The present disclosure relates to refrigeration systems and more specifically to a charge-verification system for use with a refrigeration system.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Compressors are used in a wide variety of industrial and residential applications to circulate refrigerant within a refrigeration, heat pump, HVAC, or chiller system (generically referred to as “refrigeration systems”) to provide a desired heating and/or cooling effect. In any of the foregoing systems, the compressor should provide consistent and efficient operation to ensure that the particular refrigeration system functions properly.
Refrigeration systems and associated compressors may include a protection system that selectively restricts power to the compressor to prevent operation of the compressor and associated components of the refrigeration system (i.e., evaporator, condenser, etc.) when conditions are unfavorable. The types of faults that may cause protection concerns include electrical, mechanical, and system faults. Electrical faults typically have a direct effect on an electrical motor associated with the compressor, while mechanical faults generally include faulty bearings or broken parts. Mechanical faults often raise a temperature of working components within the compressor and, thus, may cause malfunction of and possible damage to the compressor.
In addition to electrical and mechanical faults associated with the compressor, the compressor and refrigeration system components may be affected by system faults attributed to system conditions such as an adverse level of fluids (i.e., refrigerant) disposed within the system or a blocked-flow condition external to the compressor. Such system conditions may raise an internal compressor temperature or pressure to high levels, thereby damaging the compressor and causing system inefficiencies and/or failures.
A charge-verification system for a circuit including a condenser having an inlet, an outlet, and a coil circuit tube extending between the inlet and the outlet is provided. The charge-verification system may include a first of coil temperature sensor located on the coil circuit tube a first distance from the inlet and a second of coil temperature sensor located on the coil circuit tube a second distance from the inlet. The charge-verification system may also include a controller receiving a first signal from the first temperature sensor indicative of a first temperature and a second signal from the second temperature sensor indicative of a second temperature. The controller may determine which of the first signal and the second signal is closer to an actual saturated condensing temperature of the condenser.
A method of charge-verification of a circuit including a condenser having an inlet, an outlet, and a coil circuit tube extending between the inlet and the outlet is also provided. The method may include determining a first temperature of the coil circuit tube at a first distance from the inlet of the condenser, determining a second temperature of the coil circuit tube at a second distance from the inlet of the condenser, providing the first temperature to a controller, and providing the second temperature to the controller. The method may also include determining by the controller which of the first temperature and the second temperature is closer to an actual saturated condensing temperature of the condenser.
Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way. The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:
Example embodiments will now be described more fully with reference to the accompanying drawings.
Example embodiments are provided so that this disclosure will be thorough and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms, and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
With reference to
During operation of the refrigeration system 12, the compressor 14 circulates refrigerant generally between the condenser 18 and the evaporator 22 to produce a desired heating and/or cooling effect. Specifically, the compressor 14 receives refrigerant in vapor form through an inlet fitting 30 and compresses the refrigerant. The compressor 14 provides pressurized refrigerant in vapor form to the condenser 18 via a discharge fitting 34.
All or a portion of the pressurized refrigerant received from the compressor 14 may be converted into the liquid state within the condenser 18. Specifically, the condenser 18 transfers heat from the refrigerant to the surrounding air, thereby cooling the refrigerant. When the refrigerant vapor is cooled to a temperature that is less than a saturation temperature, the refrigerant changes state from a vapor to a liquid. The condenser 18 may include a condenser fan 38 that increases the rate of heat transfer away from the refrigerant by forcing air across a heat-exchanger coil associated with the condenser 18. The condenser fan 38 may be a variable-speed fan that is controlled by the charge-verification system 10 based on a cooling demand.
The refrigerant passes through the expansion valve 26 prior to reaching the evaporator 22. The expansion valve 26 expands the refrigerant prior to the refrigerant reaching the evaporator 22. A pressure drop caused by the expansion valve 26 may cause a portion of the liquefied refrigerant to change state from a liquid to a vapor. In this manner, the evaporator 22 may receive a mixture of vapor refrigerant and liquid refrigerant.
The refrigerant absorbs heat in the evaporator 22. Accordingly, liquid refrigerant disposed within the evaporator 22 changes state from a liquid to a vapor when warmed to a temperature that is greater than or equal to the saturation temperature of the refrigerant. The evaporator 22 may include an evaporator fan 42 that increases the rate of heat transfer to the refrigerant by forcing air across a heat-exchanger coil associated with the evaporator 22. The evaporator fan 42 may be a variable-speed fan that is controlled by the charge-verification system 10 based on a cooling demand.
As the liquid refrigerant absorbs heat, the ambient air disposed proximate to the evaporator 22 is cooled. The evaporator 22 may be disposed within a space to be cooled such as a building or refrigerated case where the cooling effect produced by the refrigerant absorbing heat is used to cool the space. The evaporator 22 may also be associated with a heat-pump refrigeration system where the evaporator 22 may be located remote from the building such that the cooling effect is lost to the atmosphere and the rejected heat generated by the condenser 18 is directed to the interior of a space to be heated.
A system controller 46 may be associated with the charge-verification system 10 and/or the compressor 14 and may monitor, control, protect, and/or diagnose the compressor 14 and/or the refrigeration system 12. The system controller 46 may utilize a series of sensors to determine both measured and non-measured operating parameters of the compressor 14 and/or the refrigeration system 12. While the system controller 46 is shown as being associated with the compressor 14, the system controller 46 could be located anywhere within or outside of the refrigeration system 12. The system controller 46 may use the non-measured operating parameters in conjunction with the measured operating parameters to monitor, control, protect, and/or diagnose the compressor 14 and/or the refrigeration system 12. Such non-measured operating parameters may also be used to check the sensors to validate the measured operating parameters and to determine a refrigerant charge level and/or a fault of the refrigeration system 12.
The system controller 46 may control the condenser fan 38 and the evaporator fan 42 such that operation of the condenser fan 38 and the evaporator fan 42 is coordinated with operation of the compressor 14. For example, the system controller 46 may control one or both fans 38, 42 to operate at a full or reduced speed depending on the output of the compressor 14.
The condenser 18, having an inlet 50 and an outlet 54, may further include a first coil temperature sensor 58 and a second coil temperature sensor 62 positioned on first and second heat-exchanger coil circuit tubes (not shown). The first coil temperature sensor 58 may be located within a first predetermined range of the coil circuit length from the condenser inlet 50. For example, the first coil temperature sensor 58 may be located at approximately forty percent of the coil circuit length from the condenser inlet 50 or at any location between thirty percent and fifty percent of the coil circuit length from the condenser inlet 50. The second coil temperature sensor 62 may be located within a second predetermined range of the coil circuit length from the condenser inlet 50. For example, the second coil temperature sensor 62 may be located at approximately seventy percent of the coil circuit length from the condenser inlet 50 or at any location between sixty percent and ninety percent of the coil circuit length from the condenser inlet 50. The first and second coil temperature sensors 58, 62 detect a temperature of the refrigerant circulating in the condenser 18 and may be used by the system controller 46 of the charge-verification system 10 to determine a saturated condensing temperature (SCT) of the refrigerant.
While the condenser 18 is illustrated as a Plate-Fin Heat Exchanger Coil, the present disclosure is applicable to other heat exchangers such as a smaller 5 mm microtube, a Microchannel, Spine-Fin Heat Exchanger Coils, or other heat exchangers known in the art. Further, the condensing coil may include various different parallel circuits with different heat exchanger designs. The first and second coil temperature sensors 58, 62 may be associated with any of the heat exchangers of the various parallel circuits.
A liquid-line temperature sensor 66 may be located along a conduit 70 extending between the condenser 18 and the expansion valve 26 and may provide an indication of a temperature of the liquid refrigerant within the refrigeration system 12 or liquid-line temperature (LLT) to the system controller 46. While the liquid-line temperature sensor 66 is described as being located along the conduit 70 extending between the condenser 18 and the expansion valve 26, the liquid-line temperature sensor 66 could alternatively be placed anywhere within the refrigeration system 12 that allows the liquid-line temperature sensor 66 to provide an indication of a temperature of liquid refrigerant within the refrigeration system 12 to the system controller 46.
An outdoor/ambient temperature sensor 74 may be located external to the compressor 14 and generally provides an indication of the outdoor/ambient temperature (OAT) adjacent to the compressor 14 and/or the charge-verification system 10. The outdoor/ambient temperature sensor 74 may be positioned adjacent to the compressor 14 such that the outdoor/ambient temperature sensor 74 is in close proximity to the system controller 46. Placing the outdoor/ambient temperature sensor 74 in close proximity to the compressor 14 provides the system controller 46 with a measure of the temperature generally adjacent to the compressor 14. While the outdoor/ambient temperature sensor 74 is described as being located adjacent to the compressor 14, the outdoor/ambient temperature sensor 74 could be placed anywhere within the refrigeration system 12 that allows the outdoor/ambient temperature sensor 74 to provide an indication of the outdoor/ambient temperature proximate to the compressor 14 to the system controller 46. Additionally, or alternatively, local weather data could be retrieved using the internet, for example, to determine ambient temperature.
The system controller 46 receives sensor data from the coil temperature sensors 58, 62, the liquid-line temperature sensor 66, and the outdoor/ambient temperature sensor 74 for use in controlling and diagnosing the refrigeration system 12 and/or the compressor 14. The system controller 46 may additionally use the sensor data from the respective sensors 58, 62, 66, and 74 to determine non-measured operating parameters of the refrigeration system 12 and/or the compressor 14 using the relationships shown in
The system controller 46 determines which of the temperatures received from the first coil temperature sensor 58 and the second coil temperature sensor 62 is closer to the actual SCT and uses that sensor in conjunction with the temperature reading from the liquid-line temperature sensor 66 to determine a subcooling and the charge level of the refrigeration system 12, as will be described in greater detail below.
With particular reference to
When the charge-verification system 10 operates under normal charge conditions, placement of the temperature sensor on a coil circuit tube at approximately a midpoint of the condenser 18 provides the system controller 46 with an indication of the temperature of the condenser 18 that approximates the saturated condensing temperature and saturated condensing pressure. When the charge-verification system 10 is normally charged such that the refrigerant within the refrigeration system 12 is within +/−fifteen percent of an optimum-charge condition, the information detected by the temperature sensor positioned at approximately the midpoint of the coil circuit tube is closer to the actual SCT.
With particular reference to
The refrigerant exiting the compressor 14 and entering the condenser 18 is at a reduced temperature and may be in an approximately 40/60 gas/liquid mixture. The reduced-temperature refrigerant converts from the vapor state to the liquid state at an earlier point along the length of the condenser 18 and therefore may be at a partial or fully liquid state when the refrigerant approaches the temperature sensor disposed at the midpoint of the condenser 18. Because the refrigerant is at a lower temperature, the temperature sensor at the midpoint reports a temperature to the system controller 46 that is lower than the actual SCT.
When the refrigeration system 12 operates in the overcharge condition, the subcooled liquid phase increases and the reading of the second coil temperature sensor 62 may be lower than the reading of the first coil temperature sensor 58 because the tube where the second coil temperature sensor is located is subcooled compared to the tube where the first coil temperature sensor is located. Therefore, during an overcharge condition, the temperature from the first coil temperature sensor 58 is closer to the actual SCT than the temperature from the second coil temperature sensor 62.
With particular reference to
When the refrigeration system 12 operates in the undercharge condition, the subcooled liquid phase decreases and the reading of the second coil temperature sensor 62 may approach the reading of the outlet liquid-line temperature sensor 66. Eventually, when the subcooling phase disappears because both sensors 58, 62 are detecting only the condensing phase, the readings of temperature sensors 58, 62 are approximately equal. In this situation, the temperature from the first coil temperature sensor 58 approximately equals the temperature from the second coil temperature sensor 62, which, in turn, approximates the actual SCT.
With reference to
In the condensing phase, the temperature changes mainly as a function of pressure drop; thus, the temperature changes very gradually, at approximately less than three degrees (3° F.) per coil circuit. When in the subcooled phase, the temperature changes much more rapidly, at approximately greater than ten degrees (10° F.) per coil circuit.
When the temperature from the first coil temperature sensor 58 is greater than the temperature from the second coil temperature 62 sensor plus approximately two degrees Fahrenheit (2° F.) and both are greater than the LLT plus approximately seven degrees Fahrenheit (7° F.) (Tcoil1>Tcoil2+2° F.>LLT+7° F.), a normal charge condition is declared. When the temperature from the first coil temperature sensor 58 is approximately equal to the temperature from the second coil temperature sensor 62—which is approximately equal to the LLT (Tcoil1≅Tcoil2≅LLT)—an undercharge condition is declared; indicating that refrigerant should be added to the system. When the temperature from the first coil temperature sensor 58 is greater than the temperature from the second coil temperature sensor 62 plus approximately five degrees Fahrenheit (5° F.) and both are greater than the LLT plus approximately two degrees Fahrenheit (2° F.) (Tcoil1>Tcoil2+5° F.>LLT+2° F.), an overcharge condition is declared; indicating that refrigerant should be removed from the system.
For example, when the refrigeration system 12 is operating in an undercharged condition, the first coil temperature sensor 58 may be reporting eighty-four degrees Fahrenheit (84° F.), eighty-nine degrees Fahrenheit (89° F.), or ninety-five degrees Fahrenheit (95° F.) and the second coil temperature sensor 62 may be reporting eighty-three degrees Fahrenheit (83° F.), eighty-nine degrees Fahrenheit (89° F.), or ninety-four degrees Fahrenheit (94° F.). If the first coil temperature sensor 58 is reporting eighty-four degrees Fahrenheit (84° F.) and the second coil temperature sensor 62 is reporting eighty-three degrees Fahrenheit (83° F.), the subcooling temperature is 3.2° F. If the first coil temperature sensor 58 is reporting eighty-nine degrees Fahrenheit (89° F.) and the second coil temperature sensor 62 is reporting eighty-nine degrees Fahrenheit (89° F.), the subcooling temperature is 0.7° F. If the first coil temperature sensor 58 is reporting ninety-five degrees Fahrenheit (95° F.) and the second coil temperature sensor 62 is reporting ninety-four degrees Fahrenheit (94° F.), the subcooling temperature is 0.3° F. The graph illustrates similar relations for normal operation and overcharged operation as well. The controller 46 may therefore use the data from the first coil temperature sensor 58 and the second coil temperature sensor 62 along with the LLT to diagnose the charge level of the system.
Based on the temperature readings from the first and second coil temperature sensors 58, 62, the system controller 46 determines the subcooling temperature and the charge condition (as shown in
Dependent upon the amount of refrigerant that needs to be added or removed from the system, the refrigerant may be added or removed in a series of incremental additions or removals to ensure that too much refrigerant is not added or removed. Between each of the series of incremental additions or removals, the system controller 46 may determine the subcooling temperature and the charge condition.
Now referring to
At 104, the method 100 determines whether the Tcoil1 equals the Tcoil2 and whether both of these values are approximately equal to the LLT (Tcoil1=Tcoil2=LLT). If true, the method 100 determines that the refrigeration system 12 is operating in an undercharged condition at 106. At step 108, the method 100 recommends adding refrigerant to the system. The method 100 then returns to step 104 to continue evaluating the Tcoil1, the Tcoil2, and the LLT.
If false at step 104, the method 100 determines whether a first coil temperature (Tcoil1) is greater than a second coil temperature (Tcoil2) plus approximately two degrees Fahrenheit (2° F.) and whether both of these values are greater than the LLT plus approximately seven degrees Fahrenheit (7° F.) (Tcoil1>Tcoil2+2° F.>LLT+7° F.) at 110. If true, the method 100 determines that the refrigeration system 12 is operating in a normal charge condition at 112. The method 100 returns to step 104 to continue evaluating the Tcoil1, the Tcoil2, and the LLT.
If false at step 104, the method 100 moves to step 110 and if false at step 110, the method 100 moves to step 114 and determines whether the Tcoil1 is greater than the Tcoil2 plus approximately five degrees Fahrenheit (5° F.) and whether both of these are greater than the LLT plus approximately two degrees Fahrenheit (2° F.) (Tcoil1>Tcoil2+5° F.>LLT+2° F.). If true, the method 100 determines that the refrigeration system 12 is operating in an overcharged condition at 116. At 118, the method 100 recommends removing refrigerant from the system. The method 100 then returns to step 104 to continue evaluating the Tcoil1, the Tcoil2, and the LLT.
If false at step 114, the method 100 returns to step 104 to continue evaluating the Tcoil1, the Tcoil2, and the LLT.
