The invention relates to moving a floatable body that has been stranded on land as a result of a natural disaster, of accidental running aground, or has been deliberately run aground for the purpose of loading and unloading goods, or of landing armed forces or heavy equipment etc.
It is well known that hurricanes, tsunami and similar natural disasters often carry heavy objects, including boats, barges, and small ships onto the dry land. In some cases, the recently floating vessels are stranded several hundred yards from water. Every stranded vessel requires emergency assistance in order to remove the ship from a place of danger, to reduce stress in the hull and to decrease the risk of pollution.
The refloating operations are expensive and time consuming. Stabilizing measures to prevent further damage and keep the ship from being driven harder aground or broaching can be performed soon after the vessel becomes grounded but these measures will not refloat the vessel. Once the vessel is stabilized it must be moved back into the water. Conventional refloating techniques involve the use pulling tugboats to pull the vessel to the water. This technique may suitable if the boat ran aground on a sandbank not far from the water's edge.
However, in the case of a large vessel or rocky terrain, the tug boats may not be used since the pulling action can damage the hull. In some cases, special trolleys are constructed adjacent the grounded vessel. Enormous cranes are used to literally lift the vessel onto a trolley. The trolley is then moved closer to the water's edge and the vessel is unloaded into the water, provided that the hull is still floatable. If any repairs are needed they are performed while the hull remains exposed. Regardless of the technique, the cost of refloating a vessel remains high.
The present invention contemplates elimination of drawbacks associated with conventional methods of refloating grounded vessels and provision of an improved system of moving the grounded vessel back into the water using inflatable rollers placed under the hull of the vessel.
It is therefore an object of the present invention to provide a system of refloating a grounded vessel using inflatable rollers as support for the vessel hull.
It is another object of the invention to provide a system of refloating a grounded vessel suitable for use on sandy or rocky terrains.
It is a further object of the invention to provide a system of refloating a grounded vessel using individually inflatable rollers that can be inflated or deflated using a wireless control signal.
These and other objects of the invention are achieved through a provision of a system for refloating a grounded vessel having a floatable hull, a hull bottom, a deck, and a bow portion. The system comprises a plurality of inflatable flexible buoyant rollers positionable under the hull bottom while the rollers are deflated. The system uses a source of pressurized air for inflating the inflatable rollers, such as for instance one or more air compressors to gradually inflate the rollers such that the hull bottom completely rests on the rollers.
The system also comprises a means for regulating delivery and release of pressurized air into the inflatable rollers, which includes an individually connected and operated air delivery conduit for each inflatable roller, a pressure regulating valve connected to each air delivery conduit, a pressure release valve connected to each air delivery conduit, and a computer-based control unit for controlling operation of each pressure regulating and each air release valve. If the operator detects that the hull is not even the operator can further inflate individual roller or deflate the individual roller and release air into the atmosphere through the air release valve to stabilize the vessel.
A plurality of video input units, such as video cameras, is strategically located around the grounded vessel and on the vessel deck. The video input devices send live feed signals to the computer based control unit and allow the operator to observe the process of inflating the rollers until the rollers support the hull above ground. An independently propelled land-based or water-based vehicle pulls the vessel seaward using a winch mounted on the vehicle and a length of cable or chain.
The inflatable rollers are formed from cylindrically shaped flexible bags made of puncture resistant material suitable for rolling on rocky and sandy terrain while supporting full weight of the vessel. A swivel connector mounted between the roller air conduit and the inflatable roller has a rotatable joint, which rotates as the rollers rotate and prevents twisting or kinking of the roller air hose.
Reference will now be made to the drawings, wherein like parts are designated by like numerals, and wherein
Turning now to the drawings in more detail, numeral 10 designates the computer-based system for refloating grounded vessels according to this invention. The system 10 is designed to support and move a grounded vessel 12 from a land-based location to a body of water, such as a canal, open sea, river, lake, etc. In the drawings, the vessel 12 is shown as a flat-bottom platform barge although it will be understood that other vessels can be successfully refloated using the refloating system 10. The vessel 12 can be hundreds of feet long and weigh more than a thousand tons. The vessel can be also weighted down by unloaded cargo.
