This application is a national stage application of PCT/IT2014/000058, internationally filed Feb. 28, 2014, which is herein incorporated by reference in its entirety.
The disclosure pertains generally to arterial filters used in blood perfusion systems and more particularly to arterial filters that are integrated into an oxygenator.
Blood perfusion entails encouraging blood through the vessels of the body. For such purposes, blood perfusion systems typically entail the use of one or more pumps in an extracorporeal circuit that is interconnected with the vascular system of a patient. Cardiopulmonary bypass surgery typically requires a perfusion system that provides for the temporary cessation of the heart to create a still operating field by replacing the function of the heart and lungs. Such isolation allows for the surgical correction of vascular stenosis, valvular disorders, and congenital heart defects. In perfusion systems used for cardiopulmonary bypass surgery, an extracorporeal blood circuit is established that includes at least one pump and an oxygenation device to replace the functions of the heart and lungs.
More specifically, in cardiopulmonary bypass procedures oxygen-poor blood, i.e., venous blood, is gravity-drained or vacuum suctioned from a large vein entering the heart or other veins in the body (e.g., femoral) and is transferred through a venous line in the extracorporeal circuit. In some cases, blood is drained inside a reservoir that filters out solid and gaseous emboli, while in other cases such as in mini bypass applications, a relatively small volume venous bubble trap can be used instead of a large volume venous reservoir. The venous blood is pumped to an oxygenator that provides for oxygen transfer to the blood. Oxygen may be introduced into the blood by transfer across a membrane or, less frequently, by bubbling oxygen through the blood. Concurrently, carbon dioxide is removed across the membrane. The oxygenated blood is filtered and then returned through an arterial line to the aorta, femoral, or other artery.
Often, an arterial filter is added to the extracorporeal circuit, after the oxygenator, as a last barrier before the patient, so as to block any solid or gaseous emboli and prevent any such emboli from entering into the aorta of the patient. Recently, arterial filters integrated in the oxygenator have been developed, allowing the reduction of the priming volume of the circuit and decreasing the global haemodilution of the patient. In some cases, excessive haemodilution is one of the major post-operative causes of patient morbidity, and should be avoided.
In some embodiments, the disclosure is directed to a filter assembly for use in a blood processing apparatus. The filter assembly includes a filter mesh screen having an average pore size of about 20 microns to about 150 microns and a plurality of hollow gas exchange fibers secured to the filter mesh screen. The filter mesh screen is spirally wound to form a filter assembly that is useable as a gas exchanger. Blood flowing between the plurality of hollow gas exchange fibers is filtered by the filter mesh screen.
In some embodiments, the disclosure is directed to a blood processing apparatus that includes an apparatus housing having a blood inlet and a blood outlet, the blood inlet extending into an interior of the apparatus housing. In some embodiments, a heat exchanger is in fluid communication with the blood inlet and is disposed about the blood inlet. A gas exchanger is disposed about the heat exchanger such that an inner surface of the gas exchanger is positioned to receive blood exiting an outer surface of the heat exchanger. In some embodiments, there is no heat exchanger, and the gas exchanger is disposed about the blood inlet. A screen filter is spirally wound through the gas exchanger such that blood passing through the gas exchanger passes through the screen filter and is filtered by the spirally wound screen filter a plurality of times.
While multiple embodiments are disclosed, still other embodiments of the present disclosure will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the disclosure. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
While the disclosure is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the disclosure to the particular embodiments described. On the contrary, the disclosure is intended to cover all modifications, equivalents, and alternatives falling within the scope of the disclosure as defined by the appended claims.
The disclosure pertains to a blood processing apparatus that combines, in a single structure, an optional heat exchanger, a gas exchanger or oxygenator and an arterial filter. In some embodiments, the term oxygenator with integrated arterial filter may be used to refer to a structure that combines an optional heat exchanger, a gas exchanger and an arterial filter in a unitary device. In some embodiments, an oxygenator may be used in an extracorporeal blood circuit. An extracorporeal blood circuit, such as may be used in a bypass procedure, may include several different elements such as a heart-lung machine, a blood reservoir, as well as an oxygenator.
In some embodiments, by combining the arterial filter with the oxygenator, the tubing set used to create the extracorporeal blood circuit may be reduced in complexity or number of parts and thus may simplify the extracorporeal blood circuit. In some embodiments, this will reduce the priming volume of the extracorporeal blood circuit. To illustrate, for a particular neonatal-sized oxygenator utilizing a separate arterial filter, the priming volume is about 47 milliliters (ml). A similar neonatal-sized oxygenator made in accordance with the disclosure, with an arterial filter integrated within the oxygenator, has a priming volume of about 35 ml. This represents a substantial reduction in priming volume of about 25 percent.
