Field of Disclosure
The present disclosure generally relates to information systems. More particularly, the present disclosure relates to a system for providing a continuous communication link with a symbol reading device, and a symbol reading device adapted for use in such a system.
Brief Overview of the State of the Art
A symbol reading device (e.g., barcode scanner, barcode reader, RFID reader) is a specialized input, device for certain data systems commonly used by retailers, industrial businesses, and other businesses having a need to manage large amounts of inventory. Symbol reading devices are often employed to read barcodes. A barcode is a machine-readable representation of information in a graphic format. The most familiar of these graphic symbols is a series of parallel bars and spaces of varying widths, which format gave rise to the term “barcode.” The adoption of the Universal Product Code (UPC) version of barcode technology in 1973 quickly led to a revolution in logistics by obviating the need for manual entry of long number strings.
Most barcode scanners operate by projecting light from an LED or a laser onto the printed barcode, and then detecting the level of reflected light as the light beam sweeps across the barcode. Using this technique, the barcode scanner is able to distinguish between dark areas and light areas on the barcode. The barcode scanner can determine the width of each bar or white space and then decode the symbol to determine the represented data.
Although the basic concept behind barcode scanning technology has remained constant, the techniques employed continue to evolve. Recent trends include the widespread use of 2D barcodes (i.e., matrix codes), which provide for the representation of data in two dimensions. The QR Code is an example of a 2D barcode in wide use today, especially in the area of interactive marketing.
Typically, the barcode scanner transmits the data that it decodes from reading the barcode to a host device, which host device is configured to process the data in some useful way. In the retail context, where the barcode scanner is used in conjunction with the sale of products to the consumer, these host devices and their accompanying barcode scanners are often referred to as point-of-sale (POS) systems. The most ubiquitous example of the point-of-sale system is the checkout register at a supermarket, where an omni-directional barcode scanner reads the UPC code on grocery purchases. The barcode scanner passes the UPC code associated with each product along to the cash register, which then looks up the price associated with each product code. The communication link between the barcode scanner and the host device is often either an RS-232 serial connection or a universal serial bus (USE) connection.
The useful life of barcode scanners can be extended and functionality enhanced by updating the barcode scanner's software (e.g., firmware). In situations where the host device features a full-featured operating system capable of running software (e.g., Microsoft WINDOWS®) adapted to update the barcode scanner's firmware, a system administrator can update the firmware via the host device, either directly or through a network connection to the host device. Many host systems are not capable of directly supporting an upgrade of the barcode scanner firmware. Low-end retail host devices, such as certain electronic cash registers, may not be PC-based or may not be running complete operating systems. In addition, certain factors may prohibit a business from providing a network connection to certain host devices, making it impossible to remotely upgrade the barcode scanner firmware. Because these host devices cannot provide the necessary interface to upgrade the barcode scanner firmware, when performing system maintenance, it is necessary to disconnect the barcode scanner from the host device and then reconnect the barcode scanner to a suitable upgrade system, such as a PC-based laptop computer. Once the upgrade of the firmware is complete, the upgrade system is disconnected and the communication link between the barcode scanner and the host device is re-established.
The problem with this approach to upgrading a barcode scanner's firmware is that it is time-consuming, labor intensive, and results in the point-of-sale system, for example, being offline for the duration of the upgrade process. In environments employing many host device-barcode scanner pairings, the costs and delays brought about by this labor-intensive upgrade technique can be quite burdensome on a business.
What is needed is a system for providing communication to a symbol reading device, such as a barcode reader, that allows continuous access to the symbol reading device through a server computer even in situations where the host device is incapable of providing access to the symbol reading device for purposes of upgrading the symbol reading device's firmware. A system that provided an additional means of communicating with the symbol reading device beyond the communication link with the host device would not only allow for remote upgrading of the symbol reading device's firmware, but would allow for the transfer of data from the symbol reading device to systems other than the host device for additional data processing or data collection purposes.
A primary object of the present disclosure is to provide a system for providing a continuous communication link with a symbol reading device.
Another object of the present disclosure is to provide a system for providing a continuous communication link with a symbol reading device wherein a continuous communication link exists between the symbol reading device and a server computer and a continuous communication link exists between the symbol reading device and the host device.
Another object of the present disclosure is to provide a system for providing a continuous communication link with a symbol reading device wherein the symbol reading device has a communications module having a first interface for communicating with a host device and a second interface for communicating with a server computer.
Another object of the present disclosure is to provide a system for providing a continuous communication link with a symbol reading device wherein the symbol reading device's firmware may be updated without the need for disconnecting the symbol reading device from the host device even in situations where the host device is not suitable for providing access to the symbol reading device for the purpose of upgrading the firmware.
Another object of the present disclosure is to provide a system for providing a continuous communication link with a symbol reading device that allows for the upgrading of the symbol reading device's firmware with a reduced amount of time, labor and downtime when compared with conventional upgrade techniques.
Another object of the present disclosure is to provide a symbol reading device having the capability of separately communicating with a host device and a server computer.
