A1
20120168512 Kotlarsky et al. Jul 2012 A1
20120193423 Samek Aug 2012 A1
20120203647 Smith Aug 2012 A1
20120223141 Good et al. Sep 2012 A1
20130043312 Van Horn Feb 2013 A1
20130075168 Amundsen et al. Mar 2013 A1
20130175341 Kearney et al. Jul 2013 A1
20130175343 Good Jul 2013 A1
20130257744 Daghigh et al. Oct 2013 A1
20130257759 Daghigh Oct 2013 A1
20130270346 Xian et al. Oct 2013 A1
20130287258 Kearney Oct 2013 A1
20130292475 Kotlarsky et al. Nov 2013 A1
20130292477 Hennick et al. Nov 2013 A1
20130293539 Hunt et al. Nov 2013 A1
20130293540 Laffargue et al. Nov 2013 A1
20130306728 Thuries et al. Nov 2013 A1
20130306731 Pedraro Nov 2013 A1
20130307964 Bremer et al. Nov 2013 A1
20130308625 Park et al. Nov 2013 A1
20130313324 Koziol et al. Nov 2013 A1
20130332524 Fiala et al. Dec 2013 A1
20130342717 Havens et al. Dec 2013 A1
20140001267 Giordano et al. Jan 2014 A1
20140002828 Laffargue et al. Jan 2014 A1
20140008439 Wang Jan 2014 A1
20140019242 Reichert Jan 2014 A1
20140025584 Liu et al. Jan 2014 A1
20140100813 Showering Jan 2014 A1
20140034734 Sauerwein Feb 2014 A1
20140036848 Pease et al. Feb 2014 A1
20140039693 Havens et al. Feb 2014 A1
20140049120 Kohtz et al. Feb 2014 A1
20140049635 Laffargue et al. Feb 2014 A1
20140061306 Wu et al. Mar 2014 A1
20140063289 Hussey et al. Mar 2014 A1
20140066136 Sauerwein et al. Mar 2014 A1
20140067692 Ye et al. Mar 2014 A1
20140070005 Nahill et al. Mar 2014 A1
20140071840 Venancio Mar 2014 A1
20140074746 Wang Mar 2014 A1
20140076974 Havens et al. Mar 2014 A1
20140078341 Havens et al. Mar 2014 A1
20140078342 Li et al. Mar 2014 A1
20140078345 Showering Mar 2014 A1
20140098792 Wang et al. Apr 2014 A1
20140100774 Showering Apr 2014 A1
20140103115 Meier et al. Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140104414 McCloskey et al. Apr 2014 A1
20140104416 Giordano et al. Apr 2014 A1
20140106725 Sauerwein Apr 2014 A1
20140108010 Maltseff et al. Apr 2014 A1
20140108402 Gomez et al. Apr 2014 A1
20140108682 Caballero Apr 2014 A1
20140110485 Toa et al. Apr 2014 A1
20140114530 Fitch et al. Apr 2014 A1
20140121438 Long et al. May 2014 A1
20140121445 Fontenot et al. May 2014 A1
20140124577 Wang et al. May 2014 A1
20140124579 Ding May 2014 A1
20140125842 Winegar May 2014 A1
20140125853 Wang May 2014 A1
20140125999 Longacre et al. May 2014 A1
20140129378 Richardson May 2014 A1
20140131441 Nahill et al. May 2014 A1
20140131443 Smith May 2014 A1
20140131444 Wang May 2014 A1
20140133379 Wang et al. May 2014 A1
20140136208 Maltseff et al. May 2014 A1
20140140585 Wang May 2014 A1
20140151453 Meier et al. Jun 2014 A1
20140152882 Samek et al. Jun 2014 A1
20140158770 Sevier et al. Jun 2014 A1
20140159869 Zumsteg et al. Jun 2014 A1
20140166755 Liu et al. Jun 2014 A1
20140166757 Smith Jun 2014 A1
20140168787 Wang et al. Jun 2014 A1
20140175165 Havens et al. Jun 2014 A1
20140191913 Ge et al. Jul 2014 A1
20140197239 Havens et al. Jul 2014 A1
20140197304 Feng et al. Jul 2014 A1
20140204268 Grunow et al. Jul 2014 A1
20140214631 Hansen Jul 2014 A1
20140217166 Berthiaume et al. Aug 2014 A1
20140217180 Liu Aug 2014 A1
20140231500 Ehrhart et al. Aug 2014 A1
