The technology described herein is a development of the technology disclosed in patent specification PCT/CA-2009/00040, and provides another manner for enabling liquid to be injected out into the ground formation around a borehole, and for enabling pulses to be imposed onto the liquid being injected.
The pulsing tool 20 of
A hammer-spring 134 acts to bias the hammer 132 in an upwards direction, and the hammer 132 remains
In
Now, the differential PDAF has fallen to such a low value (being 100 psi in
Therefore, in
Once the pulse-valve 23 is closed, liquid is prevented from passing out into the formation. Therefore, the formation-pressure (i.e. the pressure in the formation-space 32) starts to fall (down from 1700 psi towards 1500 psi in the example). Equally, since the pulse-valve is closed, the accumulator now can re-charge, pressurised liquid being supplied from the surface. The accumulator-pressure (i.e. the pressure in the accumulator-space 36) therefore starts to rise (up from 1800 psi towards 2000 psi in the example). Thus, the pulse-valve being closed, in
The stationary body 21 of the tool 20 includes an abutment-ring 136. The abutment-ring serves as an area-divider with respect to the upwards-facing surface (i.e. the accumulator-surface 149) of the piston body 140 of the hammer 132. With the pulse-valve 23 closed, and the hammer 132 in its
The formation-pressure acts upwards against the downwards-facing surface (the formation-surface 139) of the piston 140 of the hammer 132. The designer has arranged that, when the pressure differential PDAF exceeds an upper trigger level (being 500 psi in the example of
Once the hammer starts to moves downwards, now the abutment-ring 136 no longer seals against the accumulator-surface of the piston 140 of the hammer 132. Therefore, the high accumulator-pressure now suddenly acts over the whole upwards-facing accumulator-surface of the piston, being the sum of sub-area 149A and sub-area 149B together, and not just over the sub-area 149A. The result is that the large (500 psi) pressure differential PDAF now slams the hammer 132 downwards.
The head 142 of the fast-moving (and accelerating) hammer 132 strikes the hub 146 of the valve-member 25 with a good deal of momentum, with the result that the pulse-valve 23 opens very rapidly. Operationally, the connection between the piston and the valve-member is set up as a lost-motion connection, whereby the hammer has already had the opportunity to accelerate, and to reach a high speed, before it slams into the hub 146. Its high momentum therefore makes the valve-member 25 move downwards very rapidly.
With the pulse-valve 23 open, liquid from the accumulator surges out through the perforations 34 (shown in
The pulse-valve 23, having opened, and having created the porosity-wave, now remains open, whereby a charge-volume of liquid passes out into the formation. In due course, the accumulator-pressure drops and the formation-pressure rises. After a time, the flowrate of liquid slows, and the differential PDAF between the (rising) formation-pressure and the (falling) accumulator-pressure drops down to 100 psi—the condition shown in
When the hammer 132 rises, a collar 145 picks up the valve-member 25, and drags the valve-member upwards to its closed position. (The valve-member 25 would not tend to return to its closed position on its own.) A collar-spring 147 provides some compliance between the hammer and the valve-member—which is preferred because the valve-member must be closed tightly against its seat 40 at the same time as the upper end of the piston 140 of the hammer is closed tightly against the abutment-ring 136.
Once the valve-member 25 has moved to its closed position, the designers can arrange for the valve-member to remain closed by providing that the effective diameter of the seal of the valve-member against the seat 40 of the tool body 21 is slightly smaller than the diameter of the skirt seal 43. The (small) difference gives rise to a (small) force urging the sliding valve-member upwards when it is in its closed position.
It will be understood that the arrangement of
Therefore, when the hammer is
In order to effect a seal at the abutment-ring 136, the designer can arrange for the metal of the abutment-ring 136 to abut against the metal of the surface 149 of the hammer 132, as shown in
The designer should arrange for the seal at the abutment-ring 136 to be leakproof, because even a slight leakage under the abutment-ring 136, when the seal is supposed to be closed, would or might enable the pressure in the annular-space 138 to rise, and thus affect the ability of the apparatus properly to perform the up/down cyclic movements of the hammer, as described.
During its up/down cyclic movements, the hammer 132 is slammed downwards very rapidly, and the designer should consider including e.g. an elastomeric buffer between the hammer and the shoulder 150, to function as a shock-absorber. Or, the designer might arrange a hydraulic cushion for the hammer.