Another object of the present disclosure is to provide a system whereby a server computer can collect data from a symbol reading device while the symbol reading device remains in continuous communication with a host device.
Further objects of the present disclosure will become more apparently understood hereinafter and in the claims appended hereto.
To more fully understand the objects, the following detailed description of the illustrative embodiments should be read in conjunction with the accompanying drawings, wherein:
Referring to the figures in the accompanying drawings, the illustrative embodiments of the system for providing a continuous communication link with a symbol reading device, and the symbol reading device according to the present disclosure will be described in great detail, wherein like elements will be indicated using like reference numerals.
It will be understood that the system for providing a continuous communication link with a symbol reading device of the illustrative embodiments may be modified in a variety of ways which will become readily apparent to those skilled in the art having the benefit of the novel teachings disclosed herein. All such modifications and variations of the illustrative embodiments thereof shall be deemed to be within the scope of the claims appended hereto.
In one aspect, the present disclosure embraces a system for providing a continuous communication link with a symbol reading device. The system includes a symbol reading device having a controller module. The system also includes a communications module in communication with the controller module of the symbol reading device. The system further includes a host device in communication with the communications module and a server computer in communication with the communications module.
In another aspect, the present disclosure embraces a symbol reading device. The symbol reading device according to the present disclosure includes a controller module for converting a symbol into data; a communications module for transmitting data, the communications module in communication with the controller module; wherein the communications module has a first interface for communicating with a host device and a second interface for communicating with a server computer.
Referring now to
The system 100 also includes a communications module 115. The communications module 115 is in communication with the controller module 110 by means suitable for allowing data to be transmitted from the controller module 110 to the communications module 115. Typically, the communications module 115 will be integral with the symbol reading device. The communications module 115 is adapted to communicate with a host device 120. It will be understood that the term “host device” is intended to broadly encompass the great variety of devices adapted to communicate with a symbol reading device 105. Examples of such host devices include, without limitation, electronic cash registers, inventory management systems, and inventory control systems. Typically, the communications module 115 is connected to the host device 120 via an RS-232 serial connection or a universal serial bus (USB) connection. The communications module 115 may be communicatively connected to the host device 120 in other ways, including by a wireless communication link (e.g., wireless radio (e.g., ZIGBEE, BLUETOOTH, WI-FI) and infrared transmissions).
The system 100 also includes a server computer 125. The server computer 125 is in communication with the communications module 115. The term server computer 125 is intended to be used broadly to encompass any computer or network of computers capable of running a software application adapted to upload information (e.g., updates to firmware) to the symbol reading device 105, and/or adapted to process information received from the symbol reading device 105. The communication link between the server computer 125 and the symbol reading device 105 may be established by various means, including by wired and wireless connections. This communication link between the server computer 125 and the symbol reading device 105 provides access to the scanning device 105 without the need to interrupt the communication link between the symbol reading device 105 and the host device 120. It will be understood that references in the disclosure to a continuous communication link are intended to indicate the existence of a continuing physical connection (e.g., wired or wireless connection) enabling communication (e.g., enabling the exchange of information on an as-needed basis). Such references are not intended to suggest that the system requires information to be communicated among system components at all times. Indeed, one of the advantages of the system 100 is that it allows for communication between the server computer 125 and the symbol reading device 105 as frequently or as infrequently as may be needed.
As illustrated in
The communication link between the symbol reading device 105 and the server computer 125 may be wired or wireless. Accordingly, the second interface 117 may comprise a wired technology interface (e.g., cabled Ethernet) or a wireless technology interface. A wireless connection may be advantageous in circumstances where running cable from the scanning device would be difficult or overly costly due to the nature of the building infrastructure or the distances involved, or when the use of cabling would inhibit the use of the symbol reading device 105 (e.g., when using a handheld device). For example, the second interface 117 may comprise a wireless personal area network interface (e.g., a BLUETOOTH interface or a ZIGBEE interface) allowing the symbol reading device 105 to communicate with the server computer 125 via a radio connection using a BLUETOOTH or ZIGBEE standard. A BLUETOOTH connection may also be advantageous because that standard allows for peer-to-peer connections between multiple devices in the personal area network. In this way, multiple symbol reading devices 105 could be wirelessly linked in a personal area network that is in communication with the system 100 through a master device. Alternatively, the second interface 117 may comprise a wireless local area network interface (WLAN) (e.g., WI-FI or 802.11x interface) or a wireless wide area network interface (WWAN) (e.g., GSM, CDMA, GPAS). It will be appreciated by one of ordinary skill in the art that symbol reading devices 105 connected to a server computer 125 using any of these techniques will be accessible by the server computer 125 and any computer (e.g., client computer) networked to the server computer 125. If the server computer 125 is connected to the Internet, then the symbol reading device may be assigned an Internet Protocol (IP) address, making it a uniquely identifiable node on the network. Therefore, the symbol reading device 105 can be remotely accessed by any other authorized computer on the network via the server computer 125. It will be appreciated that those systems 100 that incorporate many (e.g., hundreds) individual symbol reading devices 105 will particularly benefit from the remote access via a server computer 125, which remote access allows for much faster updating of these symbol reading devices 105 via the network than the traditional technique requiring the symbol reading device 105 to be disconnected from the host device 120 before any updating of the firmware can commence.