20140247315 Marty et al. Sep 2014 A1
20140263493 Amurgis et al. Sep 2014 A1
20140263645 Smith et al. Sep 2014 A1
20140270196 Braho et al. Sep 2014 A1
20140270229 Braho Sep 2014 A1
20140278387 DiGregorio Sep 2014 A1
20140282210 Bianconi Sep 2014 A1
20140288933 Braho et al. Sep 2014 A1
20140297058 Barker et al. Oct 2014 A1
20140299665 Barber et al. Oct 2014 A1
20140316639 Braswell Oct 2014 A1
20140351317 Smith et al. Nov 2014 A1
20140362184 Jovanovski et al. Dec 2014 A1
20140363015 Braho Dec 2014 A1
20140369511 Sheerin et al. Dec 2014 A1
20140374483 Lu Dec 2014 A1
20140374485 Xian et al. Dec 2014 A1
20150001301 Ouyang Jan 2015 A1
20150009338 Laffargue et al. Jan 2015 A1
20150014416 Kotlarsky et al. Jan 2015 A1
20150021397 Rueblinger et al. Jan 2015 A1
20150028104 Ma et al. Jan 2015 A1
20150029002 Yeakley et al. Jan 2015 A1
20150032709 Maloy et al. Jan 2015 A1
20150039309 Braho et al. Feb 2015 A1
20150040378 Saber et al. Feb 2015 A1
20150049347 Laffargue et al. Feb 2015 A1
20150051992 Smith Feb 2015 A1
20150053769 Thuries et al. Feb 2015 A1
20150062366 Liu et al. Mar 2015 A1
20150063215 Wang Mar 2015 A1
20150088522 Hendrickson et al. Mar 2015 A1
20150096872 Woodburn Apr 2015 A1
20150100196 Hollifield Apr 2015 A1
20150115035 Meier et al. Apr 2015 A1
20150127791 Kosecki et al. May 2015 A1
20150128116 Chen et al. May 2015 A1
20150133047 Smith et al. May 2015 A1
20150134470 Hejl et al. May 2015 A1
20150136851 Harding et al. May 2015 A1
20150142492 Kumar May 2015 A1
20150144692 Hejl May 2015 A1
20150144698 Teng et al. May 2015 A1
20150149946 Benos et al. May 2015 A1
20150161429 Xian Jun 2015 A1
20150186703 Chen et al. Jul 2015 A1
20150199957 Funyak et al. Jul 2015 A1
20150210199 Payne Jul 2015 A1
20150220753 Zhu et al. Aug 2015 A1
20150254485 Feng et al. Sep 2015 A1
20150310243 Ackley Oct 2015 A1
20150310389 Crimm et al. Oct 2015 A1
20150327012 Bian et al. Nov 2015 A1
20160014251 Hejl Jan 2016 A1
20160040982 Li et al. Feb 2016 A1
20160042241 Todeschini Feb 2016 A1
20160057230 Todeschini et al. Feb 2016 A1
20160062473 Bouchat et al. Mar 2016 A1
20160092805 Geisler et al. Mar 2016 A1
20160101936 Chamberlin Apr 2016 A1
20160102975 McCloskey et al. Apr 2016 A1
20160104019 Todeschini et al. Apr 2016 A1
20160104274 Jovanovski et al. Apr 2016 A1
20160109219 Ackley et al. Apr 2016 A1
20160109220 Laffargue Apr 2016 A1
20160109224 Thuries et al. Apr 2016 A1
20160112631 Ackley et al. Apr 2016 A1
20160112643 Laffargue et al. Apr 2016 A1
20160117627 Raj et al. Apr 2016 A1
20160124516 Schoon et al. May 2016 A1
20160125217 Todeschini May 2016 A1
20160125342 Miller et al. May 2016 A1
20160133253 Braho et al. May 2016 A1
20160171597 Todeschini Jun 2016 A1
20160171666 McCloskey Jun 2016 A1
20160171720 Todeschini Jun 2016 A1
20160171775 Todeschini et al. Jun 2016 A1
20160171777 Todeschini et al. Jun 2016 A1
20160174674 Oberpriller et al. Jun 2016 A1
20160178479 Goldsmith Jun 2016 A1
20160178685 Young et al. Jun 2016 A1
20160178707 Young et al. Jun 2016 A1
20160179132 Harr et al. Jun 2016 A1
20160179143 Bidwell et al. Jun 2016 A1
20160179368 Roeder Jun 2016 A1
20160179378 Kent et al. Jun 2016 A1
20160180130 Bremer Jun 2016 A1