One of the benefits of the arrangement of
When the pulse-valve opens, as described, a charge-volume of water (or other liquid, or even a gas in some circumstances) is injected out into the surrounding aquifer formation. Now, if the ground is very permeable, a comparatively large charge-volume is needed, in order to fill up the aquifer with enough water at a high enough pressure for the pressure differential PDAF to decrease to the lower level at which the pulse-valve closes—and it takes a long time for this large charge-volume to pass through the pulse-valve, which means that it takes a long time for the PDAF to decrease all the way down to 100 psi, being the condition that triggers the end of the injection stroke. This extended injection-stroke means that the frequency of pulsing would be comparatively slow.
On the other hand, when the ground is comparatively impermeable, and/or approaching complete over-saturation, now only a small charge-volume is needed, per pulse-cycle, to fill up the surrounding aquifer sufficiently that the PDAF can decrease to the low magnitude (100 psi) at which the pulse-valve closes.
In the apparatus of
The designers choose the limits for the upper and lower magnitudes of the PDAF (being the 500 psi and the 100 psi magnitudes in the example) at which they desire the pulse-valve to open and close. The designers put the desired opening and closing pressures into practical effect by selecting the diameters and areas of the components of the apparatus that are moved by the various pressures and differential pressures, and by selecting appropriate spring-forces and spring-rates etc.
The designers having determined the upper and lower limits that the PDAF has to reach, in order to trigger the pulse-valve to open and close, the arrangement of
It might happen, when injection first commences, that the ground is able to accept injected liquid at so low a back-pressure that the PDAF does not change enough to initiate cycling between upper and lower trigger levels, and the tool then does not create pulses. Eventually, the ground does become saturated enough for the PDAF to change fast enough for pulsing to commence.
However, it is usually preferred not to continue with the non-pulsed injection for a long period because steady-pressure (or static) injection can lead to extensive fingering of the injected liquid out into the ground formation, and it can be quite difficult to homogenize (or re-homogenize) the ground formation and the liquid content thereof, once fingering has become established. Therefore, the prudent engineer, faced with the prospect of a long period of injection without pulsing, can include an injection check-valve 90 in the overall tool, e.g. of the kind as described with reference to
The term saturation, as used herein, may be explained as follows. The ground formation is said to be simply-saturated when no more liquid can be injected into the ground, without pulsing, and without increasing the injection pressure. Usually, in the type of ground formation with which the present technology is mainly concerned, the saturation condition cannot actually be achieved; that is to say, it is always possible to inject some more liquid, e.g. at a slow flowrate, because injected liquid is constantly dissipating into the surrounding ground at a slow flowrate.
It is (nearly) always possible to inject more liquid into the ground simply by raising the steady (non-pulsing) injection pressure. However, engineers must take care not to raise the injection pressure above the maximum pressure permitted for that borehole and ground formation. The permissible limit is put in place on the basis that applying a higher pressure would or might lead to irreversible physical damage to the ground formation. Usually, the maximum permitted pressure should not be exceeded even during a pressure pulse of very short duration. It may be noted that although the rapid opening of the pulse-valve creates the energetic porosity wave, it does not cause the pressure to rise even momentarily above the permitted maximum.
Generally, the engineers will wish to inject as much liquid into the ground as possible, at as rapid a rate as possible. Therefore, they will wish to inject the liquid at as high a pressure as possible. It is therefore common for the engineers to carry out injection at a pressure magnitude that is just under the permitted pressure level, for that borehole and that ground formation.
Thus, again, the simple-saturation condition occurs when injecting liquid at a steady rate, i.e. without pulsing (termed static injection), and when the rate at which further liquid can be injected has slowed to zero, at a given injection pressure, or at least has slowed to a commercially-insignificant trickle. Again, the pressure at which the liquid is injected will usually be the maximum pressure that the ground formation can stand. If injection at a higher pressure were permitted, it would be done—on the basis that the faster the liquid can be placed in the ground, the more economical the injection operation.
The term over-saturation, as used herein, refers to the injection of more liquid into the ground, beyond the simple-saturation condition. This extra injectability results from applying pulses to the liquid as the liquid is being injected. Practically any type of pulsing can enable at least a small degree of over-saturation; the technology described herein, particularly the engineered rapid rise-time of the pulses, when performed properly, can enable a very large degree of over-saturation to be achieved.
It is emphasized that the extra injectability attributable to pulsing still takes place within the maximum permitted injection-pressure. During static-injection, the liquid is maintained at its maximum permitted pressure all the time; during pulse-injection, the liquid is cycled between its maximum permitted pressure and a somewhat lower pressure. Nevertheless, pulse-injecting enables more liquid to be injected than static-injecting, for a given injection-pressure.
For the purposes of this specification, the ground is said to be fully or completely over-saturated when, after a long period of pulse-injection, every drop of liquid that is injected into the formation during the injection-stroke of the pulse-cycle travels back into the borehole during the recovery-stroke of the pulse-cycle. Again, in real practical ground formations, the fully over-saturated condition is never quite achieved, i.e. the volume recovered, per pulse, is never quite as much as the volume injected per pulse.