As depicted in
Turning now to
To supplement the present disclosure, this application incorporates entirely by reference the following patents, patent application publications, and patent applications: U.S. Pat. Nos. 6,832,725; 7,159,783; 7,413,127; 8,390,909; 8,294,969; 8,408,469; 8,408,468; 8,381,979; 8,408,464; 8,317,105; 8,366,005; 8,424,768; 8,322,622; 8,371,507; 8,376,233; 8,457,013; 8,448,863; U.S. Patent Application Publication No. 2012/0111946; U.S. Patent Application Publication No. 2012/0223141; U.S. Patent Application Publication No. 2012/0193423; U.S. Patent Application Publication No. 2012/0203647; U.S. Patent Application Publication No. 2012/0248188; U.S. Patent Application Publication No. 2012/0228382; U.S. Patent Application Publication No. 2012/0193407; U.S. Patent Application Publication No. 2012/0168511; U.S. Patent Application Publication No. 2012/0168512; U.S. Patent Application Publication No. 2010/0177749; U.S. Patent Application Publication No. 2010/0177080; U.S. Patent Application Publication No. 2010/0177707; U.S. Patent Application Publication No. 2010/0177076; U.S. Patent Application Publication No. 2009/0134221; U.S. Patent Application Publication No. 2012/0318869; U.S. Patent Application Publication No. 2013/0043312; U.S. Patent Application Publication No. 2013/0068840; U.S. Patent Application Publication No. 2013/0070322; U.S. Patent Application Publication No. 2013/0075168; U.S. Patent Application Publication No. 2013/0056285; U.S. Patent Application Publication No. 2013/0075464; U.S. Patent Application Publication No. 2013/0082104; U.S. Patent Application Publication No. 2010/0225757; U.S. patent application Ser. No. 13/347,219 for an OMNIDIRECTIONAL LASER SCANNING BAR CODE SYMBOL READER GENERATING A LASER SCANNING PATTERN WITH A HIGHLY NON-UNIFORM SCAN DENSITY WITH RESPECT TO LINE ORIENTATION, filed Jan. 10, 2012 (Good); U.S. patent application Ser. No. 13/347,193 for a HYBRID-TYPE BIOPTICAL LASER SCANNING AND DIGITAL IMAGING SYSTEM EMPLOYING DIGITAL IMAGER WITH FIELD OF VIEW OVERLAPPING FIELD OF FIELD OF LASER SCANNING SUBSYSTEM, filed Jan. 10, 2012 (Kearney et al.); U.S. patent application Ser. No. 13/367,047 for LASER SCANNING MODULES EMBODYING SILICONE SCAN ELEMENT WITH TORSIONAL HINGES, filed Feb. 6, 2012 (Feng et al.); U.S. patent application Ser. No. 13/400,748 for a LASER SCANNING BAR CODE SYMBOL READING SYSTEM HAVING INTELLIGENT SCAN SWEEP ANGLE ADJUSTMENT CAPABILITIES OVER THE WORKING RANGE OF THE SYSTEM FOR OPTIMIZED BAR CODE SYMBOL READING PERFORMANCE, filed Feb. 21, 2012 (Wilz); U.S. patent application Ser. No. 13/432,197 for a LASER SCANNING SYSTEM USING LASER BEAM SOURCES FOR PRODUCING LONG AND SHORT WAVELENGTHS IN COMBINATION WITH BEAM-WAIST EXTENDING OPTICS TO EXTEND THE DEPTH OF FIELD THEREOF WHILE RESOLVING HIGH RESOLUTION BAR CODE SYMBOLS HAVING MINIMUM CODE ELEMENT WIDTHS, filed Mar. 28, 2012 (Havens et al.); U.S. patent application Ser. No. 13/492,883 for a LASER SCANNING MODULE WITH ROTATABLY ADJUSTABLE LASER SCANNING ASSEMBLY, filed Jun. 10, 2012 (Hennick et al.); U.S. patent application Ser. No. 13/367,978 for a LASER SCANNING MODULE EMPLOYING AN ELASTOMERIC U-HINGE BASED LASER SCANNING ASSEMBLY, filed Feb. 7, 2012 (Feng et al.); U.S. patent application Ser. No. 13/852,097 for a System and Method for Capturing and Preserving Vehicle Event Data, filed Mar. 28, 2013 (Barker et al.); U.S. patent application Ser. No. 13/780,356 for a Mobile Device Having Object-Identification Interface, filed Feb. 28, 2013 (Samek et al.); U.S. patent application Ser. No. 13/780,158 for a Distraction Avoidance System, filed Feb. 28, 2013 (Sauerwein); U.S. patent application Ser. No. 