With particular reference to
The charge-verification method 120 may be used by the controller 46 in conjunction with or in place of the charge-verification method 100 when determining the charge of the refrigeration system 12. If the methods 100, 120 are used in conjunction with one another, the methods 100, 120 may independently determine the charge of the refrigeration system 12 (i.e., normal charge, undercharge, or overcharge) and may be used by the controller 46 to verify the results of each method 100, 120. Namely, the result obtained by one of the methods 100, 120 may be used by the controller 46 to verify the result obtained by the other method 100, 120 by comparing the results obtained via each method 100, 120.
At 122, the method 120 determines whether the TD is less than approximately 0.75Y (i.e., 75% of Y) and whether a ratio of AT/TD is greater than approximately 90%, whereby the variable (Y) represents a predetermined desired TD value, which may be determined based on system efficiency. If true, the method 120 determines that the refrigeration system 12 is operating in an undercharged condition at 124. At step 126, the method 120 recommends adding refrigerant to the system. The method 120 then returns to step 122 to continue evaluating the system 12.
If false at step 122, the method 120 moves to step 128 and determines whether the TD is approximately equal to the predetermined desired TD value Y (i.e., +/−15% of Y) and whether the ratio of SC/TD is less than approximately 75%. If true, the method 120 determines that the refrigeration system 12 is operating in a normal charge condition at 130. The method 120 returns to step 122 to continue evaluating the system 12.
If false at step 122, the method 120 moves to step 128 and if false at step 128, the method 120 moves to step 132 and determines whether the TD is greater than approximately 1.5Y and whether a ratio of SC/TD is greater than approximately 90%. If true, the method 120 determines that the refrigeration system 12 is operating in an overcharged condition at 134. At 136, the method 120 recommends removing refrigerant from the system. The method 120 then returns to step 122 to continue evaluating the system 12.
If false at step 132, the method 120 returns to step 122 to continue evaluating the system 12.
The controller 46 may execute the foregoing methods 100, 120 simultaneously. Further, while the controller 46 monitors the system 12 for the undercharge condition prior to the normal-charge condition and the overcharge condition, the controller 46 could perform operations 104, 110, 114 of method 100 and operations 122, 128, 132 of method 120 in any order. The controller 46 is only described as performing operations 104 and 122 first, as most commercial refrigeration systems 12 are manufactured and shipped with a small volume of refrigerant and, therefore, are typically in the undercharge condition when initially installed.
In another configuration, the system controller 46 may additionally determine faults in the refrigeration system 12 along with determining the subcooling temperature and the charge condition. For example, the system controller 46 may determine a temperature difference (TD) between the SCT and the OAT (TD=SCT−OAT). The TD increases with an overcharge condition and decreases with an undercharge condition. The system controller 46 may further determine an approach temperature (AT) by subtracting the OAT from the LLT (AT=LLT−OAT). The AT decreases with an overcharge condition and increases with an undercharge condition.
Based on the foregoing, the system controller 46 is able to determine a refrigerant charge level and/or a fault by analyzing the AT, the TD and the SC without requiring additional temperature sensors (as illustrated in
For overcharge conditions, the TD is high, but the AT is small, thus an SC/TD ratio is greater than approximately ninety percent (90%). For undercharge conditions, the TD is low and the SC is low, thus an AT/TD ratio is greater than approximately ninety percent (90%). Accordingly, the controller 46 may differentiate between other faults as well, as described in detail below.
With particular reference to
When diagnosing faults in the system, the system controller 46 may perform additional calculations to assist in the diagnosis. For example, the system controller 46 may utilize other data that signifies a particular operating condition to allow the controller 46 to differentiate amongst faults having similar characteristics. For example, the TDs for a one hundred thirty percent (130%) charge (overcharge) condition and a low condenser air flow condition (dirty coil) are both high (for example only, 35° F.). In order to differentiate between these two faults, the system controller 46 may determine a ratio of SC to TD. The controller 46 may declare an overcharge condition when SC/TD is greater than approximately ninety percent (90%), and may declare a low condenser air flow fault (e.g. blocked or dirty condenser coil or condenser fan fault) when SC/TD is less than approximately ninety percent (90%).
The TDs for both a seventy-five percent (75%) charge (undercharge) condition and a thermal expansion valve (TXV) flow control restriction are low (for example only, 14° F. and 13° F., respectively). In order to differentiate between these two faults, the system controller 46 may determine a ratio of AT to TD. The undercharge condition may be declared when the ratio of AT/TD is greater than approximately ninety percent (90%) and the TXV fault may be declared when the ratio of AT/TD is less than approximately ten percent (10%).
As previously described, the coil temperature sensors 58, 62 may be used to determine the charge condition of the refrigeration system 12. This information may be useful when installing a new refrigeration system 12 or, alternatively, when monitoring or charging an existing system 12 following maintenance. In one configuration, the temperature sensors 58, 62 may be used in conjunction with an algorithm that utilizes information from the temperature sensors 58, 62 to aid in providing the refrigeration system 12 with the proper amount of refrigerant.
The algorithm may be performed by a computer such as, for example, a hand-held device or a laptop computer (
The installer may power on the system and wait approximately fifteen minutes or until the system controller 46 indicates that the system is stable for charging at 142. Because the factory charge is intended for only fifteen feet (15 ft) of refrigeration line, this particular unit may be undercharged, as described at 144. Thus, both the temperature reading from the first coil temperature sensor 58 and the temperature reading from the second coil temperature sensor 62 are valid SCTs in this situation. The controller 46 may calculate the SC using the formula SC=SCT−LLT and confirm whether approximately two degrees Fahrenheit is less than the SC and whether the SC is less than a target SC (2° F.<SC<SCtarget) at 146, where the target SC is approximately ten degrees Fahrenheit (10° F.). If the target SC is provided from original equipment manufacturer data, the system controller 46 will use this as the target SC instead.
The system controller 46 may calculate and display an amount of charge (X) to be added at 148. The system controller may prompt the installer to add X charge to the system at 150 (if X is large, the addition may be performed in a plurality of increments). The system controller 46 may check for system stabilization and may display the SC versus the target SC on the computing device at 152. When the SC is approximately equal to the target SC, the system controller 46 may indicate that the charge is complete at 154. If the installer adds more charge than requested by the system controller 46, the system controller 46 may determine an overcharge condition and may prompt the installer to recover and start the charge process again at 156.
The charge-verification system 10 and method 100 may also be applied to a split heat pump operating in a heating mode if both the first coil temperature sensor 58 and the second coil temperature sensor 62 are positioned on the indoor coil of the heat pump system. The SCT determined may be used to calculate a Discharge Superheat (DSH). Further, the charge-verification system 10 and method 100 are intended for both initial installation as well as on-going monitoring and maintenance service of the refrigeration system 12.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
Those skilled in the art may now appreciate from the foregoing that the broad teachings of the present disclosure may be implemented in a variety of forms. Therefore, while this disclosure has been described in connection with particular examples thereof, the true scope of the disclosure should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, the specification and the following claims.
This application claims the benefit of U.S. Provisional Application No. 61/789,913, filed on Mar. 15, 2013. The entire disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2296822 | Wolfert | Sep 1942 | A |
2804839 | Hallinan | Sep 1957 | A |
2961606 | Mead | Nov 1960 | A |
2962702 | Derr et al. | Nov 1960 | A |
3027865 | Kautz et al. | Apr 1962 | A |
3082951 | Kayan | Mar 1963 | A |
3400374 | Schumann | Sep 1968 | A |
3513662 | Golber | May 1970 | A |
3581281 | Martin et al. | May 1971 | A |
3585451 | Day, III | Jun 1971 | A |
3653783 | Sauder | Apr 1972 | A |
3697953 | Schoenwitz | Oct 1972 | A |
3707851 | McAshan, Jr. | Jan 1973 | A |
3767328 | Ladusaw | Oct 1973 | A |
3820074 | Toman | Jun 1974 | A |
3882305 | Johnstone | May 1975 | A |
3924972 | Szymaszek | Dec 1975 | A |
4006460 | Hewitt et al. | Feb 1977 | A |
4019172 | Srodes | Apr 1977 | A |
4027289 | Toman | May 1977 | A |
RE29450 | Goldsby et al. | Oct 1977 | E |
4102150 | Kountz | Jul 1978 | A |
4132086 | Kountz | Jan 1979 | A |
4151725 | Kountz et al. | May 1979 | A |
4153003 | Willis | May 1979 | A |
4178988 | Cann et al. | Dec 1979 | A |
4197717 | Schumacher | Apr 1980 | A |
4205381 | Games et al. | May 1980 | A |
4217761 | Cornaire et al. | Aug 1980 | A |
4270174 | Karlin et al. | May 1981 | A |
4281358 | Plouffe et al. | Jul 1981 | A |
4284849 | Anderson et al. | Aug 1981 | A |
4296727 | Bryan | Oct 1981 | A |
4306293 | Marathe | Dec 1981 | A |
4308725 | Chiyoda | Jan 1982 | A |
4321529 | Simmonds et al. | Mar 1982 | A |
4346755 | Alley et al. | Aug 1982 | A |
4351163 | Johannsen | Sep 1982 | A |
4387578 | Paddock | Jun 1983 | A |
4390058 | Otake et al. | Jun 1983 | A |
4402054 | Osborne et al. | Aug 1983 | A |
4415896 | Allgood | Nov 1983 | A |
4418388 | Allgor et al. | Nov 1983 | A |
4420947 | Yoshino | Dec 1983 | A |
4432232 | Brantley et al. | Feb 1984 | A |
4434390 | Elms | Feb 1984 | A |
4451929 | Yoshida | May 1984 | A |
4463574 | Spethmann et al. | Aug 1984 | A |
4463576 | Burnett et al. | Aug 1984 | A |
4474542 | Kato et al. | Oct 1984 | A |
4484452 | Houser, Jr. | Nov 1984 | A |
4490986 | Paddock | Jan 1985 | A |
4494383 | Nagatomo et al. | Jan 1985 | A |
4505125 | Baglione | Mar 1985 | A |
4517468 | Kemper et al. | May 1985 | A |
4527247 | Kaiser et al. | Jul 1985 | A |
4540040 | Fukumoto et al. | Sep 1985 | A |
4550770 | Nussdorfer et al. | Nov 1985 | A |
4553400 | Branz | Nov 1985 | A |
4555910 | Sturges | Dec 1985 | A |
4558181 | Blanchard et al. | Dec 1985 | A |
4563878 | Baglione | Jan 1986 | A |
4567733 | Mecozzi | Feb 1986 | A |
4568909 | Whynacht | Feb 1986 | A |
4575318 | Blain | Mar 1986 | A |
4577977 | Pejsa | Mar 1986 | A |
4593367 | Slack et al. | Jun 1986 | A |
4603556 | Suefuji et al. | Aug 1986 | A |
4604036 | Sutou et al. | Aug 1986 | A |
4620286 | Smith et al. | Oct 1986 | A |
4626753 | Letterman | Dec 1986 | A |
4630572 | Evans | Dec 1986 | A |
4642782 | Kemper et al. | Feb 1987 | A |
4644479 | Kemper et al. | Feb 1987 | A |
4648044 | Hardy et al. | Mar 1987 | A |
4649515 | Thompson et al. | Mar 1987 | A |
4660386 | Hansen et al. | Apr 1987 | A |
4677830 | Sumikawa | Jul 1987 | A |
4685615 | Hart | Aug 1987 | A |
4703325 | Chamberlin et al. | Oct 1987 | A |
4715792 | Nishizawa et al. | Dec 1987 | A |
4716582 | Blanchard et al. | Dec 1987 | A |
4716957 | Thompson et al. | Jan 1988 | A |
4751501 | Gut | Jun 1988 | A |
4754410 | Leech et al. | Jun 1988 | A |
4768346 | Mathur | Sep 1988 | A |
4783752 | Kaplan et al. | Nov 1988 | A |
4787213 | Gras et al. | Nov 1988 | A |
4796142 | Libert | Jan 1989 | A |
4796466 | Farmer | Jan 1989 | A |
4831832 | Alsenz | May 1989 | A |
4831833 | Duenes et al. | May 1989 | A |
4835706 | Asahi | May 1989 | A |
4838037 | Wood | Jun 1989 | A |
4841734 | Torrence | Jun 1989 | A |
4843575 | Crane | Jun 1989 | A |
4853693 | Eaton-Williams | Aug 1989 | A |
4866635 | Kahn et al. | Sep 1989 | A |
4875589 | Lacey et al. | Oct 1989 | A |
4882747 | Williams | Nov 1989 | A |
4903759 | Lapeyrouse | Feb 1990 | A |
4904993 | Sato | Feb 1990 | A |
4916633 | Tychonievich et al. | Apr 1990 | A |
4916909 | Mathur et al. | Apr 1990 | A |
4918690 | Markkula, Jr. et al. | Apr 1990 | A |
4924404 | Reinke, Jr. | May 1990 | A |
