Aase et al., “CPR Artifact Removal from Human ECG Using Optimal Multichannel Filtering”, IEEE Transactions on Biomedical Engineering 47(11):1440-1449, Nov. 2000. |
Aase et al., “Compression Depth Estimation for CPR Quality Assessment Using DSP on Accelerometer Signals”, IEEE Transactions on Biomedical Engineering 49(3):263-268, Mar. 2002. |
“Advisory Statements of the International Liaison Committee on Resuscitation”, Circulation , p. 2181, 1997. |
Dickey, et al., “The Accuracy of Decision-Making of a Semi-Automatic Defibrillator During Cardiac Arrest”, Eur. Heart J. 13(5):608-615, May 1992. |
Eftestol et al., “Effects of Interrupting Precordial Compressions on the Calculated Probability of Defibrillation Success During Out-of Hospital Cardiac Arrest”, Accepted for publication 2002. |
Geddes et al., “Principles of Applied Biomedical Instrumentation”, Third Ed., pp. 370-373, ©1989. |
“Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care”, Int'l Consensus on Science, American Heart Association/European Resuscitation Council, pp. 164-168, Aug, 2000. |
Husoy et al. “Removal of Cardiopulmonary Resuscitation Artifacts from Human ECG Using an Efficient Matching Pursuit-like Algorithm”, IEEE Transactions on Biomedical Engineering, (Accepted for publication), vol. XX, No. Y, 2002. |
Kerber, et al., “Automatic External Defibrillators for Public Access Defibrillation: Recommendations for Specifying . . . Enhancing Safety”, Circulation, 95:1677-1682, 1997. |
Langhelle et al., “Reducing CPR Artefacts in Ventricular Fibrillation in Vitro”, Resuscitation 48:279-291, 2001. |
Sato et al, “Adverse effects of interrupting precordial compression during cardiopulmonary resuscitation”, Crit Care Med, 1997, vol. 25, pp. 733-736. |
“Advisory Statements of the International Liaison Committee on Resuscitation”, Ilcor Advisory Statement, American Heart Association, 1997, pp. 2172-2210. |
“Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiac Care”, Journal of the American Medical Association, Oct. 28, 1992, vol. 268, No. 16, pp. 2171-2302. |
Shen Luo et al; “Experimental study: brachial motion artifact reduction in the ECG”; Computers in Cardiology 1995; (CAT. No. 95CH35874), Vienna, Austria, Sept. 10-13, 1995; pp. 33-35. |
Provaznik I et al; “Adaptive recurrent system for noise cancellation and arrhythmia detection”; Proceedings of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Engineering Advances: New Opportunities for Biomedical Engineers; (CAT No. 94CH3474-4); Proceedings of 16th Annual International Conference; 1994; pp. 270-1271, vol. 2. |
Thakor N V et al; “Applications of adaptive filtering to ECG analysis; noise cancellation and arrhythmia detection” IEEE Transactions on Biomedical Engineering, Aug. 1991; vol. 38, No. 8, pp. 785-794. |
Aase et al., “CPR Artifact Removal from Human ECG Using Optimal Multichannel Filtering”, IEEE Transactions on Biomedical Engineering, vol. 47, No. 11, Nov. 2000, pp. 1440-1449. |
Fitzgibbon et al., “Determination of the Noise Source in the Electrocardiogram during Cardiopulmonary Resuscitation”, Crit Care Med 2002, vol. 30, No. 4 (Suppl.), pp. S148-S153. |
Gruben et al., “System for Mechanical Measurements during Cardiopulmonary Resuscitation in Humans”, IEEE Transactions on Biomedical Engineering, vol. 37, No. 2, Feb. 1990, pp. 204-210. |
Langhelle et al., “Reducing CPR Artefacts in Ventricular Fibrillation in Vitro”, Resuscitation 48, 2001, pp. 279-291. |