According to various embodiments the heat exchanger (if present), the gas exchanger, and the device housing 12 may have a cross-section shaped generally as a circle. Each of the heat exchanger, the gas exchanger and the device housing 12 may have generally the same sectional shape or each may have a different sectional shape.
In some embodiments, a blood inlet 16 extends into the device housing 12. A blood outlet 18 exits the device housing 12. As noted, in some embodiments the oxygenator 10 includes a gas exchanger and thus may include a gas inlet 20 and a gas outlet 22. In some embodiments, the oxygenator 10 includes a heat exchanger and thus may include a heating fluid inlet 24 and a heating fluid outlet 26. While not illustrated, in some embodiments it is contemplated that the oxygenator 10 may include one or more purge ports for eliminating air bubbles entrained within the blood. It is to be understood that the positions of the inlets and outlets are merely illustrative, as other arrangements and configurations are contemplated.
In some embodiments, as will be discussed subsequently, the gas exchanger 234 (
In some embodiments the gas exchanger 34 may include a number of hollow fibers through which a gas such as oxygen may flow. The blood may flow around and past the hollow fibers. Due to concentration gradients, oxygen may diffuse through the hollow fibers into the blood while carbon dioxide may diffuse into the hollow fibers and out of the blood. The hollow fibers are too small to be represented in this drawing.
In some embodiments, the gas exchanger 34 (
In this illustration, the size of the hollow fibers 44 is blown up out of scale to better illustrate the hollow fibers 44. The filter screen 42, in various embodiments, is a polymeric filter screen having an average pore size, defined as the average distance between adjacent elements, that ranges from about 20 microns to about 150 microns. In various embodiments, the average pore size of the filter screen is from about 60 microns to about 125 microns. In some embodiments, the filter screen 42 can be made from a polypropylene or polyester, although other suitable materials may also be used. In some cases, the filter screen 42, the gas exchange hollow fiber 44 or the whole oxygenator with integrated arterial filter may be coated with a biocompatible material.
The hollow fibers 44 may be polymeric. In some embodiments the hollow fibers are hollow fibers formed from microporous polypropylene or PMP (polymethyl propylene), although other suitable materials may also be used. In some embodiments, the hollow fibers 44 may have an average outer diameter that ranges from about 100 microns to about 1000 microns, and can have an average length corresponding to that of the gas exchanger itself.
It can be seen that the oxygenator core 52 defines a volume 50 that corresponds to the location of the heat exchanger 32. The oxygenator core 52 can be formed of any suitable material, such as any suitable polymeric material, and can have an outer diameter that is in the range of about 10 to about 200 millimeters (mm) and an inner diameter that is in the range of about 5 to about 5-100 mm. In some embodiments, relative dimensions will depend on the patient size and the choice of inner core diameter. While not illustrated in this view, the oxygenator core 52 may include one or more apertures that permit blood to flow from the heat exchanger 32 into the gas exchanger 34. In some embodiments, the oxygenator core 52 may be absent, and thus potting may be used to separate water and gas compartments within the device 10. As discussed above, in some embodiments there is no heat exchanger, and thus the oxygenator core 52 would be empty.
To illustrate the advantages in priming volume achieved by incorporating the arterial filter within the gas exchanger, consider the following example. A neonatal oxygenator D100 available from Sorin combined with a neonatal arterial filter D130 available from Sorin has a total priming volume of 47 ml. In comparison, a D100 oxygenator modified to include the inventive arterial filter incorporated within the gas exchanger has a total priming volume of 35 ml. This represents a 25% reduction. The particular dimensions are given in the Table below:
Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present disclosure. For example, while the embodiments described above refer to particular features, the scope of this disclosure also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present disclosure is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IT2014/000058 | 2/28/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/128886 | 9/3/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3339341 | Maxwell et al. | Sep 1967 | A |
3957648 | Roget et al. | May 1976 | A |
4038190 | Baudet et al. | Jul 1977 | A |
4225439 | Spranger | Sep 1980 | A |
4229305 | Fecondini et al. | Oct 1980 | A |
4597868 | Watanabe | Jul 1986 | A |
4639353 | Takemure et al. | Jan 1987 | A |
4707268 | Shah | Nov 1987 | A |
4758341 | Banner | Jul 1988 | A |
4902476 | Gordon et al. | Feb 1990 | A |
5169530 | Schucker et al. | Dec 1992 | A |
5192439 | Roth et al. | Mar 1993 | A |
5192499 | Sakai et al. | Mar 1993 | A |
5270004 | Cosentino et al. | Dec 1993 | A |
5316724 | Mathewson et al. | May 1994 | A |
5338512 | Mathewson et al. | Aug 1994 | A |
5514095 | Brightbill et al. | May 1996 | A |
5578267 | Cosentino et al. | Nov 1996 | A |
5651765 | Haworth et al. | Jul 1997 | A |
5674452 | Carson et al. | Oct 1997 | A |
5733398 | Carson et al. | Mar 1998 | A |
5762868 | Leonard | Jun 1998 | A |
5762869 | White et al. | Jun 1998 | A |
5817278 | Fini et al. | Oct 1998 | A |
5817279 | Eilers et al. | Oct 1998 | A |
5830370 | Maloney, Jr. et al. | Nov 1998 | A |
RE36774 | Cosentino et al. | Jul 2000 | E |
6105664 | Gillbrand et al. | Aug 2000 | A |
6113782 | Leonard | Sep 2000 | A |
6241945 | Owen | Jun 2001 | B1 |
6454999 | Farhangia Mehrdad et al. | Sep 2002 | B1 |
6459937 | Morgan et al. | Oct 2002 | B1 |
6755894 | Bikson et al. | Jun 2004 | B2 |
6960322 | Stringer et al. | Nov 2005 | B2 |
7431754 | Ogihara et al. | Oct 2008 | B2 |
7947113 | Ogihara et al. | May 2011 | B2 |
7981121 | Stegfeldt et al. | Jul 2011 | B2 |
8142546 | Ogihara et al. | Mar 2012 | B2 |
8318092 | Reggiani et al. | Nov 2012 | B2 |
8388566 | Reggiani et al. | Mar 2013 | B2 |
8394049 | Reggiani et al. | Mar 2013 | B2 |
8425838 | Mizoguchi et al. | Apr 2013 | B2 |
8652406 | Reggiani et al. | Feb 2014 | B2 |
8685319 | Olson et al. | Apr 2014 | B2 |
8795220 | Reggiani et al. | Aug 2014 | B2 |
8865067 | Olson et al. | Oct 2014 | B2 |
8911666 | Mizoguchi et al. | Dec 2014 | B2 |
9162022 | Reggiani et al. | Oct 2015 | B2 |
9402943 | Reggiani et al. | Aug 2016 | B2 |
20020039543 | Ikeda et al. | Apr 2002 | A1 |
20020049401 | Ghelli et al. | Apr 2002 | A1 |
20030080047 | Watkins et al. | May 2003 | A1 |
20030175149 | Searles et al. | Sep 2003 | A1 |
20040149645 | Sunohara et al. | Aug 2004 | A1 |
20040175292 | Ghellil et al. | Sep 2004 | A1 |
20040251011 | Kudo | Dec 2004 | A1 |
20060016743 | Ogihara | Jan 2006 | A1 |
20070107884 | Sirkar et al. | May 2007 | A1 |
20070166190 | Ogihara et al. | Jul 2007 | A1 |
20070231203 | Mizoguchi et al. | Oct 2007 | A1 |
20080234623 | Strauss et al. | Sep 2008 | A1 |
20100106072 | Kashefi-Khorasani et al. | Apr 2010 | A1 |
20100269342 | Carpenter et al. | Oct 2010 | A1 |
20100272606 | Carpenter et al. | Oct 2010 | A1 |
20100272607 | Carpenter et al. | Oct 2010 | A1 |
20110268608 | Reggiani et al. | Nov 2011 | A1 |
20110268609 | Reggiani et al. | Nov 2011 | A1 |
20120046594 | Reggiani et al. | Feb 2012 | A1 |
20120121463 | Reggiani et al. | May 2012 | A1 |
20120294761 | Reggiani et al. | Nov 2012 | A1 |
20130142695 | Reggiani et al. | Jun 2013 | A1 |
20130142696 | Reggiani et al. | Jun 2013 | A1 |
20140030146 | Takeuchi | Jan 2014 | A1 |
20140227133 | Reggiani et al. | Aug 2014 | A1 |
20150068670 | Mizoguchi et al. | Mar 2015 | A1 |
20160325036 | Silvestri et al. | Nov 2016 | A1 |