20160180133 Oberpriller et al. Jun 2016 A1
20160180136 Meier et al. Jun 2016 A1
20160180594 Todeschini Jun 2016 A1
20160180663 McMahan et al. Jun 2016 A1
20160180678 Ackley et al. Jun 2016 A1
20160180713 Bernhardt et al. Jun 2016 A1
20160185136 Ng et al. Jun 2016 A1
20160185291 Chamberlin Jun 2016 A1
20160186926 Oberpriller et al. Jun 2016 A1
20160188861 Todeschini Jun 2016 A1
20160188939 Sailors et al. Jun 2016 A1
20160188940 Lu et al. Jun 2016 A1
20160188941 Todeschini et al. Jun 2016 A1
20160188942 Good et al. Jun 2016 A1
20160188943 Linwood Jun 2016 A1
20160188944 Wilz et al. Jun 2016 A1
20160189076 Mellott et al. Jun 2016 A1
20160189087 Morton et al. Jun 2016 A1
20160189088 Pecorari et al. Jun 2016 A1
20160189092 George et al. Jun 2016 A1
20160189284 Mellott et al. Jun 2016 A1
20160189288 Todeschini Jun 2016 A1
20160189366 Chamberlin et al. Jun 2016 A1
20160189443 Smith Jun 2016 A1
20160189447 Valenzuela Jun 2016 A1
20160189489 Au et al. Jun 2016 A1
20160191684 DiPiazza et al. Jun 2016 A1
20160192051 DiPiazza et al. Jun 2016 A1
20160125873 Braho et al. Jul 2016 A1
20160202951 Pike et al. Jul 2016 A1
20160202958 Zabel et al. Jul 2016 A1
20160202959 Doubleday et al. Jul 2016 A1
20160203021 Pike et al. Jul 2016 A1
20160203429 Mellott et al. Jul 2016 A1
20160203797 Pike et al. Jul 2016 A1
20160203820 Zabel et al. Jul 2016 A1
20160204623 Haggert et al. Jul 2016 A1
20160204636 Allen et al. Jul 2016 A1
20160204638 Miraglia et al. Jul 2016 A1
20160316190 McCloskey et al. Jul 2016 A1
20160227912 Oberpriller et al. Aug 2016 A1
20160232891 Pecorari Aug 2016 A1
20160292477 Bidwell Oct 2016 A1
20160294779 Yeakley et al. Oct 2016 A1
20160306769 Kohtz et al. Oct 2016 A1
20160314276 Sewell et al. Oct 2016 A1
20160314294 Kubler et al. Oct 2016 A1
20160323310 Todeschini et al. Nov 2016 A1
20160325677 Fitch et al. Nov 2016 A1
20160327614 Young et al. Nov 2016 A1
20160327930 Charpentier et al. Nov 2016 A1
20160328762 Pape Nov 2016 A1
20160330218 Hussey et al. Nov 2016 A1
20160343163 Venkatesha et al. Nov 2016 A1
20160343176 Ackley Nov 2016 A1
20160364914 Todeschini Dec 2016 A1
20160370220 Ackley et al. Dec 2016 A1
20160372282 Bandringa Dec 2016 A1
20160373847 Vargo et al. Dec 2016 A1
20160377414 Thuries et al. Dec 2016 A1
20160377417 Jovanovski et al. Dec 2016 A1
20170010141 Ackley Jan 2017 A1
20170010328 Mullen et al. Jan 2017 A1
20170010780 Waldron et al. Jan 2017 A1
20170016714 Laffargue et al. Jan 2017 A1
20170018094 Todeschini Jan 2017 A1
20170046603 Lee et al. Feb 2017 A1
20170047864 Stang et al. Feb 2017 A1
20170053146 Liu et al. Feb 2017 A1
20170053147 Geramine et al. Feb 2017 A1
20170053647 Nichols et al. Feb 2017 A1
20170055606 Xu et al. Mar 2017 A1
20170060316 Larson Mar 2017 A1
20170061961 Nichols et al. Mar 2017 A1
20170064634 Van Horn et al. Mar 2017 A1
20170083730 Feng et al. Mar 2017 A1
20170091502 Furlong et al. Mar 2017 A1
20170091706 Lloyd et al. Mar 2017 A1
20170091741 Todeschini Mar 2017 A1
20170091904 Ventress Mar 2017 A1
20170092908 Chaney Mar 2017 A1
20170094238 Germaine et al. Mar 2017 A1
20170098947 Wolski Apr 2017 A1
20170100949 Celinder et al. Apr 2017 A1