4924418 | Bachman et al. | May 1990 | A |
4928750 | Nurczyk | May 1990 | A |
4948040 | Kobayashi et al. | Aug 1990 | A |
4949550 | Hanson | Aug 1990 | A |
4964125 | Kim | Oct 1990 | A |
4974427 | Diab | Dec 1990 | A |
4990893 | Kiluk | Feb 1991 | A |
5005365 | Lynch | Apr 1991 | A |
5009074 | Goubeaux et al. | Apr 1991 | A |
5018357 | Livingstone et al. | May 1991 | A |
5022234 | Goubeaux et al. | Jun 1991 | A |
5039009 | Baldwin et al. | Aug 1991 | A |
5051720 | Kittirutsunetorn | Sep 1991 | A |
5067099 | McCown et al. | Nov 1991 | A |
5070468 | Niinomi et al. | Dec 1991 | A |
5083438 | McMullin | Jan 1992 | A |
5086385 | Launey et al. | Feb 1992 | A |
5088297 | Maruyama et al. | Feb 1992 | A |
5099654 | Baruschke et al. | Mar 1992 | A |
5107500 | Wakamoto et al. | Apr 1992 | A |
5109222 | Welty | Apr 1992 | A |
5109916 | Thompson | May 1992 | A |
5115967 | Wedekind | May 1992 | A |
5123017 | Simpkins et al. | Jun 1992 | A |
5123253 | Hanson et al. | Jun 1992 | A |
5131237 | Valbjorn | Jul 1992 | A |
5136855 | Lenarduzzi | Aug 1992 | A |
5140394 | Cobb, III et al. | Aug 1992 | A |
5150584 | Tomasov | Sep 1992 | A |
5156539 | Anderson et al. | Oct 1992 | A |
5181389 | Hanson et al. | Jan 1993 | A |
5197666 | Wedekind | Mar 1993 | A |
5200987 | Gray | Apr 1993 | A |
5203179 | Powell | Apr 1993 | A |
5224354 | Ito et al. | Jul 1993 | A |
5226472 | Benevelli et al. | Jul 1993 | A |
5228304 | Ryan | Jul 1993 | A |
5230223 | Hullar et al. | Jul 1993 | A |
5241664 | Ohba et al. | Aug 1993 | A |
5243827 | Hagita et al. | Sep 1993 | A |
5245833 | Mei et al. | Sep 1993 | A |
5251453 | Stanke et al. | Oct 1993 | A |
5255977 | Eimer et al. | Oct 1993 | A |
5265434 | Alsenz | Nov 1993 | A |
5269458 | Sol | Dec 1993 | A |
5274571 | Hesse et al. | Dec 1993 | A |
5282728 | Swain | Feb 1994 | A |
5284026 | Powell | Feb 1994 | A |
5289362 | Liebl et al. | Feb 1994 | A |
5303112 | Zulaski et al. | Apr 1994 | A |
5311562 | Palusamy et al. | May 1994 | A |
5316448 | Ziegler et al. | May 1994 | A |
5337576 | Dorfman et al. | Aug 1994 | A |
5347476 | McBean, Sr. | Sep 1994 | A |
5351037 | Martell et al. | Sep 1994 | A |
5369958 | Kasai et al. | Dec 1994 | A |
5395042 | Riley et al. | Mar 1995 | A |
5410230 | Bessler et al. | Apr 1995 | A |
5415008 | Bessler | May 1995 | A |
5426952 | Bessler | Jun 1995 | A |
5431026 | Jaster | Jul 1995 | A |
5432500 | Scripps | Jul 1995 | A |
5435145 | Jaster | Jul 1995 | A |
5435148 | Sandofsky et al. | Jul 1995 | A |
5440891 | Hindmon, Jr. et al. | Aug 1995 | A |
5450359 | Sharma et al. | Sep 1995 | A |
5452291 | Eisenhandler et al. | Sep 1995 | A |
5457965 | Blair et al. | Oct 1995 | A |
5467011 | Hunt | Nov 1995 | A |
5467264 | Rauch et al. | Nov 1995 | A |
5469045 | Dove et al. | Nov 1995 | A |
5481884 | Scoccia | Jan 1996 | A |
5495722 | Manson et al. | Mar 1996 | A |
5515267 | Alsenz | May 1996 | A |
5515692 | Sterber et al. | May 1996 | A |
5519301 | Yoshida et al. | May 1996 | A |
5519337 | Casada | May 1996 | A |
5535136 | Standifer | Jul 1996 | A |
5546073 | Duff et al. | Aug 1996 | A |
5546756 | Ali | Aug 1996 | A |
5546757 | Whipple, III | Aug 1996 | A |
5555195 | Jensen et al. | Sep 1996 | A |
5564280 | Schilling et al. | Oct 1996 | A |
5566084 | Cmar | Oct 1996 | A |
5570085 | Bertsch | Oct 1996 | A |
5570258 | Manning | Oct 1996 | A |
5572643 | Judson | Nov 1996 | A |
5577905 | Momber et al. | Nov 1996 | A |
5581229 | Hunt | Dec 1996 | A |
5586446 | Torimitsu | Dec 1996 | A |
5590830 | Kettler et al. | Jan 1997 | A |
5600960 | Schwedler et al. | Feb 1997 | A |
5602749 | Vosburgh | Feb 1997 | A |
5602761 | Spoerre et al. | Feb 1997 | A |
5635896 | Tinsley et al. | Jun 1997 | A |
5643482 | Sandelman et al. | Jul 1997 | A |
5650936 | Loucks et al. | Jul 1997 | A |
5651263 | Nonaka et al. | Jul 1997 | A |
5655380 | Calton | Aug 1997 | A |
5656765 | Gray | Aug 1997 | A |
5666815 | Aloise | Sep 1997 | A |
5682949 | Ratcliffe et al. | Nov 1997 | A |
5684463 | Diercks et al. | Nov 1997 | A |
5694010 | Oomura et al. | Dec 1997 | A |
5696501 | Ouellette et al. | Dec 1997 | A |
5706007 | Fragnito et al. | Jan 1998 | A |
5711785 | Maxwell | Jan 1998 | A |
5714931 | Petite et al. | Feb 1998 | A |
5715704 | Cholkeri et al. | Feb 1998 | A |
5718822 | Richter | Feb 1998 | A |
5724571 | Woods | Mar 1998 | A |
5729474 | Hildebrand et al. | Mar 1998 | A |
5743109 | Schulak | Apr 1998 | A |
5745114 | King et al. | Apr 1998 | A |
5751916 | Kon et al. | May 1998 | A |
5752385 | Nelson | May 1998 | A |
5757664 | Rogers et al. | May 1998 | A |
5757892 | Blanchard et al. | May 1998 | A |
5761083 | Brown, Jr. et al. | Jun 1998 | A |
5764509 | Gross et al. | Jun 1998 | A |
5782101 | Dennis | Jul 1998 | A |
5790898 | Kishima et al. | Aug 1998 | A |
5802860 | Barrows | Sep 1998 | A |
5805856 | Hanson | Sep 1998 | A |
5810908 | Gray et al. | Sep 1998 | A |
5812061 | Simons | Sep 1998 | A |
5827963 | Selegatto et al. | Oct 1998 | A |
5839094 | French | Nov 1998 | A |
5839291 | Chang et al. | Nov 1998 | A |
5841654 | Verissimo et al. | Nov 1998 | A |
5860286 | Tulpule | Jan 1999 | A |
5861807 | Leyden et al. | Jan 1999 | A |
5867998 | Guertin | Feb 1999 | A |
5873257 | Peterson | Feb 1999 | A |
5875430 | Koether | Feb 1999 | A |
5887786 | Sandelman | Mar 1999 | A |
5900801 | Heagle et al. | May 1999 | A |
5904049 | Jaster et al. | May 1999 | A |
5918200 | Tsutsui et al. | Jun 1999 | A |
5924486 | Ehlers et al. | Jul 1999 | A |
5926103 | Petite | Jul 1999 | A |
5926531 | Petite | Jul 1999 | A |
5930773 | Crooks et al. | Jul 1999 | A |
5934087 | Watanabe et al. | Aug 1999 | A |
5939974 | Heagle et al. | Aug 1999 | A |
5946922 | Viard et al. | Sep 1999 | A |
5947693 | Yang | Sep 1999 | A |
5949677 | Ho | Sep 1999 | A |
5953490 | Wiklund et al. | Sep 1999 | A |
5986571 | Flick | Nov 1999 | A |
6006142 | Seem et al. | Dec 1999 | A |
6006171 | Vines et al. | Dec 1999 | A |
6013108 | Karolys et al. | Jan 2000 | A |
6026651 | Sandelman | Feb 2000 | A |
6028522 | Petite | Feb 2000 | A |
6038871 | Gutierrez et al. | Mar 2000 | A |
6041856 | Thrasher et al. | Mar 2000 | A |
6044062 | Brownrigg et al. | Mar 2000 | A |
6050098 | Meyer et al. | Apr 2000 | A |
6052731 | Holdsworth et al. | Apr 2000 | A |
6070110 | Shah et al. | May 2000 | A |
6075530 | Lucas et al. | Jun 2000 | A |
6088659 | Kelley et al. | Jul 2000 | A |
6088688 | Crooks et al. | Jul 2000 | A |
6095674 | Verissimo et al. | Aug 2000 | A |
6098893 | Berglund et al. | Aug 2000 | A |
6110260 | Kubokawa | Aug 2000 | A |
6119949 | Lindstrom | Sep 2000 | A |
6122603 | Budike, Jr. | Sep 2000 | A |
6128953 | Mizukoshi | Oct 2000 | A |
6138461 | Park et al. | Oct 2000 | A |
6142741 | Nishihata et al. | Nov 2000 | A |
6144888 | Lucas et al. | Nov 2000 | A |
6145328 | Choi | Nov 2000 | A |
6147601 | Sandelman et al. | Nov 2000 | A |
6152375 | Robison | Nov 2000 | A |
6152376 | Sandelman et al. | Nov 2000 | A |
6153942 | Roseman et al. | Nov 2000 | A |
6154488 | Hunt | Nov 2000 | A |
6160477 | Sandelman et al. | Dec 2000 | A |
6169979 | Johnson | Jan 2001 | B1 |
6176683 | Yang | Jan 2001 | B1 |
6177884 | Hunt et al. | Jan 2001 | B1 |
6178362 | Woolard et al. | Jan 2001 | B1 |
6190442 | Redner | Feb 2001 | B1 |
6191545 | Kawabata et al. | Feb 2001 | B1 |
6192282 | Smith et al. | Feb 2001 | B1 |
6211782 | Sandelman et al. | Apr 2001 | B1 |
6213731 | Doepker et al. | Apr 2001 | B1 |
6215405 | Handley et al. | Apr 2001 | B1 |
6216956 | Ehlers et al. | Apr 2001 | B1 |
6218953 | Petite | Apr 2001 | B1 |
6223543 | Sandelman | May 2001 | B1 |
6223544 | Seem | May 2001 | B1 |
6228155 | Tai | May 2001 | B1 |
6230501 | Bailey, Sr. et al. | May 2001 | B1 |
6233327 | Petite | May 2001 | B1 |
6234019 | Caldeira | May 2001 | B1 |
6240733 | Brandon et al. | Jun 2001 | B1 |
6240736 | Fujita et al. | Jun 2001 | B1 |
6244061 | Takagi et al. | Jun 2001 | B1 |
6249516 | Brownrigg et al. | Jun 2001 | B1 |
6266968 | Redlich | Jul 2001 | B1 |
6268664 | Rolls et al. | Jul 2001 | B1 |
6272868 | Grabon et al. | Aug 2001 | B1 |
6290043 | Ginder et al. | Sep 2001 | B1 |
6293114 | Kamemoto | Sep 2001 | B1 |
6304934 | Pimenta et al. | Oct 2001 | B1 |
6320275 | Okamoto et al. | Nov 2001 | B1 |
6327541 | Pitchford et al. | Dec 2001 | B1 |
6334093 | More | Dec 2001 | B1 |
6349883 | Simmons et al. | Feb 2002 | B1 |
6366889 | Zaloom | Apr 2002 | B1 |
6378315 | Gelber et al. | Apr 2002 | B1 |
6385510 | Hoog et al. | May 2002 | B1 |
6391102 | Bodden et al. | May 2002 | B1 |
6393848 | Roh et al. | May 2002 | B2 |
6397606 | Roh et al. | Jun 2002 | B1 |
6397612 | Kernkamp et al. | Jun 2002 | B1 |
6408228 | Seem et al. | Jun 2002 | B1 |
6408258 | Richer | Jun 2002 | B1 |
6414594 | Guerlain | Jul 2002 | B1 |
6430268 | Petite | Aug 2002 | B1 |
6433791 | Selli et al. | Aug 2002 | B2 |
6437691 | Sandelman et al. | Aug 2002 | B1 |
6437692 | Petite et al. | Aug 2002 | B1 |
6451210 | Sivavec et al. | Sep 2002 | B1 |
6454177 | Sasao et al. | Sep 2002 | B1 |
6456928 | Johnson | Sep 2002 | B1 |
6460731 | Estelle et al. | Oct 2002 | B2 |
6462654 | Sandelman et al. | Oct 2002 | B1 |
6463747 | Temple | Oct 2002 | B1 |
6466971 | Humpleman et al. | Oct 2002 | B1 |
6474084 | Gauthier et al. | Nov 2002 | B2 |
6490506 | March | Dec 2002 | B1 |
6505087 | Lucas et al. | Jan 2003 | B1 |
6510350 | Steen, III et al. | Jan 2003 | B1 |
6522974 | Sitton | Feb 2003 | B2 |
6523130 | Hickman et al. | Feb 2003 | B1 |
6526766 | Hiraoka et al. | Mar 2003 | B1 |
6529839 | Uggerud et al. | Mar 2003 | B1 |
6535123 | Sandelman et al. | Mar 2003 | B2 |
6535270 | Murayama | Mar 2003 | B1 |
6535859 | Yablonowski et al. | Mar 2003 | B1 |
6549135 | Singh et al. | Apr 2003 | B2 |
6553774 | Ishio et al. | Apr 2003 | B1 |
6571280 | Hubacher | May 2003 | B1 |
6571566 | Temple et al. | Jun 2003 | B1 |
6574561 | Alexander et al. | Jun 2003 | B2 |
6577959 | Chajec et al. | Jun 2003 | B1 |
6577962 | Afshari | Jun 2003 | B1 |
6578373 | Barbier | Jun 2003 | B1 |
6583720 | Quigley | Jun 2003 | B1 |
6591620 | Kikuchi et al. | Jul 2003 | B2 |
6595475 | Svabek et al. | Jul 2003 | B2 |
6598056 | Hull et al. | Jul 2003 | B1 |
6604093 | Etzion et al. | Aug 2003 | B1 |
6609070 | Lueck | Aug 2003 | B1 |
6609078 | Starling et al. | Aug 2003 | B2 |
6618578 | Petite | Sep 2003 | B1 |
6618709 | Sneeringer | Sep 2003 | B1 |
6621443 | Selli et al. | Sep 2003 | B1 |
6622925 | Carner et al. | Sep 2003 | B2 |
6622926 | Sartain et al. | Sep 2003 | B1 |
6628764 | Petite | Sep 2003 | B1 |
6630749 | Takagi et al. | Oct 2003 | B1 |
6631298 | Pagnano et al. | Oct 2003 | B1 |
6636893 | Fong | Oct 2003 | B1 |
6643567 | Kolk et al. | Nov 2003 | B2 |
6644848 | Clayton et al. | Nov 2003 | B1 |
6658345 | Miller | Dec 2003 | B2 |
6662584 | Whiteside | Dec 2003 | B1 |
6662653 | Scaliante et al. | Dec 2003 | B1 |
6671586 | Davis et al. | Dec 2003 | B2 |
6684349 | Gullo et al. | Jan 2004 | B2 |
6698218 | Goth et al. | Mar 2004 | B2 |
6701725 | Rossi et al. | Mar 2004 | B2 |
6708083 | Orthlieb et al. | Mar 2004 | B2 |
6708508 | Demuth et al. | Mar 2004 | B2 |
6711470 | Hartenstein et al. | Mar 2004 | B1 |
6717513 | Sandelman et al. | Apr 2004 | B1 |
6721770 | Morton et al. | Apr 2004 | B1 |
6725182 | Pagnano et al. | Apr 2004 | B2 |
6732538 | Trigiani et al. | May 2004 | B2 |
6745107 | Miller | Jun 2004 | B1 |
6747557 | Petite et al. | Jun 2004 | B1 |
6757665 | Unsworth et al. | Jun 2004 | B1 |
6758050 | Jayanth et al. | Jul 2004 | B2 |
6772096 | Murakami et al. | Aug 2004 | B2 |
6772598 | Rinehart | Aug 2004 | B1 |
6775995 | Bahel et al. | Aug 2004 | B1 |
6784807 | Petite et al. | Aug 2004 | B2 |
6785592 | Smith et al. | Aug 2004 | B1 |
6786473 | Alles | Sep 2004 | B1 |
6804993 | Selli | Oct 2004 | B2 |
6813897 | Bash et al. | Nov 2004 | B1 |
6816811 | Seem | Nov 2004 | B2 |
6836737 | Petite et al. | Dec 2004 | B2 |
6837922 | Gorin | Jan 2005 | B2 |
6839790 | Barros De Almeida et al. | Jan 2005 | B2 |
6854345 | Alves et al. | Feb 2005 | B2 |
6862498 | Davis et al. | Mar 2005 | B2 |
6868678 | Mei et al. | Mar 2005 | B2 |
6868686 | Ueda et al. | Mar 2005 | B2 |
6870486 | Souza et al. | Mar 2005 | B2 |
6885949 | Selli | Apr 2005 | B2 |
6889173 | Singh | May 2005 | B2 |
6891838 | Petite et al. | May 2005 | B1 |
6892546 | Singh et al. | May 2005 | B2 |
6897772 | Scheffler et al. | May 2005 | B1 |
6900738 | Crichlow | May 2005 | B2 |
6901066 | Helgeson | May 2005 | B1 |
6904385 | Budike, Jr. | Jun 2005 | B1 |
6914533 | Petite | Jul 2005 | B2 |
6914893 | Petite | Jul 2005 | B2 |
6922155 | Evans et al. | Jul 2005 | B1 |
6931445 | Davis | Aug 2005 | B2 |
6952658 | Greulich et al. | Oct 2005 | B2 |
6953630 | Wells | Oct 2005 | B2 |
6956344 | Robertson et al. | Oct 2005 | B2 |
6968295 | Carr | Nov 2005 | B1 |
6973410 | Seigel | Dec 2005 | B2 |
6973793 | Douglas et al. | Dec 2005 | B2 |
6976366 | Starling et al. | Dec 2005 | B2 |
6978225 | Retlich et al. | Dec 2005 | B2 |
6983321 | Trinon et al. | Jan 2006 | B2 |
6983889 | Alles | Jan 2006 | B2 |
6987450 | Marino et al. | Jan 2006 | B2 |
6990821 | Singh et al. | Jan 2006 | B2 |
6992452 | Sachs et al. | Jan 2006 | B1 |
6996441 | Tobias | Feb 2006 | B1 |
6997390 | Alles | Feb 2006 | B2 |
6998807 | Phillips et al. | Feb 2006 | B2 |