20160354529 | Reggiani et al. | Dec 2016 | A1 |
20170319767 | Zaniboni et al. | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
1042082 | May 1990 | CN |
2511309 | Sep 2002 | CN |
1308549 | Sep 2005 | CN |
2772515 | Apr 2006 | CN |
1907508 | Feb 2007 | CN |
1914474 | Feb 2007 | CN |
201510571 | Jun 2010 | CN |
103180032 | Jun 2013 | CN |
103328019 | Sep 2013 | CN |
103547298 | Jan 2014 | CN |
19782098 | Nov 1999 | DE |
102007010112 | Sep 2008 | DE |
102010027973 | Oct 2011 | DE |
0170210 | Feb 1986 | EP |
0312125 | Apr 1989 | EP |
0582959 | Feb 1994 | EP |
0895786 | Feb 1999 | EP |
1108462 | Jun 2001 | EP |
1180374 | Feb 2002 | EP |
1371381 | Dec 2003 | EP |
1618906 | Jan 2006 | EP |
1834656 | Sep 2007 | EP |
2420262 | Feb 2012 | EP |
2524712 | Nov 2012 | EP |
2537543 | Dec 2012 | EP |
445526 | Mar 1969 | JP |
S52126681 | Oct 1977 | JP |
S59147603 | Aug 1984 | JP |
60053156 | Mar 1985 | JP |
S6178407 | Apr 1986 | JP |
S63139562 | Jun 1988 | JP |
S63283709 | Nov 1988 | JP |
03169329 | Jul 1991 | JP |
H042067 | Jan 1992 | JP |
H0439862 | Jun 1992 | JP |
H05177117 | Jul 1993 | JP |
H0788178 | Apr 1995 | JP |
H08168525 | Jul 1996 | JP |
H11508476 | Jul 1999 | JP |
2000501954 | Feb 2000 | JP |
2000093510 | Apr 2000 | JP |
3228518 | Nov 2001 | JP |
2002506692 | Mar 2002 | JP |
3284568 | May 2002 | JP |
2002306592 | Oct 2002 | JP |
2003520617 | Jul 2003 | JP |
2003525736 | Sep 2003 | JP |
2004216143 | Aug 2004 | JP |
2006034466 | Feb 2006 | JP |
2007190218 | Feb 2007 | JP |
2007244880 | Sep 2007 | JP |
3992377 | Oct 2007 | JP |
2007260151 | Oct 2007 | JP |
2007328114 | Dec 2007 | JP |
201147269 | Mar 2011 | JP |
5020111 | Sep 2012 | JP |
2012239885 | Dec 2012 | JP |
201363121 | Apr 2013 | JP |
2015144857 | Aug 2015 | JP |
WO1997016213 | May 1997 | WO |
WO1997019714 | Jun 1997 | WO |
WO1997033636 | Sep 1997 | WO |
WO9947189 | Sep 1999 | WO |
WO9958171 | Nov 1999 | WO |
WO2010124087 | Oct 2010 | WO |
2012066439 | May 2012 | WO |
2012133372 | Oct 2012 | WO |
2015104725 | Jul 2015 | WO |
2015107486 | Jul 2015 | WO |
2015128886 | Sep 2015 | WO |
Entry |
---|
International Preliminary Report on Patentability issued in PCT/IB2015/053493, dated Nov. 23, 2017, 9 pages. |
International Search Report and Written Opinion issued in PCT/IB2015/053493, dated Jan. 18, 2016, 13 pages. |
International Preliminary Report on Patentability issued in PCT/IB2015/065987, report dated May 16, 2017, 8 pages. |
International Preliminary Report on Patentability issued in PCT/IT2014/000058, dated Sep. 6, 2016, 10 pages. |
International Search Report and Written Opinion issued in PCT/IB2014/065987, dated Jul. 16, 2015, 10 pages. |
International Preliminary Report on Patentability issued in PCT/IB2014/065987, dated May 26, 2017, 9 pages. |
European Search Report issued in EP Application No. 10161451, dated Sep. 28, 2010, 5 pages. |
European Search Report issued in EP Application No. 10173436, dated Feb. 14, 2011, 7 pages. |
European Search Report issued in EP Application No. 10186550, dated Jan. 27, 2011, 7 pages. |
European Search Report issued in EP Application No. 10191140, dated Nov. 30, 2011, 8 pages. |
European Search Report issued in EP Application No. 12187501, dated Nov. 20, 2013, 6 pages. |
European Search Report issued in EP Application No. 13161841, dated Jun. 11, 2013, 6 pages. |
International Preliminary Report on Patentability issued in PCT/IT2014/000005, dated Jul. 12, 2016, 6 pages. |
International Search Report and Written Opinion issued in PCT/IB2012/052424, dated Oct. 24, 2012, 17 pages. |
International Search Report and Written Opinion issued in PCT/IT2014/000005, dated Sep. 26, 2014, 9 pages. |
International Search Report and Written Opinion issued in PCT/IT2014/000058, dated Dec. 8, 2014, 14 pages. |
International Search Report issued in PCT/IB2011/054725, dated Feb. 9, 2012, 12 pages. |
Italian Search Report issued in IT Application No. IT MO20140010, completed Sep. 23, 2014, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20170072123 A1 | Mar 2017 | US |