13/784,933 for an Integrated Dimensioning and Weighing System, filed Mar. 5, 2013 (McCloskey et al.); U.S. patent application Ser. No. 13/785,177 for a Dimensioning System, filed Mar. 5, 2013 (McCloskey et al.); U.S. patent application Ser. No. 13/780,196 for Android Bound Service Camera Initialization, filed Feb. 28, 2013 (Todeschini et al.); U.S. patent application Ser. No. 13/792,322 for a Replaceable Connector, filed Mar. 11, 2013 (Skvoretz); U.S. patent application Ser. No. 13/780,271 for a Vehicle Computer System with Transparent Display, filed Feb. 28, 2013 (Fitch et al.); U.S. patent application Ser. No. 13/736,139 for an Electronic Device Enclosure, filed Jan. 8, 2013 (Chaney); U.S. patent application Ser. No. 13/771,508 for an Optical Redirection Adapter, filed Feb. 20, 2013 (Anderson); U.S. patent application Ser. No. 13/750,304 for Measuring Object Dimensions Using Mobile Computer, filed Jan. 25, 2013; U.S. patent application Ser. No. 13/471,973 for Terminals and Methods for Dimensioning Objects, filed May 15, 2012; U.S. patent application Ser. No. 13/895,846 for a Method of Programming a Symbol Reading System, filed Apr. 10, 2013 (Corcoran); U.S. patent application Ser. No. 13/867,386 for a Point of Sale (POS) Based Checkout System Supporting a Customer-Transparent Two-Factor Authentication Process During Product Checkout Operations, filed Apr. 22, 2013 (Cunningham et al.); U.S. patent application Ser. No. 13/888,884 for an Indicia Reading System Employing Digital Gain Control, filed May 7, 2013 (Xian et al.); U.S. patent application Ser. No. 13/895,616 for a Laser Scanning Code Symbol Reading System Employing Multi-Channel Scan Data Signal Processing with Synchronized Digital Gain Control (SDGC) for Full Range Scanning, filed May 16, 2013 (Xian et al.); U.S. patent application Ser. No. 13/897,512 for a Laser Scanning Code Symbol Reading System Providing Improved Control over the Length and Intensity Characteristics of a Laser Scan Line Projected Therefrom Using Laser Source Blanking Control, filed May 20, 2013 (Brady et al.); and U.S. patent application Ser. No. 13/897,634 for a Laser Scanning Code Symbol Reading System Employing Programmable Decode Time-Window Filtering, filed May 20, 2013 (Wilz, Sr. et al.).
In the specification and figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.
Number | Name | Date | Kind |
---|---|---|---|
6832725 | Gardiner et al. | Dec 2004 | B2 |
7128266 | Marlton et al. | Oct 2006 | B2 |
7159783 | Walczyk et al. | Jan 2007 | B2 |
7413127 | Ehrhart et al. | Aug 2008 | B2 |
7726575 | Wang et al. | Jun 2010 | B2 |
8294969 | Plesko | Oct 2012 | B2 |
8317105 | Kotlarsky et al. | Nov 2012 | B2 |
8322622 | Suzhou et al. | Dec 2012 | B2 |
8366005 | Kotlarsky et al. | Feb 2013 | B2 |
8371507 | Haggerty et al. | Feb 2013 | B2 |
8376233 | Van Horn et al. | Feb 2013 | B2 |
8381979 | Franz | Feb 2013 | B2 |
8390909 | Plesko | Mar 2013 | B2 |
8408464 | Zhu et al. | Apr 2013 | B2 |
8408468 | Horn et al. | Apr 2013 | B2 |
8408469 | Good | Apr 2013 | B2 |
8424768 | Rueblinger et al. | Apr 2013 | B2 |
8448863 | Xian et al. | May 2013 | B2 |
8457013 | Essinger et al. | Jun 2013 | B2 |
8459557 | Havens et al. | Jun 2013 | B2 |
8469272 | Kearney | Jun 2013 | B2 |
8474712 | Kearney et al. | Jul 2013 | B2 |
8479992 | Kotlarsky et al. | Jul 2013 | B2 |
8490877 | Kearney | Jul 2013 | B2 |
8517271 | Kotlarsky et al. | Aug 2013 | B2 |
8523076 | Good | Sep 2013 | B2 |
8528818 | Ehrhart et al. | Sep 2013 | B2 |
8544737 | Gomez et al. | Oct 2013 | B2 |
8548420 | Grunow et al. | Oct 2013 | B2 |
8550335 | Samek et al. | Oct 2013 | B2 |
8550354 | Gannon et al. | Oct 2013 | B2 |