6998963 | Flen et al. | Feb 2006 | B2 |
7003378 | Poth | Feb 2006 | B2 |
7009510 | Douglass et al. | Mar 2006 | B1 |
7010925 | Sienel et al. | Mar 2006 | B2 |
7019667 | Petite et al. | Mar 2006 | B2 |
7024665 | Ferraz et al. | Apr 2006 | B2 |
7024870 | Singh et al. | Apr 2006 | B2 |
7030752 | Tyroler | Apr 2006 | B2 |
7031880 | Seem et al. | Apr 2006 | B1 |
7035693 | Cassiolato et al. | Apr 2006 | B2 |
7039532 | Hunter | May 2006 | B2 |
7042350 | Patrick et al. | May 2006 | B2 |
7043339 | Maeda et al. | May 2006 | B2 |
7043459 | Peevey | May 2006 | B2 |
7053766 | Fisler et al. | May 2006 | B2 |
7053767 | Petite et al. | May 2006 | B2 |
7054271 | Brownrigg et al. | May 2006 | B2 |
7062580 | Donaires | Jun 2006 | B2 |
7062830 | Alles | Jun 2006 | B2 |
7063537 | Selli et al. | Jun 2006 | B2 |
7072797 | Gorinevsky | Jul 2006 | B2 |
7075327 | Dimino et al. | Jul 2006 | B2 |
7079810 | Petite et al. | Jul 2006 | B2 |
7082380 | Wiebe et al. | Jul 2006 | B2 |
7089125 | Sonderegger | Aug 2006 | B2 |
7091847 | Capowski et al. | Aug 2006 | B2 |
7092767 | Pagnano et al. | Aug 2006 | B2 |
7092794 | Hill et al. | Aug 2006 | B1 |
7096153 | Guralnik et al. | Aug 2006 | B2 |
7102490 | Flen et al. | Sep 2006 | B2 |
7103511 | Petite | Sep 2006 | B2 |
7110843 | Pagnano et al. | Sep 2006 | B2 |
7110898 | Montijo et al. | Sep 2006 | B2 |
7114343 | Kates | Oct 2006 | B2 |
7123020 | Hill et al. | Oct 2006 | B2 |
7126465 | Faltesek | Oct 2006 | B2 |
7130832 | Bannai et al. | Oct 2006 | B2 |
7137550 | Petite | Nov 2006 | B1 |
7142125 | Larson et al. | Nov 2006 | B2 |
7145438 | Flen et al. | Dec 2006 | B2 |
7145462 | Dewing et al. | Dec 2006 | B2 |
7159408 | Sadegh et al. | Jan 2007 | B2 |
7162884 | Alles | Jan 2007 | B2 |
7163158 | Rossi et al. | Jan 2007 | B2 |
7171372 | Daniel et al. | Jan 2007 | B2 |
7180412 | Bonicatto et al. | Feb 2007 | B2 |
7184861 | Petite | Feb 2007 | B2 |
7188482 | Sadegh et al. | Mar 2007 | B2 |
7188779 | Alles | Mar 2007 | B2 |
7201006 | Kates | Apr 2007 | B2 |
7207496 | Alles | Apr 2007 | B2 |
7209840 | Petite et al. | Apr 2007 | B2 |
7212887 | Shah et al | May 2007 | B2 |
7222493 | Jayanth et al. | May 2007 | B2 |
7224740 | Hunt | May 2007 | B2 |
7225193 | Mets et al. | May 2007 | B2 |
7227450 | Garvy et al. | Jun 2007 | B2 |
7230528 | Kates | Jun 2007 | B2 |
7234313 | Bell et al. | Jun 2007 | B2 |
7236765 | Bonicatto et al. | Jun 2007 | B2 |
7244294 | Kates | Jul 2007 | B2 |
7246014 | Forth et al. | Jul 2007 | B2 |
7255285 | Troost et al. | Aug 2007 | B2 |
7257501 | Zhan et al. | Aug 2007 | B2 |
7260505 | Felke et al. | Aug 2007 | B2 |
7261762 | Kang et al. | Aug 2007 | B2 |
7263073 | Petite et al. | Aug 2007 | B2 |
7263446 | Morin et al. | Aug 2007 | B2 |
7266812 | Pagnano | Sep 2007 | B2 |
7274995 | Zhan et al. | Sep 2007 | B2 |
7275377 | Kates | Oct 2007 | B2 |
7286945 | Zhan et al. | Oct 2007 | B2 |
7290398 | Wallace et al. | Nov 2007 | B2 |
7295128 | Petite | Nov 2007 | B2 |
7295896 | Norbeck | Nov 2007 | B2 |
7317952 | Bhandiwad et al. | Jan 2008 | B2 |
7328192 | Stengard et al. | Feb 2008 | B1 |
7330886 | Childers et al. | Feb 2008 | B2 |
7331187 | Kates | Feb 2008 | B2 |
7336168 | Kates | Feb 2008 | B2 |
7337191 | Haeberle et al. | Feb 2008 | B2 |
7343750 | Lifson et al. | Mar 2008 | B2 |
7343751 | Kates | Mar 2008 | B2 |
7346463 | Petite et al. | Mar 2008 | B2 |
7346472 | Moskowitz et al. | Mar 2008 | B1 |
7349824 | Seigel | Mar 2008 | B2 |
7350112 | Fox et al. | Mar 2008 | B2 |
7351274 | Helt et al. | Apr 2008 | B2 |
7363200 | Lu | Apr 2008 | B2 |
7376712 | Granatelli et al. | May 2008 | B1 |
7377118 | Esslinger | May 2008 | B2 |
7383030 | Brown et al. | Jun 2008 | B2 |
7383158 | Krocker et al. | Jun 2008 | B2 |
7392661 | Alles | Jul 2008 | B2 |
7397907 | Petite | Jul 2008 | B2 |
7400240 | Shrode et al. | Jul 2008 | B2 |
7414525 | Costea et al. | Aug 2008 | B2 |
7421351 | Navratil | Sep 2008 | B2 |
7421374 | Zhan et al. | Sep 2008 | B2 |
7424343 | Kates | Sep 2008 | B2 |
7424345 | Norbeck | Sep 2008 | B2 |
7424527 | Petite | Sep 2008 | B2 |
7432824 | Flen et al. | Oct 2008 | B2 |
7433854 | Joseph et al. | Oct 2008 | B2 |
7434742 | Mueller et al. | Oct 2008 | B2 |
7437150 | Morelli et al. | Oct 2008 | B1 |
7440560 | Barry | Oct 2008 | B1 |
7440767 | Ballay et al. | Oct 2008 | B2 |
7443313 | Davis et al. | Oct 2008 | B2 |
7444251 | Nikovski et al. | Oct 2008 | B2 |
7445665 | Hsieh et al. | Nov 2008 | B2 |
7447609 | Guralnik et al. | Nov 2008 | B2 |
7451606 | Harrod | Nov 2008 | B2 |
7454439 | Gansner et al. | Nov 2008 | B1 |
7468661 | Petite et al. | Dec 2008 | B2 |
7469546 | Kates | Dec 2008 | B2 |
7474992 | Ariyur | Jan 2009 | B2 |
7480501 | Petite | Jan 2009 | B2 |
7483810 | Jackson et al. | Jan 2009 | B2 |
7490477 | Singh et al. | Feb 2009 | B2 |
7503182 | Bahel et al. | Mar 2009 | B2 |
7510126 | Rossi et al. | Mar 2009 | B2 |
7523619 | Kojima et al. | Apr 2009 | B2 |
7528711 | Kates | May 2009 | B2 |
7533070 | Guralnik et al. | May 2009 | B2 |
7537172 | Rossi et al. | May 2009 | B2 |
7552030 | Guralnik et al. | Jun 2009 | B2 |
7552596 | Galante et al. | Jun 2009 | B2 |
7555364 | Poth et al. | Jun 2009 | B2 |
7574333 | Lu | Aug 2009 | B2 |
7580812 | Ariyur et al. | Aug 2009 | B2 |
7594407 | Singh et al. | Sep 2009 | B2 |
7596959 | Singh et al. | Oct 2009 | B2 |
7606683 | Bahel et al. | Oct 2009 | B2 |
7631508 | Braun et al. | Dec 2009 | B2 |
7636901 | Munson et al. | Dec 2009 | B2 |
7644591 | Singh et al. | Jan 2010 | B2 |
7648077 | Rossi et al. | Jan 2010 | B2 |
7650425 | Davis et al. | Jan 2010 | B2 |
7660700 | Moskowitz et al. | Feb 2010 | B2 |
7660774 | Mukherjee et al. | Feb 2010 | B2 |
7664613 | Hansen | Feb 2010 | B2 |
7665315 | Singh et al. | Feb 2010 | B2 |
7686872 | Kang | Mar 2010 | B2 |
7693809 | Gray | Apr 2010 | B2 |
7697492 | Petite | Apr 2010 | B2 |
7703694 | Mueller et al. | Apr 2010 | B2 |
7704052 | Iimura et al. | Apr 2010 | B2 |
7706320 | Davis et al. | Apr 2010 | B2 |
7724131 | Chen | May 2010 | B2 |
7726583 | Maekawa | Jun 2010 | B2 |
7734451 | MacArthur et al. | Jun 2010 | B2 |
7738999 | Petite | Jun 2010 | B2 |
7739378 | Petite | Jun 2010 | B2 |
7742393 | Bonicatto et al. | Jun 2010 | B2 |
7752853 | Singh et al. | Jul 2010 | B2 |
7752854 | Singh et al. | Jul 2010 | B2 |
7756086 | Petite et al. | Jul 2010 | B2 |
7791468 | Bonicatto et al. | Sep 2010 | B2 |
7844366 | Singh | Nov 2010 | B2 |
7845179 | Singh et al. | Dec 2010 | B2 |
7848827 | Chen | Dec 2010 | B2 |
7848900 | Steinberg et al. | Dec 2010 | B2 |
7877218 | Bonicatto et al. | Jan 2011 | B2 |
7878006 | Pham | Feb 2011 | B2 |
7885959 | Horowitz et al. | Feb 2011 | B2 |
7885961 | Horowitz et al. | Feb 2011 | B2 |
7905098 | Pham | Mar 2011 | B2 |
7908116 | Steinberg et al. | Mar 2011 | B2 |
7908117 | Steinberg et al. | Mar 2011 | B2 |
7922914 | Verdegan et al. | Apr 2011 | B1 |
7937623 | Ramacher et al. | May 2011 | B2 |
7941294 | Shahi et al. | May 2011 | B2 |
7949494 | Moskowitz et al. | May 2011 | B2 |
7949615 | Ehlers et al. | May 2011 | B2 |
7963454 | Sullivan et al. | Jun 2011 | B2 |
7966152 | Stluka et al. | Jun 2011 | B2 |
7967218 | Alles | Jun 2011 | B2 |
7978059 | Petite et al. | Jul 2011 | B2 |
7987679 | Tanaka et al. | Aug 2011 | B2 |
7996045 | Bauer et al. | Aug 2011 | B1 |
7999668 | Cawthorne et al. | Aug 2011 | B2 |
8000314 | Brownrigg et al. | Aug 2011 | B2 |
8002199 | Habegger | Aug 2011 | B2 |
8005640 | Chiefetz et al. | Aug 2011 | B2 |
8010237 | Cheung et al. | Aug 2011 | B2 |
8013732 | Petite et al. | Sep 2011 | B2 |
8018182 | Roehm et al. | Sep 2011 | B2 |
8019567 | Steinberg et al. | Sep 2011 | B2 |
8029608 | Breslin | Oct 2011 | B1 |
8031455 | Paik et al. | Oct 2011 | B2 |
8031650 | Petite et al. | Oct 2011 | B2 |
8034170 | Kates | Oct 2011 | B2 |
8036844 | Ling et al. | Oct 2011 | B2 |
8040231 | Kuruvila et al. | Oct 2011 | B2 |
8041539 | Guralnik et al. | Oct 2011 | B2 |
8046107 | Zugibe et al. | Oct 2011 | B2 |
8061417 | Gray | Nov 2011 | B2 |
8064412 | Petite | Nov 2011 | B2 |
8065886 | Singh et al. | Nov 2011 | B2 |
8068997 | Ling et al. | Nov 2011 | B2 |
8090477 | Steinberg | Jan 2012 | B1 |
8090559 | Parthasarathy et al. | Jan 2012 | B2 |
8090824 | Tran et al. | Jan 2012 | B2 |
8095337 | Kolbet et al. | Jan 2012 | B2 |
8108200 | Anne et al. | Jan 2012 | B2 |
8125230 | Bharadwaj et al. | Feb 2012 | B2 |
8131497 | Steinberg et al. | Mar 2012 | B2 |
8131506 | Steinberg et al. | Mar 2012 | B2 |
8134330 | Alles | Mar 2012 | B2 |
8150720 | Singh et al. | Apr 2012 | B2 |
8156208 | Bornhoevd et al. | Apr 2012 | B2 |
8160827 | Jayanth et al. | Apr 2012 | B2 |
8170968 | Colclough et al. | May 2012 | B2 |
8171136 | Petite | May 2012 | B2 |
8175846 | Khalak et al. | May 2012 | B2 |
8180492 | Steinberg | May 2012 | B2 |
8182579 | Woo et al. | May 2012 | B2 |
8214175 | Moskowitz et al. | Jul 2012 | B2 |
8239922 | Sullivan et al. | Aug 2012 | B2 |
8258763 | Nakamura et al. | Sep 2012 | B2 |
8280536 | Fadell et al. | Oct 2012 | B1 |
8328524 | Iimura et al. | Dec 2012 | B2 |
8335657 | Jayanth et al. | Dec 2012 | B2 |
8380556 | Singh et al. | Feb 2013 | B2 |
8625244 | Paik et al. | Jan 2014 | B2 |
9168315 | Scaringe et al. | Oct 2015 | B1 |
9310439 | Pham et al. | Apr 2016 | B2 |
20010054291 | Roh et al. | Dec 2001 | A1 |
20020000092 | Sharood et al. | Jan 2002 | A1 |
20020013679 | Petite | Jan 2002 | A1 |
20020016639 | Smith et al. | Feb 2002 | A1 |
20020017057 | Weder | Feb 2002 | A1 |
20020031101 | Petite et al. | Mar 2002 | A1 |
20020035495 | Spira et al. | Mar 2002 | A1 |
20020059803 | Jayanth | May 2002 | A1 |
20020082747 | Kramer | Jun 2002 | A1 |
20020082924 | Koether | Jun 2002 | A1 |
20020095269 | Natalini et al. | Jul 2002 | A1 |
20020103655 | Boies et al. | Aug 2002 | A1 |
20020113877 | Welch | Aug 2002 | A1 |
20020118106 | Brenn | Aug 2002 | A1 |
20020138217 | Shen et al. | Sep 2002 | A1 |
20020139128 | Suzuki et al. | Oct 2002 | A1 |
20020143482 | Karanam et al. | Oct 2002 | A1 |
20020152298 | Kikta et al. | Oct 2002 | A1 |
20020157409 | Pham et al. | Oct 2002 | A1 |
20020161545 | Starling et al. | Oct 2002 | A1 |
20020163436 | Singh et al. | Nov 2002 | A1 |
20020170299 | Jayanth et al. | Nov 2002 | A1 |
20020173929 | Seigel | Nov 2002 | A1 |
20020189267 | Singh et al. | Dec 2002 | A1 |
20020193890 | Pouchak | Dec 2002 | A1 |
20020198629 | Ellis | Dec 2002 | A1 |
20030004660 | Hunter | Jan 2003 | A1 |
20030004765 | Wiegand | Jan 2003 | A1 |
20030005710 | Singh et al. | Jan 2003 | A1 |
20030006884 | Hunt | Jan 2003 | A1 |
20030014218 | Trigiani et al. | Jan 2003 | A1 |
20030019221 | Rossi et al. | Jan 2003 | A1 |
20030036810 | Petite | Feb 2003 | A1 |
20030050737 | Osann | Mar 2003 | A1 |
20030050824 | Suermondt et al. | Mar 2003 | A1 |
20030051490 | Jayanth | Mar 2003 | A1 |
20030055603 | Rossi et al. | Mar 2003 | A1 |
20030055663 | Struble | Mar 2003 | A1 |
20030061825 | Sullivan | Apr 2003 | A1 |
20030070438 | Kikuchi et al. | Apr 2003 | A1 |
20030070544 | Mulvaney et al. | Apr 2003 | A1 |
20030074285 | Hoffman et al. | Apr 2003 | A1 |
20030077179 | Collins et al. | Apr 2003 | A1 |
20030078677 | Hull et al. | Apr 2003 | A1 |
20030089493 | Takano et al. | May 2003 | A1 |
20030135786 | Vollmar et al. | Jul 2003 | A1 |
20030137396 | Durej et al. | Jul 2003 | A1 |
20030150924 | Peter | Aug 2003 | A1 |
20030150926 | Rosen | Aug 2003 | A1 |
20030150927 | Rosen | Aug 2003 | A1 |
20030171851 | Brickfield et al. | Sep 2003 | A1 |
20030183085 | Alexander | Oct 2003 | A1 |
20030191606 | Fujiyama et al. | Oct 2003 | A1 |
20030199247 | Striemer | Oct 2003 | A1 |
20030205143 | Cheng | Nov 2003 | A1 |
20030213256 | Ueda et al. | Nov 2003 | A1 |
20030213851 | Burd et al. | Nov 2003 | A1 |
20030216837 | Reich et al. | Nov 2003 | A1 |
20030216888 | Ridolfo | Nov 2003 | A1 |
20030233172 | Granqvist et al. | Dec 2003 | A1 |
20040019584 | Greening et al. | Jan 2004 | A1 |
20040026522 | Keen et al. | Feb 2004 | A1 |
20040047406 | Hunt | Mar 2004 | A1 |
20040049715 | Jaw | Mar 2004 | A1 |
20040059691 | Higgins | Mar 2004 | A1 |
20040068390 | Saunders | Apr 2004 | A1 |
20040078695 | Bowers et al. | Apr 2004 | A1 |
20040079093 | Gauthier et al. | Apr 2004 | A1 |
20040095237 | Chen et al. | May 2004 | A1 |
20040111186 | Rossi et al. | Jun 2004 | A1 |
20040117166 | Cassiolato | Jun 2004 | A1 |
20040133314 | Ehlers et al. | Jul 2004 | A1 |
20040140772 | Gullo et al. | Jul 2004 | A1 |
20040140812 | Scallante et al. | Jul 2004 | A1 |
20040144106 | Douglas et al. | Jul 2004 | A1 |
20040153437 | Buchan | Aug 2004 | A1 |
20040159113 | Singh et al. | Aug 2004 | A1 |
20040159114 | Demuth et al. | Aug 2004 | A1 |
20040183687 | Petite et al. | Sep 2004 | A1 |
20040199480 | Unsworth et al. | Oct 2004 | A1 |
20040210419 | Wiebe et al. | Oct 2004 | A1 |
20040213384 | Alles et al. | Oct 2004 | A1 |
20040230582 | Pagnano et al. | Nov 2004 | A1 |
20040230899 | Pagnano et al. | Nov 2004 | A1 |
20040239266 | Lee et al. | Dec 2004 | A1 |
20040261431 | Singh et al. | Dec 2004 | A1 |
20050043923 | Forster et al. | Feb 2005 | A1 |
20050056031 | Jeong | Mar 2005 | A1 |
20050066675 | Manole et al. | Mar 2005 | A1 |
20050073532 | Scott et al. | Apr 2005 | A1 |
20050086341 | Enga et al. | Apr 2005 | A1 |