20170108838 Todeschini et al. Apr 2017 A1
20170108895 Chamberlin et al. Apr 2017 A1
20170118355 Wong et al. Apr 2017 A1
20170123598 Phan et al. May 2017 A1
20170124369 Rueblinger et al. May 2017 A1
20170124396 Todeschini et al. May 2017 A1
20170124687 McCloskey et al. May 2017 A1
20170126873 McGary et al. May 2017 A1
20170126904 d'Armancourt et al. May 2017 A1
20170139012 Smith May 2017 A1
20170140329 Bernhardt et al. May 2017 A1
20170140731 Smith May 2017 A1
20170147847 Berggren et al. May 2017 A1
20170150124 Thuries May 2017 A1
20170169198 Nichols Jun 2017 A1
20170171035 Lu et al. Jun 2017 A1
20170171703 Maheswaranathan Jun 2017 A1
20170171803 Maheswaranathan Jun 2017 A1
20170180359 Wolski et al. Jun 2017 A1
20170180577 Nguon et al. Jun 2017 A1
20170181299 Shi et al. Jun 2017 A1
20170190192 Delario et al. Jul 2017 A1
20170193432 Bernhardt Jul 2017 A1
20170193461 Jonas et al. Jul 2017 A1
20170193727 Van Horn et al. Jul 2017 A1
20170200108 Au et al. Jul 2017 A1
20170200275 McCloskey et al. Jul 2017 A1
Foreign Referenced Citations (3)
Number Date Country
2013173985 Nov 2013 WO
2013163789 Nov 2013 WO
2014019130 Feb 2014 WO
Non-Patent Literature Citations (20)
Entry
Extended European Search and Opinion Report for Application No. 14167806.0, dated Nov. 17, 2014, 8 pages.
Exam Report in related EP Application 14167806.0, dated Nov. 30, 2015, 5 pages.
Examination Report in related European Application No. 14167806.0 dated Feb. 20, 2019, pp. 1-3.
Notice of Allowance for U.S. Appl. No. 13/902,242, dated Nov. 17, 2017, 7 pages.
Office Action for U.S. Appl. No. 13/902,242, dated Dec. 30, 2016, 8 pages.
Office Action for U.S. Appl. No. 13/902,242, dated Feb. 26, 2015, 11 pages.
Office Action for U.S. Appl. No. 13/902,242, dated Jul. 31, 2015, 15 pages.
Office Action for U.S. Appl. No. 13/902,242, dated Jul. 6, 2016, 18 pages.
Office Action for U.S. Appl. No. 13/902,242, dated Jun. 27, 2017, 10 pages.
Office Action received for European Patent Application No. 14167806.0, dated Feb. 27, 2018, 3 pages.
Office Action received for European Patent Application No. 14167806.0, dated Sep. 4, 2019, 3 pages.
Office Action received for European Patent Application No. 14167806.0, dated Sep. 13, 2016, 3 pages.
U.S. Patent Application for a Laser Scanning Module Employing an Elastomeric U-Hinge Based Laser Scanning Assembly, filed Feb. 7, 2012 (Feng et al.), U.S. Appl. No. 13/367,978.
Examination Report for European Application No. 14167806.0, dated Jan. 30, 2020, 3 pages.
Advisory Action (PTOL-303) dated Dec. 17, 2015 for U.S. Appl. No. 13/902,242.
Advisory Action (PTOL-303) dated Mar. 30, 2017 for U.S. Appl. No. 13/902,242.
Advisory Action (PTOL-303) dated Oct. 15, 2015 for U.S. Appl. No. 13/902,242.
Applicant Initiated Interview Summary (PTOL-413) dated Sep. 30, 2015 for U.S. Appl. No. 13/902,242.
Annex to the communication dated Sep. 4, 2020 for EP Application No. 14167806.
Communication from the Examining Division dated Sep. 4, 2020 for EP Application No. 14167806.
Related Publications (1)
Number Date Country
20180213064 A1 Jul 2018 US
Continuations (1)
Number Date Country
Parent 13902242 May 2013 US
Child 15933686 US