8550357 | Kearney | Oct 2013 | B2 |
8556174 | Kosecki et al. | Oct 2013 | B2 |
8556176 | Van Horn et al. | Oct 2013 | B2 |
8556177 | Hussey et al. | Oct 2013 | B2 |
8559767 | Barber et al. | Oct 2013 | B2 |
8561895 | Gomez et al. | Oct 2013 | B2 |
8561903 | Sauerwein | Oct 2013 | B2 |
8561905 | Edmonds et al. | Oct 2013 | B2 |
8565107 | Pease et al. | Oct 2013 | B2 |
8571307 | Li et al. | Oct 2013 | B2 |
8579200 | Samek et al. | Nov 2013 | B2 |
8583924 | Caballero et al. | Nov 2013 | B2 |
8584945 | Wang et al. | Nov 2013 | B2 |
8587595 | Wang | Nov 2013 | B2 |
8587697 | Hussey et al. | Nov 2013 | B2 |
8588869 | Sauerwein et al. | Nov 2013 | B2 |
8590789 | Nahill et al. | Nov 2013 | B2 |
8596539 | Havens et al. | Dec 2013 | B2 |
8596542 | Havens et al. | Dec 2013 | B2 |
8596543 | Havens et al. | Dec 2013 | B2 |
8599271 | Havens et al. | Dec 2013 | B2 |
8599957 | Peake et al. | Dec 2013 | B2 |
8600158 | Li et al. | Dec 2013 | B2 |
8600167 | Showering | Dec 2013 | B2 |
8602309 | Longacre et al. | Dec 2013 | B2 |
8608053 | Meier et al. | Dec 2013 | B2 |
8608071 | Liu et al. | Dec 2013 | B2 |
8611309 | Wang et al. | Dec 2013 | B2 |
8615487 | Gomez et al. | Dec 2013 | B2 |
8621123 | Caballero | Dec 2013 | B2 |
8622303 | Meier et al. | Jan 2014 | B2 |
8628013 | Ding | Jan 2014 | B2 |
8628015 | Wang et al. | Jan 2014 | B2 |
8628016 | Winegar | Jan 2014 | B2 |
8629926 | Wang | Jan 2014 | B2 |
8630491 | Longacre et al. | Jan 2014 | B2 |
8635309 | Berthiaume et al. | Jan 2014 | B2 |
8636200 | Kearney | Jan 2014 | B2 |
8636212 | Nahill et al. | Jan 2014 | B2 |
8636215 | Ding et al. | Jan 2014 | B2 |
8636224 | Wang | Jan 2014 | B2 |
8638806 | Wang et al. | Jan 2014 | B2 |
8640958 | Lu et al. | Feb 2014 | B2 |
8640960 | Wang et al. | Feb 2014 | B2 |
8643717 | Li et al. | Feb 2014 | B2 |
8646692 | Meier et al. | Feb 2014 | B2 |
8646694 | Wang et al. | Feb 2014 | B2 |
8657200 | Ren et al. | Feb 2014 | B2 |
8659397 | Vargo et al. | Feb 2014 | B2 |
8668149 | Good | Mar 2014 | B2 |
8678285 | Kearney | Mar 2014 | B2 |
8678286 | Smith et al. | Mar 2014 | B2 |
8682077 | Longacre | Mar 2014 | B1 |
D702237 | Oberpriller et al. | Apr 2014 | S |
8687282 | Feng et al. | Apr 2014 | B2 |
8692927 | Pease et al. | Apr 2014 | B2 |
8695880 | Bremer et al. | Apr 2014 | B2 |
8698949 | Grunow et al. | Apr 2014 | B2 |
8702000 | Barber et al. | Apr 2014 | B2 |
8717494 | Gannon | May 2014 | B2 |
8720783 | Biss et al. | May 2014 | B2 |
8723804 | Fletcher et al. | May 2014 | B2 |
8723904 | Marty et al. | May 2014 | B2 |
8727223 | Wang | May 2014 | B2 |
9652650 | Pasik | May 2017 | B2 |
20030209605 | Walczyk et al. | Nov 2003 | A1 |
20050044172 | Philyaw | Feb 2005 | A1 |
20060006231 | Anson et al. | Jan 2006 | A1 |
20070063048 | Havens et al. | Mar 2007 | A1 |
20080035734 | Challa et al. | Feb 2008 | A1 |
20080093456 | Pasik et al. | Apr 2008 | A1 |
20080185432 | Caballero et al. | Aug 2008 | A1 |
20090134221 | Zhu et al. | May 2009 | A1 |
20100177076 | Essinger et al. | Jul 2010 | A1 |
20100177080 | Essinger et al. | Jul 2010 | A1 |
20100177707 | Essinger et al. | Jul 2010 | A1 |
20100177749 | Essinger et al. | Jul 2010 | A1 |
20110169999 | Grunow et al. | Jul 2011 | A1 |
20110202554 | Powilleit et al. | Aug 2011 | A1 |
20120111946 | Golant | May 2012 | A1 |
20120138685 | Qu et al. | Jun 2012 | A1 |
20120168511 | Kotlarsky et al. | Jul 2012 | A1 |
20120168512 | Kotlarsky et al. | Jul 2012 | A1 |
20120193407 | Barten | Aug 2012 | A1 |
20120193423 | Samek | Aug 2012 | A1 |
20120203647 | Smith | Aug 2012 | A1 |
20120223141 | Good et al. | Sep 2012 | A1 |
20120228382 | Havens et al. | Sep 2012 | A1 |
20120248188 | Kearney | Oct 2012 | A1 |
20130043312 | Van Horn | Feb 2013 | A1 |