20050125439 | Nourbakhsh et al. | Jun 2005 | A1 |
20050126190 | Lifson et al. | Jun 2005 | A1 |
20050131624 | Gaessler et al. | Jun 2005 | A1 |
20050149570 | Sasaki et al. | Jul 2005 | A1 |
20050154495 | Shah | Jul 2005 | A1 |
20050159924 | Shah et al. | Jul 2005 | A1 |
20050169636 | Aronson et al. | Aug 2005 | A1 |
20050172647 | Thybo et al. | Aug 2005 | A1 |
20050188842 | Hsieh et al. | Sep 2005 | A1 |
20050195775 | Petite et al. | Sep 2005 | A1 |
20050196285 | Jayanth | Sep 2005 | A1 |
20050198063 | Thomas et al. | Sep 2005 | A1 |
20050201397 | Petite | Sep 2005 | A1 |
20050204756 | Dobmeier et al. | Sep 2005 | A1 |
20050222715 | Ruhnke et al. | Oct 2005 | A1 |
20050228607 | Simons | Oct 2005 | A1 |
20050229612 | Hrejsa et al. | Oct 2005 | A1 |
20050229777 | Brown et al. | Oct 2005 | A1 |
20050235662 | Pham | Oct 2005 | A1 |
20050247194 | Kang et al. | Nov 2005 | A1 |
20050251293 | Seigel | Nov 2005 | A1 |
20050262923 | Kates | Dec 2005 | A1 |
20060010898 | Suharno et al. | Jan 2006 | A1 |
20060015777 | Loda | Jan 2006 | A1 |
20060020426 | Singh | Jan 2006 | A1 |
20060021362 | Sadegh et al. | Feb 2006 | A1 |
20060032246 | Kates | Feb 2006 | A1 |
20060032247 | Kates | Feb 2006 | A1 |
20060032248 | Kates | Feb 2006 | A1 |
20060032379 | Kates | Feb 2006 | A1 |
20060036349 | Kates | Feb 2006 | A1 |
20060041335 | Rossi et al. | Feb 2006 | A9 |
20060042276 | Doll et al. | Mar 2006 | A1 |
20060071089 | Kates | Apr 2006 | A1 |
20060071666 | Unsworth et al. | Apr 2006 | A1 |
20060074917 | Chand et al. | Apr 2006 | A1 |
20060097063 | Zeevi | May 2006 | A1 |
20060098576 | Brownrigg et al. | May 2006 | A1 |
20060123807 | Sullivan et al. | Jun 2006 | A1 |
20060130500 | Gauthier et al. | Jun 2006 | A1 |
20060137364 | Braun et al. | Jun 2006 | A1 |
20060137368 | Kang et al. | Jun 2006 | A1 |
20060138866 | Bergmann et al. | Jun 2006 | A1 |
20060140209 | Cassiolato et al. | Jun 2006 | A1 |
20060179854 | Esslinger | Aug 2006 | A1 |
20060182635 | Jayanth | Aug 2006 | A1 |
20060196196 | Kates | Sep 2006 | A1 |
20060196197 | Kates | Sep 2006 | A1 |
20060201168 | Kates | Sep 2006 | A1 |
20060229739 | Morikawa | Oct 2006 | A1 |
20060235650 | Vinberg et al. | Oct 2006 | A1 |
20060242200 | Horowitz et al. | Oct 2006 | A1 |
20060259276 | Rossi et al. | Nov 2006 | A1 |
20060271589 | Horowitz et al. | Nov 2006 | A1 |
20060271623 | Horowitz et al. | Nov 2006 | A1 |
20070006124 | Ahmed et al. | Jan 2007 | A1 |
20070027735 | Rokos | Feb 2007 | A1 |
20070067512 | Donaires et al. | Mar 2007 | A1 |
20070089434 | Singh et al. | Apr 2007 | A1 |
20070089435 | Singh et al. | Apr 2007 | A1 |
20070089438 | Singh et al. | Apr 2007 | A1 |
20070089439 | Singh et al. | Apr 2007 | A1 |
20070089440 | Singh et al. | Apr 2007 | A1 |
20070159978 | Anglin et al. | Jul 2007 | A1 |
20070186569 | Street et al. | Aug 2007 | A1 |
20070204635 | Tanaka et al. | Sep 2007 | A1 |
20070204921 | Alles | Sep 2007 | A1 |
20070205296 | Bell et al. | Sep 2007 | A1 |
20070229305 | Bonicatto et al. | Oct 2007 | A1 |
20070239894 | Thind et al. | Oct 2007 | A1 |
20080000241 | Larsen et al. | Jan 2008 | A1 |
20080015797 | Kates | Jan 2008 | A1 |
20080016888 | Kates | Jan 2008 | A1 |
20080051945 | Kates | Feb 2008 | A1 |
20080058970 | Perumalsamy et al. | Mar 2008 | A1 |
20080078289 | Sergi et al. | Apr 2008 | A1 |
20080109185 | Cheung et al. | May 2008 | A1 |
20080114569 | Seigel | May 2008 | A1 |
20080121729 | Gray | May 2008 | A1 |
20080183424 | Seem | Jul 2008 | A1 |
20080186898 | Petite | Aug 2008 | A1 |
20080209925 | Pham | Sep 2008 | A1 |
20080216494 | Pham et al. | Sep 2008 | A1 |
20080216495 | Kates | Sep 2008 | A1 |
20080223051 | Kates | Sep 2008 | A1 |
20080234869 | Yonezawa et al. | Sep 2008 | A1 |
20080315000 | Gorthala et al. | Dec 2008 | A1 |
20080319688 | Kim | Dec 2008 | A1 |
20090007777 | Cohen et al. | Jan 2009 | A1 |
20090030555 | Gray | Jan 2009 | A1 |
20090037142 | Kates | Feb 2009 | A1 |
20090038010 | Ma et al. | Feb 2009 | A1 |
20090055465 | DePue et al. | Feb 2009 | A1 |
20090057424 | Sullivan et al. | Mar 2009 | A1 |
20090057428 | Geadelmann et al. | Mar 2009 | A1 |
20090068947 | Petite | Mar 2009 | A1 |
20090071175 | Pham | Mar 2009 | A1 |
20090072985 | Patel et al. | Mar 2009 | A1 |
20090093916 | Parsonnet et al. | Apr 2009 | A1 |
20090094998 | McSweeney | Apr 2009 | A1 |
20090096605 | Petite et al. | Apr 2009 | A1 |
20090099699 | Steinberg et al. | Apr 2009 | A1 |
20090106601 | Ngai et al. | Apr 2009 | A1 |
20090112672 | Flamig et al. | Apr 2009 | A1 |
20090125151 | Steinberg et al. | May 2009 | A1 |
20090125257 | Jayanth et al. | May 2009 | A1 |
20090140880 | Flen et al. | Jun 2009 | A1 |
20090151374 | Kasahara | Jun 2009 | A1 |
20090187281 | Kates | Jul 2009 | A1 |
20090215424 | Petite | Aug 2009 | A1 |
20090229469 | Campbell et al. | Sep 2009 | A1 |
20090296832 | Hunt | Dec 2009 | A1 |
20090324428 | Tolbert, Jr. et al. | Dec 2009 | A1 |
20100006042 | Pitonyak et al. | Jan 2010 | A1 |
20100011962 | Totsugi | Jan 2010 | A1 |
20100017465 | Brownrigg et al. | Jan 2010 | A1 |
20100039984 | Brownrigg | Feb 2010 | A1 |
20100044449 | Tessier | Feb 2010 | A1 |
20100070084 | Steinberg et al. | Mar 2010 | A1 |
20100070234 | Steinberg et al. | Mar 2010 | A1 |
20100070666 | Brindle | Mar 2010 | A1 |
20100078493 | Alles | Apr 2010 | A1 |
20100081357 | Alles | Apr 2010 | A1 |
20100081372 | Alles | Apr 2010 | A1 |
20100089076 | Schuster et al. | Apr 2010 | A1 |
20100102136 | Hadzidedic et al. | Apr 2010 | A1 |
20100111709 | Jayanth | May 2010 | A1 |
20100168924 | Tessier et al. | Jul 2010 | A1 |
20100169030 | Parlos | Jul 2010 | A1 |
20100179703 | Singh et al. | Jul 2010 | A1 |
20100191487 | Rada et al. | Jul 2010 | A1 |
20100194582 | Petite | Aug 2010 | A1 |
20100214709 | Hall et al. | Aug 2010 | A1 |
20100217550 | Crabtree et al. | Aug 2010 | A1 |
20100250054 | Petite | Sep 2010 | A1 |
20100257410 | Cottrell et al. | Oct 2010 | A1 |
20100262299 | Cheung et al. | Oct 2010 | A1 |
20100265909 | Petite et al. | Oct 2010 | A1 |
20100280667 | Steinberg | Nov 2010 | A1 |
20100282857 | Steinberg | Nov 2010 | A1 |
20100287489 | Alles | Nov 2010 | A1 |
20100305718 | Clark et al. | Dec 2010 | A1 |
20100308119 | Steinberg et al. | Dec 2010 | A1 |
20100312881 | Davis et al. | Dec 2010 | A1 |
20100318227 | Steinberg et al. | Dec 2010 | A1 |
20100330985 | Addy | Dec 2010 | A1 |
20110004350 | Cheifetz et al. | Jan 2011 | A1 |
20110022429 | Yates et al. | Jan 2011 | A1 |
20110023045 | Yates et al. | Jan 2011 | A1 |
20110023945 | Hayashi et al. | Feb 2011 | A1 |
20110040785 | Steenberg et al. | Feb 2011 | A1 |
20110042541 | Spencer et al. | Feb 2011 | A1 |
20110045454 | McManus et al. | Feb 2011 | A1 |
20110054842 | Kates | Mar 2011 | A1 |
20110071960 | Singh | Mar 2011 | A1 |
20110077896 | Steinberg et al. | Mar 2011 | A1 |
20110083450 | Turner et al. | Apr 2011 | A1 |
20110102159 | Olson et al. | May 2011 | A1 |
20110103460 | Bonicatto | May 2011 | A1 |
20110106471 | Curtis et al. | May 2011 | A1 |
20110112814 | Clark | May 2011 | A1 |
20110118905 | Mylaraswamy et al. | May 2011 | A1 |
20110121952 | Bonicatto et al. | May 2011 | A1 |
20110144932 | Alles | Jun 2011 | A1 |
20110144944 | Pham | Jun 2011 | A1 |
20110166828 | Steinberg et al. | Jul 2011 | A1 |
20110181438 | Millstein et al. | Jul 2011 | A1 |
20110184563 | Foslien et al. | Jul 2011 | A1 |
20110185895 | Freen | Aug 2011 | A1 |
20110190910 | Lombard et al. | Aug 2011 | A1 |
20110212700 | Petite | Sep 2011 | A1 |
20110218957 | Coon et al. | Sep 2011 | A1 |
20110264324 | Petite et al. | Oct 2011 | A1 |
20110264409 | Jayanth et al. | Oct 2011 | A1 |
20110290893 | Steinberg | Dec 2011 | A1 |
20110307103 | Cheung et al. | Dec 2011 | A1 |
20110309953 | Petite et al. | Dec 2011 | A1 |
20110310929 | Petite et al. | Dec 2011 | A1 |
20110315019 | Lyon et al. | Dec 2011 | A1 |
20110320050 | Petite et al. | Dec 2011 | A1 |
20120005590 | Lombard et al. | Jan 2012 | A1 |
20120054242 | Ferrara et al. | Mar 2012 | A1 |
20120065783 | Fadell et al. | Mar 2012 | A1 |
20120065935 | Steinberg et al. | Mar 2012 | A1 |
20120066168 | Fadell et al. | Mar 2012 | A1 |
20120075092 | Petite et al. | Mar 2012 | A1 |
20120092154 | Petite | Apr 2012 | A1 |
20120125559 | Fadell et al. | May 2012 | A1 |
20120125592 | Fadell et al. | May 2012 | A1 |
20120126019 | Warren et al. | May 2012 | A1 |
20120126020 | Filson et al. | May 2012 | A1 |
20120126021 | Warren et al. | May 2012 | A1 |
20120128025 | Huppi et al. | May 2012 | A1 |
20120130546 | Matas et al. | May 2012 | A1 |
20120130547 | Fadell et al. | May 2012 | A1 |
20120130548 | Fadell et al. | May 2012 | A1 |
20120130679 | Fadell et al. | May 2012 | A1 |
20120131504 | Fadell et al. | May 2012 | A1 |
20120143528 | Kates | Jun 2012 | A1 |
20120179300 | Warren et al. | Jul 2012 | A1 |
20120186774 | Matsuoka et al. | Jul 2012 | A1 |
20120191257 | Corcoran et al. | Jul 2012 | A1 |
20120199660 | Warren et al. | Aug 2012 | A1 |
20120203379 | Sloo et al. | Aug 2012 | A1 |
20120221150 | Arensmeier | Aug 2012 | A1 |
20120229521 | Hales, IV et al. | Sep 2012 | A1 |
20120232969 | Fadell et al. | Sep 2012 | A1 |
20120233478 | Mucignat et al. | Sep 2012 | A1 |
20120239207 | Fadell et al. | Sep 2012 | A1 |
20120239221 | Mighdoll et al. | Sep 2012 | A1 |
20120245968 | Beaulieu et al. | Sep 2012 | A1 |
20120248210 | Warren et al. | Oct 2012 | A1 |
20120248211 | Warren et al. | Oct 2012 | A1 |
20120260804 | Kates | Oct 2012 | A1 |
20120265491 | Drummy | Oct 2012 | A1 |
20120265586 | Mammone | Oct 2012 | A1 |
20120271673 | Riley | Oct 2012 | A1 |
20120291629 | Tylutki et al. | Nov 2012 | A1 |
20120318135 | Hoglund et al. | Dec 2012 | A1 |
20120318137 | Ragland et al. | Dec 2012 | A1 |
20130066479 | Shetty et al. | Mar 2013 | A1 |
20130156607 | Jayanth | Jun 2013 | A1 |
20130166231 | Jayanth et al. | Jun 2013 | A1 |
20130174588 | Pham | Jul 2013 | A1 |
20130176649 | Wallis et al. | Jul 2013 | A1 |
20130287063 | Kates | Oct 2013 | A1 |
20130294933 | Pham | Nov 2013 | A1 |
20140000290 | Kates | Jan 2014 | A1 |
20140000291 | Kates | Jan 2014 | A1 |
20140000292 | Kates | Jan 2014 | A1 |
20140000293 | Kates | Jan 2014 | A1 |
20140000294 | Kates | Jan 2014 | A1 |
20140012422 | Kates | Jan 2014 | A1 |
20140069121 | Pham | Mar 2014 | A1 |
20140074730 | Arensmeier et al. | Mar 2014 | A1 |
20140084836 | Pham et al. | Mar 2014 | A1 |
20140229014 | Pham et al. | Aug 2014 | A1 |
20140260342 | Pham | Sep 2014 | A1 |
20140260390 | Pham | Sep 2014 | A1 |
20140262134 | Arensmeier et al. | Sep 2014 | A1 |
20140266755 | Arensmeier et al. | Sep 2014 | A1 |
20140297208 | Arensmeier | Oct 2014 | A1 |
20140299289 | Alsaleem et al. | Oct 2014 | A1 |
20150135748 | Alsaleem et al. | May 2015 | A1 |
20150155701 | Wallis et al. | Jun 2015 | A1 |
20150261230 | Kates | Sep 2015 | A1 |
20150367463 | Pham | Dec 2015 | A1 |
20160076536 | Jayanth et al. | Mar 2016 | A1 |
20160223238 | Kates | Aug 2016 | A1 |
20160226416 | Pham et al. | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
1147440 | May 1983 | CA |
1151265 | Aug 1983 | CA |
2528778 | Dec 2004 | CA |
2567264 | Jul 2007 | CA |
173493 | Nov 1934 | CH |
1169619 | Jan 1998 | CN |
1742427 | Mar 2006 | CN |
1922445 | Feb 2007 | CN |
101048713 | Oct 2007 | CN |
101048713 | Oct 2007 | CN |
101156033 | Apr 2008 | CN |
101156033 | Apr 2008 | CN |
101270908 | Sep 2008 | CN |
101361244 | Feb 2009 | CN |
101466193 | Jun 2009 | CN |
101466193 | Jun 2009 | CN |
101506600 | Aug 2009 | CN |
101506600 | Aug 2009 | CN |
101802521 | Aug 2010 | CN |
101802521 | Aug 2010 | CN |
101821693 | Sep 2010 | CN |
842351 | Jun 1952 | DE |
764179 | Apr 1953 | DE |
1144461 | Feb 1963 | DE |
1403516 | Oct 1968 | DE |
3133502 | Jun 1982 | DE |
3508353 | Sep 1985 | DE |
3508353 | Sep 1985 | DE |
3422398 | Dec 1985 | DE |
0124603 | Nov 1984 | EP |
0254253 | Jan 1988 | EP |
0346152 | Dec 1989 | EP |
0351833 | Jan 1990 | EP |
0410330 | Jan 1991 | EP |
0419857 | Apr 1991 | EP |
0479421 | Apr 1992 | EP |
0557023 | Aug 1993 | EP |
0579374 | Jan 1994 | EP |
0660213 | Jun 1995 | EP |
0747598 | Dec 1996 | EP |
0982497 | Mar 2000 | EP |
1008816 | Jun 2000 | EP |
1087142 | Mar 2001 | EP |
1138949 | Oct 2001 | EP |
1139037 | Oct 2001 | EP |
1187021 | Mar 2002 | EP |
1209427 | May 2002 | EP |
1393034 | Mar 2004 | EP |
1435002 | Jul 2004 | EP |
1487077 | Dec 2004 | EP |
1541869 | Jun 2005 | EP |
1541869 | Jun 2005 | EP |
2180270 | Apr 2010 | EP |
2582430 | Nov 1986 | FR |
2589561 | May 1987 | FR |
2628558 | Sep 1989 | FR |
2660739 | Oct 1991 | FR |
2064818 | Jun 1981 | GB |
2116635 | Sep 1983 | GB |
2229295 | Sep 1990 | GB |
2347217 | Aug 2000 | GB |
2347217 | Aug 2000 | GB |
56010639 | Feb 1981 | JP |
59145392 | Aug 1984 | JP |
61046485 | Mar 1986 | JP |
62116844 | May 1987 | JP |
63302238 | Dec 1988 | JP |
01014554 | Jan 1989 | JP |
04080578 | Mar 1992 | JP |
08087229 | Apr 1996 | JP |
08284842 | Oct 1996 | JP |
H08261541 | Oct 1996 | JP |
2003018883 | Jan 2003 | JP |
2005241089 | Sep 2005 | JP |
2005345096 | Dec 2005 | JP |
2006274807 | Oct 2006 | JP |
2009002651 | Jan 2009 | JP |
2009229184 | Oct 2009 | JP |
2009229184 | Oct 2009 | JP |
2010048433 | Mar 2010 | JP |
10-1998-0036844 | Aug 1998 | KR |
20000000261 | Jan 2000 | KR |