The stranded vessel 12 comprises a floatable hull 14, a bottom 16, aft or stern portion 18, forward or bow portion 20, port wall 22, and starboard wall 24. An upper deck 26 extends between the port wall 20 and the starboard wall 24. The upper deck 26 substantially spans the length of the hull 14, such as shown in
The refloating system 10 comprises a control unit 30 which can be housed in a control unit housing 32. The control unit housing 32 is positioned adjacent the grounded vessel 12. A power source 34 supplies power to the control unit 30. The system 10 is provided with wireless communication means for operating compressors and air valves, as will be described in more detail hereinafter. A control manifold antenna 36 is placed on exterior of the control unit housing 32 to send the control signals to the compressors and receive feedback from video input devices. A video antenna 38 is positioned on the exterior of the housing to process live feed signal from a central video camera data center 40 positioned on the upper deck 26 of the vessel 12.
The central video data center 40 collects video signals from a plurality of video cameras placed strategically around the grounded vessel 12. Video input devices, such as video cameras 42a are combined with transducer antennas 42b in video camera units 42.
Other video input devices are positioned on the vessel 12. Deck video cameras 46 are mounted on the upper deck 26. In one aspect of the invention, the deck video cameras 46 are mounted in pairs, two—on the forward port side, two—on the forward starboard side, two—on the port aft side, and two—on the starboard aft side. The images collected by the video camera unit 42 and the deck video cameras 46 are collected and processed by the central video camera data center 40 and then transmitted to the computer-based control unit 30 via the video antenna 38.
As can be seen in
The control unit 30 is also provided with a control manifold display 50 and a computer monitor display 52. A keyboard 54 is operationally connected to the computer monitor display 52 to allow an operator to remotely control the components of the refloating system 10. The computer-based control unit processes all signals sent and received from the system components while allowing a centralized operation of the system 10.
The system of the present invention comprises a pair of air compressors 62, 64, which are designed to supply compressed air to the inflatable rollers 60. The air compressor 62 or 64 can be a 185 CFM air compressor or other suitable compressor. The air compressors 62, 64 can be diesel-powered and delivered to the site on a truck bed or other suitable modes of delivery. Each of the air compressors 62, 64 supplies compressed air via a respective compressor air hose 63, 65 to an associated control manifold unit 66, 68. The air hoses 63, 65 can be formed as a flexible conduit having 2″ diameter. Each control manifold unit 66, 68 comprises a plurality of regulating valves 70 operationally connected to a bank of air cylinders 72 mounted in the manifold control unit 66, 68. The regulating valves 70 communicate with interior of the air cylinders 72 via a plurality of air manifolds 74.
The control manifold units 66, 68 also support a plurality of air release valves 71, which are separately connected to individual rollers 60 and are designed to release air from the inflatable rollers 60 depending on the internal pressure in each the inflatable rollers in order to maintain stability of the vessel hull 14. A battery bank 73 may be provided in the control manifold units 66, 68 to ensure that a back-up power source is available during the refloating operation.
Each of the air regulating valves 70 is operationally connected to a respective inflatable roller 60 by an individual flexible roller air conduit or roller air hose 76. The roller air hose can be a conduit having 1″ diameter. A swivel connector member 78 is mounted between the roller air hose 76 and an inlet end 80 of the inflatable roller 60. The swivel connector member 78 comprises a first fixed end 82 designed for engaging the roller air hose 76 and a second fixed end 84 designed for engaging the inflatable roller 60. The swivel connector member 78 is substantially hollow allowing air to move therethrough. A shut off valve 86 is mounted on the swivel connector member 78 for closing the air flow to and from the inflatable roller 60. A pressure gauge 88 is incorporated in the swivel connector member 78 to allow visual evaluation of the pressure in the air flow being delivered or escaping the inflatable roller 60.