20130056285 | Meagher | Mar 2013 | A1 |
20130070322 | Fritz et al. | Mar 2013 | A1 |
20130075168 | Amundsen et al. | Mar 2013 | A1 |
20130082104 | Kearney et al. | Apr 2013 | A1 |
20130175341 | Kearney et al. | Jul 2013 | A1 |
20130175343 | Good | Jul 2013 | A1 |
20130200158 | Feng et al. | Aug 2013 | A1 |
20130214048 | Wilz | Aug 2013 | A1 |
20130256418 | Havens et al. | Oct 2013 | A1 |
20130257744 | Daghigh et al. | Oct 2013 | A1 |
20130257759 | Daghigh | Oct 2013 | A1 |
20130270346 | Xian et al. | Oct 2013 | A1 |
20130278425 | Cunningham et al. | Oct 2013 | A1 |
20130287258 | Kearney | Oct 2013 | A1 |
20130292474 | Xian et al. | Nov 2013 | A1 |
20130292475 | Kotlarsky et al. | Nov 2013 | A1 |
20130292477 | Hennick et al. | Nov 2013 | A1 |
20130293539 | Hunt et al. | Nov 2013 | A1 |
20130293540 | Laffargue et al. | Nov 2013 | A1 |
20130306728 | Thuries et al. | Nov 2013 | A1 |
20130306730 | Brady et al. | Nov 2013 | A1 |
20130306731 | Pedraro | Nov 2013 | A1 |
20130306734 | Xian et al. | Nov 2013 | A1 |
20130307964 | Bremer et al. | Nov 2013 | A1 |
20130308625 | Corcoran | Nov 2013 | A1 |
20130313324 | Koziol et al. | Nov 2013 | A1 |
20130313325 | Wilz et al. | Nov 2013 | A1 |
20130313326 | Ehrhart | Nov 2013 | A1 |
20130327834 | Hennick et al. | Dec 2013 | A1 |
20130341399 | Xian et al. | Dec 2013 | A1 |
20130342717 | Havens et al. | Dec 2013 | A1 |
20140001267 | Giordano et al. | Jan 2014 | A1 |
20140002828 | Laffargue et al. | Jan 2014 | A1 |
20140008430 | Soule et al. | Jan 2014 | A1 |
20140008439 | Wang | Jan 2014 | A1 |
20140019242 | Reichert | Jan 2014 | A1 |
20140021256 | Qu et al. | Jan 2014 | A1 |
20140025584 | Liu et al. | Jan 2014 | A1 |
20140027518 | Edmonds et al. | Jan 2014 | A1 |
20140034723 | Van Horn et al. | Feb 2014 | A1 |
20140034734 | Sauerwein | Feb 2014 | A1 |
20140036848 | Pease et al. | Feb 2014 | A1 |
20140039693 | Havens et al. | Feb 2014 | A1 |
20140042814 | Kather et al. | Feb 2014 | A1 |
20140049120 | Kohtz et al. | Feb 2014 | A1 |
20140049635 | Laffargue et al. | Feb 2014 | A1 |
20140061305 | Nahill et al. | Mar 2014 | A1 |
20140061306 | Wu et al. | Mar 2014 | A1 |
20140061307 | Wang et al. | Mar 2014 | A1 |
20140063289 | Hussey et al. | Mar 2014 | A1 |
20140066136 | Sauerwein et al. | Mar 2014 | A1 |
20140067692 | Ye et al. | Mar 2014 | A1 |
20140070005 | Nahill et al. | Mar 2014 | A1 |
20140071840 | Venancio | Mar 2014 | A1 |
20140074746 | Wang | Mar 2014 | A1 |
20140075846 | Woodburn | Mar 2014 | A1 |
20140076974 | Havens et al. | Mar 2014 | A1 |
20140078341 | Havens et al. | Mar 2014 | A1 |
20140078342 | Li et al. | Mar 2014 | A1 |
20140078345 | Showering | Mar 2014 | A1 |
20140084068 | Gillet et al. | Mar 2014 | A1 |
20140086348 | Peake et al. | Mar 2014 | A1 |
20140097249 | Gomez et al. | Apr 2014 | A1 |
20140098284 | Oberpriller et al. | Apr 2014 | A1 |
20140098792 | Wang et al. | Apr 2014 | A1 |
20140100774 | Showering | Apr 2014 | A1 |
20140100813 | Showering | Apr 2014 | A1 |
20140103115 | Meier et al. | Apr 2014 | A1 |
20140104413 | McCloskey et al. | Apr 2014 | A1 |
20140104414 | McCloskey et al. | Apr 2014 | A1 |
20140104416 | Li et al. | Apr 2014 | A1 |
20140104451 | Todeschini et al. | Apr 2014 | A1 |
20140106594 | Skvoretz | Apr 2014 | A1 |
20140106725 | Sauerwein | Apr 2014 | A1 |
20140108010 | Maltseff et al. | Apr 2014 | A1 |
20140108402 | Gomez et al. | Apr 2014 | A1 |
20140108682 | Caballero | Apr 2014 | A1 |
20140110485 | Toa et al. | Apr 2014 | A1 |
20140114530 | Fitch et al. | Apr 2014 | A1 |
20140121438 | Kearney | May 2014 | A1 |
20140121445 | Ding et al. | May 2014 | A1 |
20140124577 | Wang et al. | May 2014 | A1 |
20140124579 | Ding | May 2014 | A1 |