Again, it is generally the aim of the designers and engineers to inject as much liquid as possible into the ground, per well, in as short a time as possible. In practical terms, it will always be possible to inject some more liquid into the well, after a time, because the already-injected liquid dissipates somewhat into the surrounding ground. As to when to stop injecting, that is a matter of the economics of the particular injection operation.
Sometimes, the pulsing tool includes a component that can be recognized as a dedicated accumulator structure, having a spring or a contained volume of gas that is compressed by rising pressure during the recharge-phase. An example is shown in
The term accumulator-pressure, as used herein, is the supply pressure as it acts on the movable piston of the injection tool. The accumulator-pressure is derived from liquid fed down to the tool from the surface. The accumulator-pressure decreases during the injection phase of the injection-cycle, when the pulse-valve is open and liquid is passing out into the formation. The accumulator-pressure increases during the recovery- or recharge-phase of the cycle, when the pulse-valve is closed, and the accumulator is being recharged by pressurized liquid from the surface.
The term formation-pressure, as used herein, is the pressure in the ground formation, as it acts on the movable piston of the tool. The formation-pressure is rising or increasing during the injection-phase of the injection-cycle, when the pulse-valve is open and liquid is passing out into the formation. The formation-pressure is falling or decreasing during the recovery- or recharge-phase of the cycle, when the pulse-valve is closed.
As mentioned, the PDAF is the pressure differential between the accumulator-pressure and the formation-pressure.
The upper and lower trigger levels are the levels of the PDAF at which the tool triggers the pulse-valve 23 to switch from closed to open, and triggers the pulse-valve to switch from open to closed, respectively. The magnitudes of the PDAF at the respective trigger levels are determined by the force of the hammer-spring 134 and by the sizes of area-A 149A and of area-B 149B, as in:—
upper trigger (pulse-valve opens)=when the rising PDAF reaches HSF/area-A;
lower trigger (pulse-valve closes)=when the falling PDAF drops to HSF/(area-A+area-B).
(The hammer-spring force (HSF) would be greater for the lower level, because the hammer-spring 134 is more compressed at that time.)
The above relationships apply to
The working range of pressure of the tool is the difference between the upper trigger level of the PDAF (at which the pulse-valve opens) and the lower trigger level (at which the pulse-valve closes). In the example of
When the ground formation is not at all saturated, the back pressure in the formation, against which the liquid is injected, is more or less zero—or, at least, the back pressure drops to an insignificant level (almost) immediately upon closure of the pulse-valve.
During the early stages of pulsing, when the ground is unsaturated, desirably the working range of the tool should be large. As a saturation condition is approached, so the residual back pressure (i.e. the formation-pressure against which the liquid is injected) rises. The working range of the tool might have to be reduced as the saturation condition is approached.
For example, consider the case of a tool that is operating in a well in a ground formation for which the permitted maximum injection pressure is 2000 psi. The tool has been structured to provide a working range of 1500 psi, between the upper trigger level of the PDAF and the lower trigger level. That is to say: the pulse-valve opens and closes cyclically between two PDAF pressures that are 1500 psi apart. Thus, if the formation-pressure is e.g. 400 psi, the pulse-valve opens when the accumulator-pressure reaches 1900 psi.
If the residual back pressure of the formation were to rise higher than 400 psi, say to 600 psi, now the upper trigger level would be set to occur at an accumulator-pressure of 2100 psi—which is higher than the maximum permitted pressure for that borehole, and higher than the supply pressure. Therefore, the pulse-valve would not open unless/until the formation-pressure falls below 500 psi.
In reality, the formation-pressure would indeed eventually fall to 500 psi, as the injected liquid dissipated into the formation. However, the intention behind liquid-injection generally is to inject as much liquid as possible into the ground, as rapidly as possible. Simply waiting for the injected liquid to drain away would be contra-indicated. So, when approaching saturation, it is preferred that the tool set-up should be changed in such manner as to reduce the working range of the tool. For example, the working range might be reduced from 1500 psi down to e.g. 400 psi (as shown in the example of
Still further reductions in the working range may be made, as the condition of complete over-saturation is approached. It is up to the operators to determine the most cost-effective number and size of the steps by which the working range of the tool should be reduced, as injection proceeds, depending on the particular tool, on the particular ground formation, and on the cost associated with taking the tool out of the ground and changing its hammer-spring or other components.