20030042857 | Jun 2003 | KR |
20030042857 | Jun 2003 | KR |
30009 | Jun 2003 | RU |
30009 | Jun 2003 | RU |
55218 | Jul 2006 | RU |
55218 | Jul 2006 | RU |
WO-8601262 | Feb 1986 | WO |
WO-8703988 | Jul 1987 | WO |
WO-8705097 | Aug 1987 | WO |
WO-8802527 | Apr 1988 | WO |
WO-9748161 | Dec 1997 | WO |
WO-0021047 | Apr 2000 | WO |
WO-0214968 | Feb 2002 | WO |
WO-02090840 | Nov 2002 | WO |
WO-02090913 | Nov 2002 | WO |
WO-02090914 | Nov 2002 | WO |
WO-03031996 | Apr 2003 | WO |
WO-03090000 | Oct 2003 | WO |
WO-2004049088 | Jun 2004 | WO |
WO-2005022049 | Mar 2005 | WO |
WO-2005073686 | Aug 2005 | WO |
WO-2005108882 | Nov 2005 | WO |
WO-2006023075 | Mar 2006 | WO |
WO-2006025880 | Mar 2006 | WO |
WO-2006091521 | Aug 2006 | WO |
WO-2008010988 | Jan 2008 | WO |
2008079108 | Jul 2008 | WO |
WO-2008079108 | Jul 2008 | WO |
WO-2008144864 | Dec 2008 | WO |
WO-2010138831 | Dec 2010 | WO |
WO-2011069170 | Jun 2011 | WO |
WO-2012092625 | Jul 2012 | WO |
WO-2012118550 | Sep 2012 | WO |
Entry |
---|
Second Office Action regarding Chinese Patent Application No. 200780030810X, dated Aug. 4, 2010. English translation provided by Unitalen Attorneys at Law. |
“Manual for Freezing and Air Conditioning Technology,” Fan Jili, Liaoning Science and Technology Press, Sep. 1995 (cited in First Office Action issued by the Chinese Patent Office regarding Application No. 200780030810.X dated Dec. 25, 2009). |
“Small-type Freezing and Air Conditioning Operation,” Chinese State Economy and Trading Committee, China Meteorological Press, Mar. 2002 (cited in First Office Action issued by the Chinese Patent Office regarding Application No. 200780030810.X dated Dec. 25, 2009). |
First Office Action issued by the Chinese Patent Office regarding Application No. 200780030810.X dated Dec. 25, 2009. |
International Search Report for International Application No. PCT/US2007/016135 dated Oct. 22, 2007. |
International Search Report for International Application No. PCT/US2008/009618, dated Dec. 8, 2008. |
Written Opinion of International Searching Authority for International Application No. PCT/US2008/009618, dated Dec. 8, 2008. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/009618, dated Apr. 1, 2010. |
First Office Action regarding Chinese Application No. 200880106319.5, dated May 25, 2011. English translation provided by Unitalen Attorneys at Law. |
Notice of Grounds for Refusal regarding Korean Patent Application No. 10-2009-7000850, mailed Oct. 4, 2013. English translation provided by Y.S. Chang & Associates. |
International Search Report regarding Application No. PCT/US2014/028074, dated Jun. 19, 2014. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2014/028074, dated Jun. 19, 2014. |
Invitation to Indicate Claims to be Searched regarding European Patent Application No. 07 796 879.0, dated Feb. 20, 2013. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2007/016135, mailed Oct. 22, 2007. |
About CABA: CABA eBulletin, http://www.caba.org/aboutus/ebulletin/issue17/domosys.html, 2 pages. |
Case Studies: Automated Meter Reading and Load Shed System, http://groupalpha.corn/CaseStudies2.html, Aug. 23, 2004, 1 page. |
European Search Report for EP 01 30 7547; Feb. 20, 2002; 1 Page. |
European Search Report for EP 02 25 0266; May 17, 2002; 3 Pages. |
European Search Report for EP 02 72 9050, Jun. 17, 2004, 2 pages. |
European Search Report for EP 82306809.3; Apr. 28, 1983; 1 Page. |
European Search Report for EP 91 30 3518; Jul. 22, 1991; 1 Page. |
European Search Report for EP 93 30 4470; Oct. 26, 1993; 1 Page. |
European Search Report for EP 94 30 3484; Apr. 3, 1997; 1 Page. |
European Search Report for EP 96 30 4219; Dec. 1, 1998; 2 Pages. |
European Search Report for EP 98 30 3525; May 28, 1999; 2 Pages. |
European Search Report for EP 99 30 6052; Dec. 28, 1999; 3 Pages. |
Examiner-Initiated Interview Summary regarding U.S. Appl. No. 11/214,179, dated Dec. 11, 2009. |
Extended European Search Report regarding Application No. 07796879.0-1602 / 2041501 PCT/US2007016135, dated Jul. 14, 2014. |
Extended European Search Report regarding European Application No. 08848538.8-1608 / 2220372, dated Jun. 19, 2015. |
Final Office Action and Interview Summary regarding U.S. Appl. No. 13/407,180, mailed Mar. 13, 2015. |
First Office Action regarding Canadian Patent Application No. 2,777,349, dated Jul. 19, 2013. |
Haiad et al., “EER & SEER As Predictors of Seasonal Energy Performance”, Oct. 2004, Southern California Edison, http://www.doe2.com/download/DEER/SEER%2BProgThermostats/EER-SEER—CASE—ProjectSummary—Oct2004—V6a.pdf. |
Home Comfort Zones, MyTemp Room-by-Room Zone Control, Nov. 2009. |
Home Comfort Zones, MyTemp User Manual v4.3, May 2008. |
Home Comfort Zones, Save Energy with MyTemp™ Zone Control, Dec. 2009. |
Home Comfort Zones, Smart Controller™ MyTemp™ Room by Room Temperature Control and Energy Management, User Manual, Aug. 2007. |
Honeywell, A7075A1000 HVAC Service Assistant, 2001. |
Honeywell, Advanced Portable A/C Diagnostics, The HVAC Service Assistant, 2003. |
Honeywell, Alerts and Delta T Diagnostics with Prestige® 2.0 IAQ Thermostat, 69-2678-02, Sep. 2011. |
Honeywell, Excel 5000® System, Excel Building Supervisor—Integrated, 74-2034, Copyright © 1994, Rev. Nov. 1994, 12 pages. |
Honeywell, Excel 5000® System, Excel Building Supervisor, 74-2033-1, Copyright © 1996, Rev. Jun. 1996, 12 pages. |
Honeywell, HVAC Service Assistant, TRGpro PalmTM OS Interface and HVAC Service Assistant A7075A1000, 2002. |
Honeywell, Prestige System Installation Guide, THX9321/9421 Prestige® IAQ and RF EIM, 64-2490-03, Jul. 2011. |
Honeywell, RedLINK™ Wireless Comfort Systems brochure, 50-1194, Sep. 2011. |
HVAC Service Assistant, ACRx Efficiency and Capacity Estimating Technology, Field Diagnostics, 2004. |
International Preliminary Examination Report regarding PCT/US02/13456, dated Sep. 15, 2003. |
International Preliminary Report on Patentability regarding Application No. PCT/US2010/056315, mailed May 24, 2012. |
International Search Report and Written Opinion for related PCT Application No. PCT/US2014/028859, dated Aug. 22, 2014. |
International Search Report and Written Opinion of the International Searching Authority regarding International Application No. PCT/US06/33702, dated Sep. 26, 2007. |
International Search Report and Written Opinion of the ISA regarding International Application No. PCT/US2014/032927, ISA/KR dated Aug. 21, 2014. |
International Search Report for International Application No. PCT/US07/019563, dated Jan. 15, 2008, 3 Pages. |
International Search Report for PCT/US02/13459; ISA/US; date mailed Sep. 19, 2002. |
International Search Report for PCT/US2012/026973, Sep. 3, 2012, 5 pages. |
International Search Report for PCT/US2013/061389, Jan. 22, 2014, 7 pages. |
International Search Report from PCT /US2008/060900, Aug. 4, 2008, 6 pages. |
International Search Report regarding Application No. PCT/US2010/036601, mailed Dec. 29, 2010. |
International Search Report regarding Application No. PCT/US2010/056315, mailed Jun. 28, 2011. |
International Search Report, Int'l. App. No. PCT/US 06/05917, dated Sep. 26, 2007. |
International Search Report, International Application No. PCT/US02/13456, dated Aug. 22, 2002, 2 Pages. |
International Search Report, International Application No. PCT/US04/13384; Dated Aug. 1, 2004; 1 Page. |
International Search Report, International Application No. PCT/US2004/027654, dated Aug. 25, 2004, 4 Pages. |
International Search Report; International Application No. PCT/IB96/01435; May 23, 1997; 1 Page. |
International Search Report; International Application No. PCT/US98/18710; Jan. 26, 1999; 1 Page. |
Palani, M. et al, The Effect of Reducted Evaporator Air Flow on the Performance of a Residential Central Air Conditioner, ESL-HH-92-05-04, Energy Systems Laboratory, Mechanical Engineering Department, Texas A&M University, Eighth Symposium on Improving Building System in Hot and Humid Climates, May 13-14, 1992. |
Search Report regarding European Patent Application No. 08251185.8-1605 / 2040016, dated Dec. 4, 2015. |
Supplementary European Search Report for EP 02 73 1544, Jun. 18, 2004, 2 Pages. |
Texas Instruments, Inc. Mechanical Data for “PT (S-PQFP-G48) Plastic Quad Flatpack,” Revised Dec. 1996, 2 pages. |
The LS2000 Energy Management System, User Guide, http://www.surfnetworks.com/htmlmanuals/IonWorksEnergyManagement-LS2000-Load-Shed-System-by-Surf-Networks,Inc.html, Sep. 2004, 20 pages. |
Trane EarthWise™ CenTra Vac™ Water-Cooled Liquid Chillers 165-3950 Tons 50 and 60 Hz; CTV PRC007-EN; Oct. 2002; 56 pages. |
Udelhoven, Darrell, “Air Conditioning System Sizing for Optimal Efficiency,” http://www.udarrell.com/ airconditioning-sizing.html, Oct. 6, 2003, 7 pages. |
Udelhoven, Darrell, “Optimizing Air Conditioning Efficiency TuneUp Optimizing the Condenser Output, Seer, Air, HVAC Industry,” http://www.udarrell.com/air-conditioning-efficiency.html, Jul. 19, 2002, 13 pages. |
UltraSite User's Guide, Computer Process Controls, Apr. 1, 1996. |
Vandenbrink et al.,“Design of a Refrigeration Cycle Evaporator Unit,” Apr. 18, 2003. |
Watt, James; Development of Empirical Temperature and Humidity-Based Degraded-Condition Indicators for Low-Tonnage Air Conditioners; ESL-TH-97/12-03; Dec. 1997. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2010/036601, mailed Dec. 29, 2010. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2012/026973, dated Sep. 3, 2012. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/061389, mailed Jan. 22, 2014. |
Written Opinion of the International Searching Authority, Int'l. App. No. PCT/US 06/05917, dated Sep. 26, 2007. |
Written Opinion regarding PCT/US02/13459, dated Apr. 23, 2003. |
“Air Conditioning Equipment and Diagnostic Primer,” Field Diagnostic Services, Inc., Sep. 9, 2002. |
About CABA: CABA eBulletin, http://www.caba.org/aboutus/ebulletin/issue17/domosys.html. 2 pages. |
Advanced Utility Metering: Period of Performance, Subcontractor Report, National Renewable Energy Laboratory, Sep. 2003, 59 pages. |
Advisory Action and Interview Summary regarding U.S. Appl. No. 13/407,180, dated May 27, 2015. |
Advisory Action regarding U.S. Appl. No. 13/269,188, dated Apr. 13, 2015. |
Advisory Action regarding U.S. Appl. No. 11/214,179, dated Aug. 28, 2009. |
Applicant-Initiated Interview Summary and Advisory Action regarding U.S. Appl. No. 13/369,067, dated Jul. 23, 2015. |
Applicant-Initiated Interview Summary regarding U.S. Appl. No. 14/212,632, dated Sep. 2, 2015. |
Case Studies: Automated Meter Reading and Load Shed System, http://groupalpha.com/CaseStudies2.html, Aug. 23, 2004, 1 page. |
Communication from European Patent Office concerning Substantive Examination regarding European Patent Application No. 06790063.9, dated Jun. 6, 2011. |
Cost Cutting Techniques Used by the Unscrupulous, http://www.kellyshvac.com/howto.html, Oct. 7, 2004, 3 pages. |
European Search Report for EP 01 30 7547; dated Feb. 20, 2002; 1 Page. |
European Search Report for EP 02 25 0266; dated May 17, 2002; 3 Pages. |
European Search Report for EP 02 72 9050, dated Jun. 17, 2004; 2 pages. |
European Search Report for EP 82306809.3; dated Apr. 28, 1983; 1 Page. |
European Search Report for EP 91 30 3518; dated Jul. 22, 1991; 1 Page. |
European Search Report for EP 93 30 4470; dated Oct. 26, 1993; 1 Page. |
European Search Report for EP 94 30 3484; dated Apr. 3, 1997; 1 Page. |
European Search Report for EP 96 30 4219; dated Dec. 1, 1998; 2 Pages. |
European Search Report for EP 98 30 3525; dated May 28, 1999; 2 Pages. |
European Search Report for EP 99 30 6052; dated Dec. 28, 1999; 3 Pages. |
European Search Report regarding Application No. EP02729051, dated Feb. 17, 2005. |
Examination Report received from Australian Government IP Australia dated Oct. 29, 2009 regarding patent application No. 2008202088. |
Examiner Interview regarding U.S. Appl. No. 11/256,641, dated Sep. 16, 2008. |
Examiner Interview Summary regarding U.S. Appl. No. 11/394,380, dated Jul. 29, 2010. |
Examiner Interview Summary regarding U.S. Appl. No. 10/940,877, dated Dec. 8, 2008. |
Examiner Interview Summary regarding U.S. Appl. No. 10/940,877, dated Mar. 2, 2007. |
Examiner Interview Summary regarding U.S. Appl. No. 10/940,877, dated Mar. 25, 2008. |
Examiner's First Report on Australian Patent Application No. 2002259066, dated Mar. 1, 2006. |
Examiner's Report No. 1 regarding Australian Patent Application No. 2013202431, dated Nov. 25, 2014. |
Examiner-Initiated Interview Summary regarding U.S. App. No. 11/214,179, dated Dec. 11, 2009. |
Extended European Search Report regarding Application No. 07796879.0-1602/2041501 PCT/US2007016135, dated Jul. 14, 2014. |
Extended European Search Report regarding European Application No. 08845689.2-1608/2207964, dated Jun. 19, 2015. |
Extended European Search Report regarding European Application No. 08848538.8-1608/2220372, dated Jun. 19, 2015. |
Faramarzi et al., “Performance Evaluation of Rooftop Air Conditioning Units at High Ambient Temperatures,” 2004 ACEEE Summer Study on Energy Efficiency in Buildings—http://aceee.org/files/proceedings/2004/data/papers/SSO4—Panel3—Paper05.pdf. |