20140125842 | Winegar | May 2014 | A1 |
20140125853 | Wang | May 2014 | A1 |
20140125999 | Longacre et al. | May 2014 | A1 |
20140129378 | Richardson | May 2014 | A1 |
20140131441 | Nahill et al. | May 2014 | A1 |
20140133379 | Wang et al. | May 2014 | A1 |
20140140585 | Wang | May 2014 | A1 |
20140151453 | Meier et al. | Jun 2014 | A1 |
20140160329 | Ren et al. | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
2013163789 | Nov 2013 | WO |
2013173985 | Nov 2013 | WO |
2014019130 | Feb 2014 | WO |
Entry |
---|
U.S. Pat. Appl. No. 13/367,978, filed Feb. 7, 2012, (Feng et al.); now abandoned. |
U.S. Appl. No. 13/736,139 for an Electronic Device Enclosure, filed Jan. 8, 2013 (Chaney); 40 pages. |
U.S. Appl. No. 13/771,508 for an Optical Redirection Adapter, filed Feb. 20, 2013 (Anderson); 26 pages. |
U.S. Appl. No. 13/780,356 for a Mobile Device Having Object Identification Interface, filed Feb. 28, 2013 (Samek et al.); 21 pages. |
U.S. Appl. No. 13/852,097 for a System and Method for Capturing and Preserving Vehicle Event Data, filed Mar. 28, 2013 (Barker et al.); 20 pages. |
U.S. Appl. No. 13/902,110 for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Hollifield); 29 pages. |
U.S. Appl. No. 13/902,144, for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Chamberlin); 23 pages. |
U.S. Appl. No. 13/902,242 for a System for Providing a Continuous Communication Link With a Symbol Reading Device, filed May 24, 2013 (Smith et al.); 24 pages. |
U.S. Appl. No. 13/912,262 for a Method of Error Correction for 3D Imaging Device, filed Jun. 7, 2013 (Jovanovski et al.); 33 pages. |
U.S. Appl. No. 13/912,702 for a System and Method for Reading Code Symbols at Long Range Using Source Power Control, filed Jun. 7, 2013 (Xian et al.); 24 pages. |
U.S. Appl. No. 13/922,339 for a System and Method for Reading Code Symbols Using a Variable Field of View, filed Jun. 20, 2013 (Xian et al.); 23 pages. |
U.S. Appl. No. 13/927,398 for a Code Symbol Reading System Having Adaptive Autofocus, filed Jun. 26, 2013 (Todeschini); 24 pages. |
U.S. Appl. No. 13/930,913 for a Mobile Device Having an Improved User Interface for Reading Code Symbols, filed Jun. 28, 2013 (Gelay et al.); 24 pages. |
U.S. Appl. No. 13/933,415 for an Electronic Device Case, filed Jul. 2, 2013 (London et al.); 47 pages. |
U.S. Appl. No. 13/947,296 for a System and Method for Selectively Reading Code Symbols, filed Jul. 22, 2013 (Rueblinger et al.); 29 pages. |
U.S. Appl. No. 13/950,544 for a Code Symbol Reading System Having Adjustable Object Detection, filed Jul. 25, 2013 (Jiang); 28 pages. |
U.S. Appl. No. 13/961,408 for a Method for Manufacturing Laser Scanners, filed Aug. 7, 2013 (Saber et al.); 26 pages. |
U.S. Appl. No. 14/018,729 for a Method for Operating a Laser Scanner, filed Sep. 5, 2013 (Feng et al.); 24 pages. |
U.S. Appl. No. 14/019,616 for a Device Having Light Source to Reduce Surface Pathogens, filed Sep. 6, 2013 (Todeschini); 23 pages. |
U.S. Appl. No. 14/023,762 for a Handheld Indicia Reader Having Locking Endcap, filed Sep. 11, 2013 (Gannon); 31 pages. |
U.S. Appl. No. 14/035,474 for Augmented-Reality Signature Capture, filed Sep. 24, 2013 (Todeschini); 33 pages. |
U.S. Appl. No. 14/047,896 for Terminal Having Illumination and Exposure Control filed Oct. 7, 2013 (Jovanovski et al.); 32 pages. |
U.S. Appl. No. 14/053,175 for Imaging Apparatus Having Imaging Assembly, filed Oct. 14, 2013 (Barber); 39 pages. |
U.S. Appl. No. 14/055,234 for Dimensioning System, filed Oct. 16, 2013 (Fletcher); 26 pages. |
U.S. Appl. No. 14/053,314 for Indicia Reader, filed Oct. 14, 2013 (Huck); 29 pages. |
U.S. Appl. No. 14/065,768 for Hybrid System and Method for Reading Indicia, filed Oct. 29, 2013 (Meier et al.); 22 pages. |
