Monitoring and managing equipment in remote locations presents a challenging task, particularly for equipment leasing companies. This task becomes even more challenging when it involves mobile equipment such as heavy construction vehicles. Creating maintenance schedules and the mechanisms by which the scheduling can be carried out can be complicated, especially for that concerning mobile equipment.
Presently, systems are known which generate a single maintenance schedule for a piece of equipment. For instance, in the case of a construction vehicle, a single maintenance schedule is created for the entire vehicle. In instances where the vehicle is located remotely away from the maintenance service center usually involved in the servicing of the vehicle, generating maintenance schedules which are easily created, distributed and followed proved difficult until now.
Applicable reference numbers have been carried forward.
A wireless equipment management system 2 is provided for managing a plurality of equipment 4, e.g., mobile or non-mobile machines.
Data processing center 6 can contain one or more servers which operate to run computer programs that manage and/or prepare equipment maintenance schedules for a plurality of equipment 4. Equipment operating data, historical usage data, maintenance schedules and equipment location information can also be tracked and maintained by one or more servers at data processing center 6.
Equipment manager 14 within data processing center 6 can be implemented as a server programmed to calculate servicing schedules for each monitored piece of equipment 4. Data on each monitored piece of equipment can be maintained in memory storage represented by functional block 16 as accomplished, for instance, in the same server as that for equipment manager 14 or in a separate server therefrom for storage of collected data. This data includes equipment specifications, and operating data including historical usage data. For instance, information relating to repair histories, in-service hours, fuel consumption, location information and operating costs can be stored in memory storage 16.
A particular advantage of wireless equipment management system 2 lies in its ability to generate multiple maintenance schedules that are independently, adaptively, and automatically driven from equipment information collected by sensors 12. Multiple schedules per equipment piece allow for easier tracking, initiation of new maintenance procedures and analysis. In the case of an engine, multiple schedules can be generated for oil changes, spark plug replacement, part replacement, etc. For the case of a construction vehicle, one or more sensors 12 can, for instance, monitor braking systems. One maintenance schedule can pertain to turning of rotors for disc brakes or perhaps for replacement of brake pads. Another schedule may pertain to tire inspection and/or replacement, etc. It may be inconvenient or infeasible for an equipment manager or owner to handle certain maintenance procedures in-house. Typically, maintenance work for equipment in the field is outsourced to various specialty outfits. A tire contractor may handle all of the outsourced tire work for a company in a particular region or part of the world. Braking mechanism maintenance, whether for an air brake or otherwise may be contracted to a specialist. A single maintenance schedule for a piece of equipment can simply be insufficient, particularly in instances where maintenance work is contracted out or rather, outsourced. In order to assign and monitor the contracted work, a maintenance schedule for a particular type of maintenance work on a specific vehicle should be forwarded to a specific contractor, e.g. engine maintenance schedules for twenty vehicles identified operating in Central America. Further, with an ever increasing eye toward security, an owner or manager of equipment may not want the entire maintenance schedule of a piece of equipment readily available to all that perform maintenance work. This may be especially the case with maintenance of security or military vehicles.
Wireless equipment system 2 is preferably a computer-based system that uses the Transmission Control Protocol/Internet Protocol (TCP/IP) networking protocol. Further this system 2 is particularly suitable for the Internet, particularly with broadband Internet. Wireless system 2 is accessible from multiple sources concerning maintenance scheduling. Different levels of security can be meted out to each system user depending on information needs et cetera.
Wireless equipment system 2 can be implemented using a combination of wireless technology, data handling functionality construction industry constructs as provided, for example, by an equipment management solution such as GlobalTRACS® by QUALCOMM®. An equipment management solution automatically collects, organizes and transmits vital information concerning how the equipment is being used, how much equipment is being used as well as the location of that equipment. This information is especially useful to entities renting, distributing, contracting or owning equipment-particularly construction equipment. The equipment management solution can track equipment use such as engine hour use as reported by a sensor tracking usage hours of a system on a piece of equipment, such as an engine. Further, the equipment management solution can provide global positioning system (GPS)-based equipment location information including data indicating when a piece of equipment has moved outside of a pre-set boundary.
In one embodiment each sensor 12 and controller 20 on the same piece of equipment can act as a CAN slave device connected to a CAN master controller 5. Master controller 5 includes antenna 18 which is used in connection with transmitting and receiving Code Division Multiple Access (CDMA) signals. However, other communications systems for use in connection with antenna 18 are contemplated, e.g., Time Division Multiple Access, et cetera.
Data received by each sensor 12 on a piece of equipment 4 is sent to CAN master controller 5 where it is stored until downloaded by system controller 22 through wireless communications link 8.
Operator controller 24 receives alerts in the form of warning messages, instructions, alarms, etc. to warn an equipment operator (not shown) of conditions (faulty operation, etc.) sensed on equipment 4 by a sensor 12, thereby allowing the operator to take or institute corrective or preventative action.
Equipment manager 14 in conjunction with data processing center 6 analyzes data received from each CAN master controller 5. As a result thereof, equipment manager 14 issues, inter alia, maintenance recommendations, alerts, alarms to system controller 22 which in turn forwards the same to a user control/monitoring site 26. A control/monitoring site 26 can represent, for instance, the owner of rental equipment. Through link 36, communications can be had between each control/monitoring site 26 and equipment manager 14 through system controller 22 pertaining to a specified piece of equipment 4. Communications over link 36 can occur by numerous ways. For instance, these communications can occur over the Internet, via e-mail, text messages, etc. Equipment manager 14 function can adapt to inputs, requests, etc. from control/monitoring sites 26. For instance, a maintenance step can be moved up ahead of schedule at the request of a control/monitoring site 26.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
This application claims priority to U.S. Provisional Application No. 60,688,400, filed on Jun. 7, 2005.
Number | Date | Country | |
---|---|---|---|
60688400 | Jun 2005 | US |