The swivel connector member 78 has a pair of elbow connector parts 90 and 92 positioned adjacent the second end 94 of the swivel connector member 78. A first elbow connector part 90 is capable of rotating about an axis 91 at the joint 94 and about an axis 93 at the joint 96. The joint 94 allows rotation of the first elbow connector part 90 in relation to the fixed second end 84, while the joint 96 allows rotation of the first elbow connector part 90 in relation to the fixed second elbow connector part 92. This double-swivel feature allows the roller air hose 76 to assume any desired position in relation to the inflatable roller 60 when the rollers 60 are rotated, while resisting twisting or kinking of the roller air hose 76.
Each of the inflatable rollers 60 has a generally cylindrical configuration with hemispherical (
Turning now to
The hull 14 is tied to a pulling vehicle 97 by a pulling cable or chain 98, which is connected to the hull 14 at the bow, port and starboard sides. The pulling vehicle can be a tug boat if the vessel 12 is grounded close to the water edge or to a land moving vehicle first and then to a tug boat if the vessel 12 is located far inland. A winch 110 is mounted on the pulling vehicle, being it a land-based or water-based independently propelled vehicle. A load cell 112 can be secured to the pulling cable 98 to control the winch tension.
The operator is located in the control unit housing 32, with the control unit 30 receiving live feed from the cameras 46 placed around the vessel 12. The operator starts the flow of air into each individual roller 60 by a wireless signal sent from the antenna 36 to the control manifold units 66, 68. The air is allowed to gradually inflate the rollers 60 until such time as the bottom 16 of the hull 14 rests on the rollers 16 rather than the support blocks 100, as illustrated in
Once the rollers 60 become sufficiently inflated, the support blocks 100 are removed and the hull 14 completely rests on the rollers 60, as shown in
The vessel 12 is gradually pulled toward a waterway using the pulling vehicle 97. The bottom 16 of the hull 14 remains positioned on the rollers 60 as the vessel 12 is transported over the land. When the vessel 12 reaches the water edge, the forwardmost rollers 60 are rolled into the body of water 114, while the stern 18 still rests on the back rollers 60 remaining on the ground, as shown in
The refloating system of the present invention is considerably less expensive than traditional systems. The use of the system 10 can save time in refloating a stranded vessel, making it more attractive than convention methods. Moreover, it can be successfully used regardless of the terrain where the vessel is grounded and even if the vessel is located at a substantial distance from a body of water.
Many changes and modifications can be made in the system and method of the present invention without departing from the spirit thereof. I, therefore, pray that my rights to the present invention be limited only by the scope of the appended claims.
This application is a continuation application of my co-pending application Ser. No. 14/045,486, filed on Oct. 3, 2013, the full disclosure of which is incorporated by reference herein and priority of which is hereby claimed.
Number | Name | Date | Kind |
---|---|---|---|
1293899 | Pendergast | Feb 1919 | A |
3358884 | Link | Dec 1967 | A |
3710746 | Mcdonald | Jan 1973 | A |
3722448 | Leonardi | Mar 1973 | A |
3732837 | Hogan | May 1973 | A |
3814043 | Krout | Jun 1974 | A |
4084529 | Katernberg | Apr 1978 | A |
4495880 | Maniscalco | Jan 1985 | A |
4887541 | Rodemann | Dec 1989 | A |
4979451 | Searle | Dec 1990 | A |
5094181 | Fuerst | Mar 1992 | A |
5183001 | Stranzinger | Feb 1993 | A |
5411425 | Rinker | May 1995 | A |
5755172 | Fryburg | May 1998 | A |
5860379 | Moody | Jan 1999 | A |
6080027 | Rodemann | Jun 2000 | A |
6470818 | Mears | Oct 2002 | B1 |
6484656 | Mears | Nov 2002 | B2 |
6598550 | Patel | Jul 2003 | B1 |
6745714 | Faber | Jun 2004 | B1 |
6802274 | Mears | Oct 2004 | B2 |
6830004 | Mears | Dec 2004 | B2 |
7644673 | Schmitt | Jan 2010 | B2 |
20090044740 | Imel | Feb 2009 | A1 |
20110188932 | James | Aug 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 14045486 | Oct 2013 | US |
Child | 14735752 | US |