U.S. Appl. No. 14/074,746 for Self-Checkout Shopping System, filed Nov. 8, 2013 (Hejl et al.); 26 pages. |
U.S. Appl. No. 14/074,787 for Method and System for Configuring Mobile Devices via NFC Technology, filed Nov. 8, 2013 (Smith et al.); 28 pages. |
U.S. Appl. No. 14/087,190 for Optimal Range Indicators for Bar Code Validation, filed Nov. 22, 2013 (Hejl); 27 pages. |
U.S. Appl. No. 14/345,735 for Optical Indicia Reading Terminal with Combined Illumination filed Mar. 19, 2014 (Ouyang); 19 pages. |
U.S. Appl. No. 14/101,965 for High Dynamic-Range Indicia Reading System, filed Dec. 10, 2013 (Xian); 28 pages. |
U.S. Appl. No. 14/118,400 for Indicia Decoding Device with Security Lock, filed Nov. 18, 2013 (Liu); 28 pages. |
U.S. Appl. No. 14/150,393 for Incicia-reader Having Unitary Construction Scanner, filed Jan. 8, 2014 (Colavito et al.); 28 pages. |
U.S. Appl. No. 14/154,207 for Laser Barcode Scanner, filed Jan. 14, 2014 (Hou et al.); 26 pages. |
U.S. Appl. No. 14/154,915 for Laser Scanning Module Employing a Laser Scanning Assembly having Elastomeric Wheel Hinges, filed Jan. 14, 2014 (Havens et al.); 24 pages. |
U.S. Appl. No. 14/158,126 for Methods and Apparatus to Change a Feature Set on Data Collection Devices, filed Jan. 17, 2014 (Berthiaume et al.); 53 pages. |
U.S. Appl. No. 14/342,551 for Terminal Having Image Data Format Conversion filed Mar. 4, 2014 (Lui et al.); 25 pages. |
U.S. Appl. No. 14/342,544 for Imaging Based Barcode Scanner Engine with Multiple Elements Supported on a Common Printed Circuit Board filed Mar. 4, 2014 (Liu et al.); 27 pages. |
U.S. Appl. No. 14/257,174 for Reading Apparatus Having Partial Frame Operating Mode filed Apr. 21, 2014, (Barber et al.), 67 pages. |
U.S. Appl. No. 14/200,405 for Indicia Reader for Size-Limited Applications filed Mar. 7, 2014 (Feng et al.); 42 pages. |
U.S. Appl. No. 14/166,103 for Indicia Reading Terminal Including Optical Filter filed Jan. 28, 2014 (Lu et al.); 29 pages. |
Extended European Search and Opinion Report for Application No. 14167806.0, dated Nov. 17, 2014, 8 pages. |
Exam Report in related EP Application 14167806.0, dated Nov. 30, 2015, 5 pages. |
U.S. Appl. No. 14/274,858 for Mobile Printer With Optional Battery Accessory, filed May 12, 2014, (Marty et al.), 26 pages. |
U.S. Appl. No. 14/264,173 for Autofocus Lens System for Indicia Readers filed Apr. 29, 2014, (Ackley et al.), 39 pages. |
U.S. Appl. No. 14/230,322 for Focus Module and Components with Actuator filed Mar. 31, 2014 (Feng et al.); 92 pages. |
U.S. Appl. No. 14/222,994 for Method and Apparatus for Reading Optical Indicia Using a Plurality of Data filed Mar. 24, 2014 (Smith et al.); 30 pages. |
U.S. Appl. No. 14/231,898 for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering filed Apr. 1, 2014 (Van Horn et al.); 36 pages. |
U.S. Appl. No. 29/486,759 for an Imaging Terminal, filed Apr. 2, 2014 (Oberpriller et al.); 8 pages. |
U.S. Appl. No. 29/436,337 for an Electronic Device, filed Nov. 5, 2012 (Fitch et al.); 19 pages. |
U.S. Appl. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.); 22 pages. |
U.S. Appl. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.); 21 pages. |
U.S. Appl. No. 29/459,681 for an Electronic Device Enclosure, filed Jul. 2, 2013 (Chaney et al.); 14 pages. |
U.S. Appl. No. 29/459,785 for a Scanner and Charging Base, filed Jul. 3, 2013 (Fitch et al.); 21 pages. |
U.S. Appl. No. 29/459,823 for a Scanner, filed Jul. 3, 2013 (Zhou et al.); 13 pages. |
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 44 pages. |
Number | Date | Country | |
---|---|---|---|
20140351317 A1 | Nov 2014 | US |