In some cases, it is commercially worthwhile still to pulse-inject liquid into the ground even when the formation-pressure is only just below the maximum permitted injection pressure—say when the formation-pressure has risen to 1800 psi or 1900 psi with a permitted maximum injection pressure of 2000 psi. Now, given that the upper and lower trigger PDAF levels are quite close together, the hammer-spring has to be very light, and the area-B has to be small, in order for the upper and lower trigger levels to be close enough together for the tool to actually perform the injection/recharge cycle.
Preferably, the designer should arrange for the working range to be changed simply by changing the hammer-spring. The lighter the hammer-spring, the smaller the working range. In the design as shown, it is a simple matter to arrange the tool such that the tool can be dismantled, in the field, sufficiently to enable the hammer-spring to be changed. Also, optionally the working range of the tool can be adjusted by changing the ratio between the area of Area-A and the area of area-B.
Again, also, optionally the rate of the hammer-spring can be changed in order to change the open/close triggers of the tool. If the hammer-spring is of a low rate, the spring exerts nearly the same force during opening as it exerts during closing. If the spring is of a high rate, the force exerted on the piston by the spring at the moment of closing (when the spring is more compressed) is higher than the force exerted by the same spring at the moment of opening. Thus, the rate of the hammer-spring can be used to affect the PDAF levels at which the pulse-valve opens and closes.
The tool as shown has to be removed from the well, in order for the engineers to change the spring, or to change the pistons etc. However, it is routine for a pulse-injection tool to be removed from the injection-well from time to time, during a pulse-injection program, and the engineers can usually arrange for the changes to the hammer-spring to coincide with those occasions.
The frequency at which the tool operates its inject/recharge cycle of course depends on the parameters of the pulse-valve, but depends also on the permeability of the ground. The tighter the ground, the smaller the volume of liquid that needs to be injected in order for the formation-pressure to rise to a given level. The engineers should see to it that the pumping etc equipment is adequate for the task of injecting at the needed flowrate and pressure. The engineers preferably should see to it that the pump and other liquid supply facilities, at the surface, are capable of charging up the accumulator at a faster flowrate than the ground formation can accept the liquid at the corresponding pressures. The cyclic frequency settles to the level as determined by the time it takes for the PDAF to rise to the upper trigger level, and to fall to the lower trigger level.
With a typical design of pulsing tool, and in a typical well, the frequency of pulsing might vary between e.g. one or two cycles per second, and e.g. one cycle in ten seconds. Typically also, pulsing would be continued over a period of days or weeks. It might take several days, or a few hours, for a back-pressure to build up in the formation, such that there is some measurable residual pressure left in the formation-space immediately before the pulse-valve opens.
Again, it is emphasized that, during a pulse-injection operation, the accumulator-pressure and the formation-pressure are not static. Rather, when the pulse-valve is closed, the accumulator-pressure is rising and the formation-pressure is falling; when the pulse-valve is open, the formation-pressure is rising and the accumulator-pressure is falling. The PDAF also is constantly changing; the PDAF rises when the pulse-valve is closed, and falls when the pulse-valve is open.
The valve-member 25 moves between the valve-open and the valve-closed positions, and it is important that the distance the valve-member has to move should be short, in order for the pulse-valve to open as rapidly as possible. The area of the throat of the open pulse-valve is the product of the circumference and the axial distance through which the valve-member travels. The designer preferably should therefore arrange for the circumference of the pulse-valve to be as large as conveniently possible, in order to minimize the distance traveled, and this preference has been followed in the design as depicted.
There is little point in the throat area of the open pulse-valve being larger than the throat area of the passageways and conduits leading from the accumulator to the pulse-valve. In a downhole tool having an overall area OA, typically the passageways and conduits have an area of 0.6 or 0.7 OA, and the area of the open pulse-valve should be the same. Therefore, the valve-member being close to the outer diameter of the tool, the distance the valve-member moves should be between about 0.12 and 0.18 of the overall diameter of the tool.
The attached drawings show the tool components diagrammatically. Of course, the designer must see to it that the components can actually be manufactured, and can be assembled together.
Terms of orientation, such as “above”, down”, and the like, when used herein are intended to be construed as follows. When the terms are applied to an apparatus, that apparatus is distinguished by the terms of orientation only if there is not one single orientation into which the apparatus, or an image of the apparatus, could be placed, in which the terms could be applied consistently.
The scope of the patent protection sought herein is defined by the accompanying claims. The apparatuses and procedures depicted in the accompanying drawings and described herein are examples.
The numerals appearing in the accompanying drawings are:
Number | Date | Country | Kind |
---|---|---|---|
0807878.4 | Apr 2008 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA09/00557 | 4/30/2009 | WO | 00 | 10/26/2010 |