Final Office Action and Interview Summary regarding U.S. Appl. No. 13/407,180, dated Mar. 13, 2015. |
Final Office Action for U.S. Appl. No. 13/770,123 dated Dec. 22, 2014. |
Final Office Action from related U.S. Appl. No. 13/269,188 dated May 23, 2013; 11 pages. |
Final Office Action from related U.S. Appl. No. 13/369,067 dated May 1, 2014; 19 pages. |
Final Office Action from related U.S. Appl. No. 13/767,479 dated Mar. 14, 2014; 6 pages. |
Final Office Action from related U.S. Appl. No. 13/836,043 dated Mar. 12, 2014; 5 pages. |
Final Office Action regarding U.S. Appl. No. 11/497,579, dated May 14, 2010. |
Final Office Action regarding U.S. Appl. No. 11/497,644, dated Dec. 22, 2010. |
Final Office Action regarding U.S. Appl. No. 13/770,479, dated Sep. 4, 2015. |
Final Office Action regarding U.S. Appl. No. 11/214,179, dated Jul. 21, 2011. |
Final Office Action regarding U.S. Appl. No. 10/061,964, dated Mar. 8, 2004. |
Final Office Action regarding U.S. Appl. No. 10/940,877, dated Nov. 13, 2007. |
Final Office Action regarding U.S. Appl. No. 10/940,877, dated Apr. 27, 2009. |
Final Office Action regarding U.S. Appl. No. 10/940,877, dated May 2, 2006. |
Final Office Action regarding U.S. Appl. No. 11/214,179, dated May 29, 2009. |
Final Office Action regarding U.S. Appl. No. 11/256,641, dated Feb. 2, 2009. |
Final Office Action regarding U.S. Appl. No. 11/337,918, dated Feb. 17, 2011. |
Final Office action regarding U.S. Appl. No. 11/337,918, dated Feb. 4, 2010. |
First Chinese Office Action regarding Application No. 201380005300.2, dated Apr. 30, 2015. Translation provided by Unitalen Attorneys at Law. |
First Examination Communication regarding European Application No. EP02729051.9, dated Dec. 23, 2005. |
First Examination Report regarding Australian Patent Application No. 2010319488, dated Jan. 10, 2013. |
First Office Action from the Patent Office of the People's Republic of China dated Jun. 8, 2007, Application No. 200480027753.6 and Translation provided by CCPIT. |
First Office Action received from the Chinese Patent Office dated Feb. 2, 2007 regarding Application No. 200480011463.2, translated by CCPIT Patent and Trademark Law Office. |
First Office Action regarding Canadian Patent Application No. 2,777,349. dated Jul. 19, 2013. |
First Office Action regarding Chinese Patent Application No. 201280010796.8, dated Sep. 14, 2015. Translation provided by Unitalen Attorneys At Law. |
First Official Report regarding Australian Patent Application No. 2007214381, dated Dec. 12, 2008. |
Flow & Level Measurement: Mass Flowmeters, http://www.omega.com/literature/transactions/volume4/T9904-10-MASS.html, 2001, 19 pages. |
Frequently Asked Questions, http://www.lipaedge.com/faq.asp, Copyright © 2001, 5 pages. |
Haiad et al., “EER & SEER As Predictors of Seasonal Energy Performance ”, Oct. 2004, Southern California Edison. |
International Search Report, International Application No. PCT/US2006/040964, dated Feb. 15, 2007, 2 Pages. |
International Search Report; International Application No. PCT/IB96/01435; dated May 23, 1997; 1 Page. |
International Search Report; International Application No. PCT/US98/18710; dated Jan. 26, 1999; 1 Page. |
Interview Summary from related U.S. Appl. No. 12/054,011 dated Jan. 30, 2012. |
Interview Summary regarding U.S. Appl. No. 11/497,644, dated May 4, 2010. |
Interview Summary regarding U.S. Appl. No. 13/269,188, dated Mar. 18, 2015. |
Interview Summary regarding U.S. Appl. No. 13/369,067, dated Jul. 16. 2015. |
Interview Summary regarding U.S. Appl. No. 13/407,180, dated Jun. 11, 2015. |
Interview Summary regarding U.S. Appl. No. 13/770,479, dated Jun. 16, 2015. |
Interview Summary regarding U.S. Appl. No. 13/770,479, dated Nov. 25, 2015. |
Interview Summary regarding U.S. Appl. No. 11/214,179, dated Jan. 30, 2009. |
Interview Summary regarding U.S. Appl. No. 11/497,579, dated Jul. 15, 2010. |
Issue Notification regarding U.S. Appl. No. 11/214,179, dated Mar. 14, 2012. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Appendix C, pp. 1060-1063, Copyright 2004. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section II, Chapter 4, pp. 176-201, Copyright 2004. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section II, Chapter 5, pp. 239-245, Copyright 2004. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section II, Chapter 6, p. 322, Copyright 2004. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section IV, Chapter 9, pp. 494-504, Copyright 2004. |
K. A. Manske et al.; Evaporative Condenser Control in Industrial Refrigeration Systems; University of Wisconsin—Madison, Mechanical Engineering Department; International Journal of Refrigeration, vol. 24, No. 7; pp. 676-691; 2001, 21 pages. |
Li et al., “Development, Evaluation, and Demonstration of a Virtual Refrigerant Charge Sensor,” Jan. 2009, HVAC&R Research, Oct. 27, 2008, 21 pages. |
Liao et al., A Correlation of Optimal Heat Rejection Pressures in Transcritical Carbon Dioxide Cycles, Applied Thermal Engineering 20 (2000), Jul. 25, 1999, 831-841. |
LIPA Launches Free, First-in-Nation Internet-Based Air Conditioner Control Program to Help LIPA and Its Customers Conserve Electricity & Save Money, Apr. 19, 2001, http://www.lipower.org/newscmter/pr/2001/aprill9—0l.html, 3 pages. |
Low-Cost Multi-Service Home Gateway Creates New Business Opportunities, Coactive Networks, Copyright 1998-1999, 7 pages. |
Nickles, Donald, “Broadband Communications Over Power Transmission Lines,” A Guest Lecture From the Dr. Shreekanth Mandaynam Engineering Frontiers Lecture Series, May 5, 2004, 21 pages. |
Non Final Office Action for U.S. Appl. No. 13/407,180, dated Dec. 2, 2014. |
Non Final Office Action for related U.S. Appl. No. 13/369,067 dated Aug. 12, 2014. |
Non Final Office Action for related U.S. Appl. No. 13/835,621 dated Aug. 8, 2014. |
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Aug. 14, 2012; 9 pages. |
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Oct. 4, 2013; 11 pages. |
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Feb. 20, 2014; 9 pages. |
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Jul. 17, 2014; 10 pages. |
Non Final Office Action from related U.S. Appl. No. 13/369,067 dated Jan. 16, 2014; 16 pages. |
Non Final Office Action from related U.S. Appl. No. 13/767,479 dated Oct. 24, 2013; 8 pages. |
Non Final Office Action from related U.S. Appl. No. 13/767,479 dated Jul. 23, 2014; 9 pages. |
Non Final Office Action from related U.S. Appl. No. 13/835,621 dated Oct. 30, 2013; 8 pages. |
Non Final Office Action from related U.S. Appl. No. 13/835,621 dated Apr. 2, 2014; 11 pages. |
Non Final Office Action from related U.S. Appl. No. 13/835,742 dated Oct. 7, 2013; 9 pages. |
Non Final Office Action from related U.S. Appl. No. 13/835,810 dated Nov. 15, 2013; 9 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,043 dated Oct. 23, 2013; 8 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,043 dated Jul. 11, 2014; 5 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,244 dated Oct. 15, 2013; 11 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,244 dated Feb. 20, 2014; 10 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,453 dated Aug. 20, 2013; 8 pages. |
Non-Final Office Action in U.S. Appl. No. 13/784,890, dated Jun. 11, 2013. |
Non-Final Office Action regarding U.S. Appl. No. 11/214,179, dated Jan. 24, 2011. |
Non-Final Office Action regarding U.S. Appl. No. 11/214,179, dated Nov. 5, 2008. |
Non-Final Office Action regarding U.S. Appl. No. 11/214,179, dated Jun. 8, 2010. |
Non-Final Office Action regarding U.S. Appl. No. 12/261,643, dated Mar. 12, 2013. |
Non-Final Office Action regarding U.S. Appl. No. 12/943,626, dated Dec. 20, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 12/955,355, dated Sep. 11, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 13/435,543, dated Jun. 21, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 13/770,123, dated Jun. 11, 2014. |
Non-Final Office Action regarding U.S. Appl. No. 13/932,611, dated Jan. 30, 2015. |
Notice of Allowance and Fee(s) Due regarding U.S. Appl. No. 12/789,562, dated Oct. 26, 2012. |
Notice of Allowance and Fees Due and Notice of Allowability regarding U.S. Appl. No. 11/256,641, dated May 19, 2009. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 12/261,643, dated Jun. 23, 2014. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 12/943,626, dated Jun. 19, 2014. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 13/737,566, dated Jun. 18, 2014. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 13/737,566, dated Sep. 24, 2014. |
Notice of Allowance and Fees Due, Interview Summary and Notice of Allowability regarding U.S. Appl. No. 11/214,179, dated Nov. 23, 2011. |
Notice of Allowance and Interview Summary regarding U.S. Appl. No. 13/269,188, dated Aug. 26, 2015. |
Notice of Allowance and Notice of Allowability regarding U.S. Appl. No. 10/286,419, dated Dec. 2, 2004. |
Notice of Allowance and Notice of Allowability regarding U.S. Appl. No. 10/675,137, dated Dec. 16, 2005. |
Notice of Allowance dated Dec. 21, 2007 from Related U.S. Appl. No. 11/417,609. |
Notice of Allowance dated Dec. 3, 2007 from Related U.S. Appl. No. 11/130,562. |
Notice of Allowance dated Feb. 12, 2007 from Related U.S. Appl. No. 11/130,871. |
Notice of Allowance dated Jul. 13, 2006 from Related U.S. Appl. No. 11/130,601. |
Notice of Allowance dated Jul. 25, 2007 from Related U.S. Appl. No. 10/916,223. |
Notice of Allowance dated Jun. 11, 2007 from Related U.S. Appl. No. 10/916,222. |
Notice of Allowance dated May 29, 2007 from Related U.S. Appl. No. 11/130,569. |
Notice of Allowance dated Nov. 3, 2008 from Related U.S. Appl. No. 11/417,701. |
Notice of Allowance dated Oct. 26, 2007 from Related U.S. Appl. No. 10/916,223. |
Notice of Allowance for U.S. Appl. No. 13/835,742 dated Dec. 24, 2014. |
Notice of Allowance for U.S. Appl. No. 13/835,810 dated Jan. 2, 2015. |
Notice of Allowance for U.S. Appl. No. 13/836,043 dated Feb. 4, 2015. |
Notice of Allowance for U.S. Appl. No. 13/836,453 dated Dec. 24, 2014. |
Notice of Allowance for related U.S. Appl. No. 13/835,810 dated Aug. 5, 2014. |
Notice of Allowance for related U.S. Appl. No. 13/836,043, dated Oct. 9, 2014. |
Notice of Allowance for related U.S. Appl. No. 13/836,244, dated Oct. 30, 2014. |
Notice of Allowance for U.S. Appl. No. 10/698,048, dated Sep. 1, 2005. |
Notice of Allowance from related U.S. Appl. No. 13/835,742 dated Jan. 31, 2014; 7 pages. |
Notice of Allowance from related U.S. Appl. No. 13/835,742 dated Jun. 2, 2014; 8 pages. |
Notice of Allowance from related U.S. Appl. No. 13/835,810 dated Mar. 20, 2014; 9 pages. |
Notice of Allowance from related U.S. Appl. No. 13/836,453 dated Jan. 14, 2014; 8 pages. |
Notice of Allowance from related U.S. Appl. No. 13/836,453 dated Apr. 21, 2014; 8 pages. |
Notice of Allowance from related U.S. Appl. No. 13/836,453 dated Aug. 4, 2014. |
Notice of Allowance from related U.S. Appl. No. 13/836,244 dated Jul. 2, 2014; 8 pages. |
Notice of Allowance regarding U.S. Appl. No. 13/767,479, dated Mar. 31, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/770,123, dated Oct. 1, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/835,621, dated Mar. 10, 2015. |
Notice of Allowance regarding U.S. Appl. No. 12/261,643, dated Jul. 29, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/369,067, dated Sep. 2, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/407,180, dated Sep. 4, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/770,123, dated Aug. 13, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/835,742, dated Apr. 17, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/836,453, dated Apr. 15, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/932,611, dated Jul. 6, 2015. |
Notice of Allowance regarding U.S. Appl. No. 10/061,964, dated Jul. 19, 2004. |
Notice of Allowance regarding U.S. Appl. No. 10/940,877, dated Sep. 4, 2009. |
Notice of Allowance regarding U.S. Appl. No. 12/685,424, dated Apr. 25, 2011. |
Notice of Allowance regarding U.S. Appl. No. 13/303,286, dated Jul. 19, 2012. |
Office Action and Interview Summary regarding U.S. Appl. No. 14/244,967, dated Oct. 7, 2015. |
Office Action dated Apr. 19, 2006 from Related U.S. Appl. No. 10/916,223. |
Office Action dated Aug. 17, 2007 from Related U.S. Appl. No. 11/417,609. |
Office Action dated Aug. 17, 2007 from Related U.S. Appl. No. 11/417,701. |
Office Action dated Aug. 21, 2007 from Related U.S. Appl. No. 11/417,557. |
Office Action dated Feb. 1, 2007 from Related U.S. Appl. No. 11/130,562. |
Office Action dated Feb. 13, 2009 from Related U.S. Appl. No. 12/033,765. |
Office Action dated Feb. 13, 2009 from Related U.S. Appl. No. 12/050,821. |
Office Action dated Feb. 15, 2008 from Related U.S. Appl. No. 11/417,557. |
Office Action dated Feb. 3, 2009 from Related U.S. Appl. No. 11/866,295. |
Office Action dated Jan. 18, 2006 from Related U.S. Appl. No. 11/130,601. |
Office Action dated Jan. 18, 2006 from Related U.S. Appl. No. 11/130,871. |
Office Action dated Jan. 23, 2007 from Related U.S. Appl. No. 10/916,222. |
Office Action dated Jan. 6, 2006 from Related U.S. Appl. No. 11/130,562. |
Office Action dated Jan. 6, 2006 from Related U.S. Appl. No. 10/916,222. |
Office Action dated Jul. 1, 2008 from Related U.S. Appl. No. 11/927,425. |
Office Action dated Jul. 11, 2006 from Related U.S. Appl. No. 11/130,562. |
Office Action dated Jul. 11, 2006 from Related U.S. Appl. No. 10/916,222. |
Office Action dated Jul. 11, 2007 from Related U.S. Appl. No. 11/417,609. |
Office Action dated Jul. 11, 2007 from Related U.S. Appl. No. 11/417,701. |
Office Action dated Jul. 16, 2008 from Related U.S. Appl. No. 11/417,701. |
Office Action dated Jul. 24, 2008 from Related U.S. Appl. No. 11/417,557. |
Office Action dated Jul. 27, 2006 from Related U.S. Appl. No. 11/130,871. |
Office Action dated Jun. 17, 2009 from Related U.S. Appl. No. 12/033,765. |
Office Action dated Jun. 19, 2009 from Related U.S. Appl. No. 11/866,295. |
Office Action dated Jun. 22, 2009 from Related U.S. Appl. No. 12/050,821. |
Office Action dated Jun. 27, 2007 from Related U.S. Appl. No. 11/417,557. |
Office Action dated Mar. 30, 2006 from Related U.S. Appl. No. 11/130,569. |
Office Action dated May 4, 2005 from Related U.S. Appl. No. 10/916,223. |
Office Action dated May 6, 2009 from Related U.S. Appl. No. 11/830,729. |
Office Action dated Nov. 14, 2006 from Related U.S. Appl. No. 11/130,569. |
Office Action dated Nov. 16, 2006 from Related U.S. Appl. No. 10/916,223. |
Office Action dated Nov. 8. 2005 from Related U.S. Appl. No. 10/916,222. |
Office Action dated Nov. 9. 2005 from Related U.S. Appl. No. 11/130,562. |
Office Action dated Nov. 9. 2005 from Related U.S. Appl. No. 11/130,601. |
Office Action dated Nov. 9. 2005 from Related U.S. Appl. No. 11/130,871. |
Office Action dated Oct. 27, 2005 from Related U.S. Appl. No. 10/916,223. |
Office Action dated Sep. 18, 2007 from Related U.S. Appl. No. 11/130,562. |
Office Action for U.S. Appl. No. 13/269,188 dated Feb. 10, 2015. |
Office Action for U.S. Appl. No. 13/767,479 dated Feb. 6, 2015. |
Office Action for U.S. Appl. No. 13/835,621 dated Dec. 29, 2014. |
Office Action for Canadian Application No. 2,828,740 dated Jan. 12. 2015. |
Office Action for related U.S. Appl. No. 13/269,188, dated Oct. 6, 2014. |
Office Action for related U.S. Appl. No. 13/767,479, dated Oct. 21, 2014. |
Office Action for U.S. Appl. No. 11/394,380, dated Jan. 6, 2009. |
Office Action for U.S. Appl. No. 11/497,579, dated Oct. 27, 2009. |
Office Action for U.S. Appl. No. 11/497,644, dated Dec. 19, 2008. |
Office Action for U.S. Appl. No. 11/497,644, dated Jul. 10, 2009. |
Office Action from U.S. Appl. No. 13/369,067 dated Apr. 3, 2015. |
Office Action regarding U.S. Appl. No. 13/770,479, dated Mar. 16, 2015. |
Office Action regarding U.S. Appl. No. 13/770,123, dated Apr. 2, 2015. |
Office Action regarding Australian Patent Application No. 2013323760, dated Sep. 25, 2015. |
Office Action regarding Australian Patent Application No. 2015207920, dated Dec. 4, 2015. |
Office Action regarding Chinese Patent Application No. 201380005300.2, dated Jan. 4, 2016. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201380049458.X, dated Nov. 13, 2015. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Indian Patent Application No. 733/KOLNP/2009, dated Aug. 12, 2015. |
Office Action regarding U.S. Appl. No. 10/286,419, dated Jun. 10, 2004. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Oct. 2, 2006. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Oct. 2, 2007. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Dec. 15, 2008. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Feb. 17, 2010. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Apr. 12, 2007. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Jun. 5, 2008. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Jul. 20, 2009. |
Office Action regarding U.S. Appl. No. 11/394,380, dated Sep. 25, 2009. |
Office Action regarding U.S. Appl. No. 11/497,644, dated Jan. 29, 2010. |
Office Action regarding U.S. Appl. No. 11/497,644, dated Jun. 14, 2010. |
Office Action regarding U.S. Appl. No. 14/209,415, dated Sep. 10, 2015. |
Office Action regarding U.S. Appl. No. 14/212,632, dated Nov. 19, 2015. |
Office Action regarding U.S. Appl. No. 14/255,519, dated Nov. 9, 2015. |
Office Action regarding U.S. Appl. No. 10/061,964, dated Oct. 3, 2003. |
Office Action regarding U.S. Appl. No. 10/675,137, dated Feb. 4, 2005. |
Office Action regarding U.S. Appl. No. 10/675,137, dated Jun. 29, 2005. |
Office Action regarding U.S. Appl. No. 10/675,137, dated Sep. 7, 2004. |
Office Action regarding U.S. Appl. No. 10/698,048, dated Mar. 21, 2005. |
Office Action regarding U.S. Appl. No. 10/940,877, dated Oct. 27, 2006. |
Office Action regarding U.S. Appl. No. 10/940,877, dated Nov. 14, 2005. |
Office Action regarding U.S. Appl. No. 10/940,877, dated Dec. 8, 2008. |
Office Action regarding U.S. Appl. No. 10/940,877, dated May 21, 2007. |
Office Action regarding U.S. Appl. No. 10/940,877, dated Jun. 5, 2008. |
Office Action regarding U.S. Appl. No. 11/256,641, dated Apr. 29, 2008. |
Office Action regarding U.S. Appl. No. 11/337,918, dated Mar. 25, 2008. |
Office Action regarding U.S. Appl. No. 11/337,918, dated Aug. 17, 2009. |
Office Action regarding U.S. Appl. No. 11/337/918, dated Oct. 28, 2008. |
Office Action regarding U.S. Appl. No. 13/303,286, dated Mar. 26, 2012. |
Palani, M. et al, Monitoring the Performance of a Residential Central Air Conditioner under Degraded Conditions on a Test Bench, ESL-TR-92/05-05, May 1992. |
Palani, M. et al, The Effect of Reducted Evaporator Air Flow on the Performance of a Residential Central Air Conditioner, ESL-HH-92-05-04, Energy Systems Laboratory. Mechanical Engineering Department, Texas A&M University, Eighth Symposium on Improving Building System in Hot and Humid Climates, May 13-14, 1992. |
Patent Examination Report for Austrialian Application No. 2012223466 dated Jan. 6, 2015. |
Pin, C. et al., “Predictive Models as Means to Quantify the Interactions of Spoilage Organisms,” International Journal of Food Microbiology, vol. 41, No. 1, 1998, pp. 59-72, XP-002285119. |
Reh, F. John, “Cost Benefit Analysis”, http://management.about.com/cs/money/a/CostBenefit.htm, Dec. 8, 2003. |
Restriction from related Application No. 13/269,188 dated Apr. 9, 2013; 5 pages. |
Restriction Requirement regarding U.S. Appl. No. 14/244.967, dated Jul. 14, 2015. |
Restriction Requirement regarding U.S. Appl. No. 10/940,877, dated Jul. 25, 2005. |
Restriction Requirement regarding U.S. Appl. No. 11/214,179, dated Feb. 2, 2010. |
Search Report regarding European Patent Application No. 08251185.8-1605/2040016, dated Dec. 4, 2015. |
Search Report regarding European Patent Application No. 13736303.2-1806, dated Sep. 17, 2015. |
Second Examination Communication regarding European Application No. EP02729051.9, dated Jul. 3, 2006. |
Second Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 201110349785.X, dated Jul. 25, 2014. Translation provided by Unitalen Attorneys at Law. |
Second Office Action received from the Chinese Patent Office dated Jun. 26, 2009 regarding Application No. 200480011463.2, translated by CCPIT Patent and Trademark Law Office. |
Second Official Report regarding Australian Patent Application No. 2007214381, dated Oct. 30, 2009. |
Supplementary European Search Report for EP 02 73 1544, dated Jun. 18, 2004, 2 Pages. |
Supplementary European Search Report regarding Application No. PCT/US2006/005917, dated Nov. 23, 2009. |
Supplementary European Search Report regarding European Application No. EP06790063, dated Jun. 15, 2010. |
Tamarkin, Tom D., “Automatic Meter Reading,” Public Power magazine, vol. 50, No. 5, Sep.-Oct. 1992, http://www.energycite.com/news/amr.html, 6 pages. |
Texas Instruments, Inc. Mechanical Data for “PT (S-PQFP-348) Plastic Quad Flatpack,” Revised Dec. 1996, 2 pages. |
Texas Instruments, Inc., Product catalog for “TRF690 1 Single-Chip RF Transceiver,” Copyright 2001-2003, Revised Oct. 2003, 27 pages. |
The Honeywell HVAC Service Assistant, A Tool for Reducing Electrical Power Demand and Energy Consumption, Field Diagnostics, 2003. |
The LS2000 Energy Management System, User Guide, http://www.surfnetworks.com/htmlmanuals/lonWorksEnergyManagement-LS2000-Load-Shed-System-by-Surf-Networks,Inc.html, Sep. 2004, 20 pages. |
Third Chinese Office Action regarding Application No. 201110349785.X, dated Jan. 30, 2015. Translation provided by Unitalen Attorneys at Law. |
Torcellini, P., et al., “Evaluation of the Energy Performance and Design Process of the Thermal Test Facility at the National Renewable Energy Laboratory”, dated Feb. 2005. |
Trane EarthWise™ CenTra Vac™ Water-Cooled Liquid Chillers 165-3950 Tons 50 and 60 Hz; CTV PRC007 -EN; Oct. 2002; 56 pages. |
U.S. Office Action regarding U.S. Appl. No. 13/269,188, dated May 8, 2015. |
U.S. Office Action regarding U.S. Appl. No. 14/212,632, dated May 15, 2015. |
Udelhoven, Darrell, “Air Conditioner EER, SEER Ratings, BTUH Capacity Ratings, & Evaporator Heat Load,” http://www.udarrell.com/air-conditioner-capacity-seer.html, Apr. 3, 2003, 15 pages. |
Udelhoven, Darrell, “Air Conditioning System Sizing for Optimal Efficiency,” http://www.udarrell.com/airconditioning-sizing.html, Oct. 6, 2003, 7 pages. |
Office Action regarding U.S. Appl. No. 14/193,568, dated Jun. 1, 2016. |
Advisory Action regarding U.S. Appl. No. 14/193,568, dated Aug. 10, 2016. |
Office Action regarding U.S. Appl. No. 14/244,967, dated Aug. 29, 2016. |
Advisory Action regarding U.S. Appl. No. 14/212,632, dated Feb. 9, 2016. |
Office Action regarding U.S. Appl. No. 14/244,967, dated Feb. 12, 2016. |
Office Action regarding European Patent Application No. 08848538.8-1608, dated Feb. 3, 2016. |
Advisory Action regarding U.S. Appl. No. 14/212,632, dated Mar. 8, 2016. |
Office Action regarding U.S. Appl. No. 14/209,415, dated Mar. 10, 2016. |
Office Action regarding U.S. Appl. No. 14/212,632, dated Apr. 7, 2016. |
Office Action regarding U.S. Appl. No. 12/943,626, dated May 4, 2016. |
Office Action regarding Australian Patent Application No. 2014229103, dated Apr. 28, 2016. |
Office Action regarding U.S. Appl. No. 14/617,451, dated Jun. 2, 2016. |
Office Action regarding U.S. Appl. No. 14/080,473, dated Jun. 6, 2016. |
Interview Summary regarding U.S. Appl. No. 14/209,415, dated Jun. 20, 2016. |
Search Report regarding European Patent Application No. 13841699.5, dated Jun. 30, 2016. |
Office Action regarding Chinese Patent Application No. 201480016023.X, dated Jun. 22, 2016. Translation provided by Unitalen Attorneys at Law. |
Interview Summary regarding U.S. Appl. No. 14/617,451, dated Jul. 28, 2016. |
Office Action regarding U.S. Appl. No. 14/208,636, dated Aug. 4, 2016. |
Office Action regarding U.S. Appl. No. 14/727,756, dated Aug. 22, 2016. |
Office Action regarding U.S. Appl. No. 14/244,967, dated Aug. 30, 2016. |
Office Action regarding U.S. Appl. No. 13/770,479, dated Sep. 7, 2016. |
Office Action regarding U.S. Appl. No. 15/096,196, dated Sep. 13, 2016. |
Office Action regarding Canadian Patent Application No. 2,904,734, dated Sep. 13, 2016. |
Office Action regarding U.S. Appl. No. 14/300,782, dated Sep. 30, 2016. |
Office Action regarding U.S. Appl. No. 14/255,519, dated Oct. 5, 2016. |
Office Action regarding Australian Patent Application No. 2015255255, dated Sep. 8, 2016. |
Office Action regarding Canadian Patent Application No. 2,908,362, dated Sep. 21, 2016. |
Search Report regarding European Patent Application No. 14764311.8, dated Oct. 27, 2016. |
Search Report regarding European Patent Application No. 14763232.7, dated Oct. 27, 2016. |
Office Action regarding U.S. Appl. No. 12/943,626, dated Nov. 4, 2016. |
Louis Goodman et al. “Vertical Motion of Neutrally Buoyant Floats.” Journal of Atmospheric and Oceanic Technology. vol. 7, Feb. 1990. |
Search Report regarding European Patent Application No. 14780284.7, dated Nov. 2, 2016. |
Office Action regarding U.S. Appl. No. 14/080,473, dated Nov. 16, 2016. |
Applicant-Initiated Interview Summary regarding U.S. Appl. No. 13/770,479, dated Dec. 9, 2016. |
Office Action regarding U.S. Appl. No. 14/244,967, dated Jan. 20, 2017. |
Search Report regarding European Patent Application No. 16187893.9, dated Jan. 19, 2017. |
Advisory Action regarding U.S. Appl. No. 14/080,473, dated Jan. 30, 2017. |
Office Action regarding U.S. Appl. No. 14/208,636, dated Jan. 26, 2017. |
Office Action regarding Indian Patent Application No. 102/KOLNP/2009, dated Mar. 10, 2017. |
Office Action regarding U.S. Appl. No. 14/080,473, dated Mar. 14, 2017. |
Office Action regarding U.S. Appl. No. 13/770,479, dated Mar. 17, 2017. |
Advisory Action regarding U.S. Appl. No. 14/208,636, dated Mar. 23, 2017. |
Richard E. Lofftus, Jr. “System Charge and Performance Evaluation.” HVAC/R Training, Vatterott College. Jan. 2007. |
Search Report regarding European Patent Application No. 12752872.7, dated May 4, 2017. |
Interview Summary regarding U.S. Appl. No. 13/770,479, dated May 10, 2017. |
Advisory Action and Examiner-Initiated Interview Summary regarding U.S. Appl. No. 13/770,479, dated May 23, 2017. |
U.S. Appl. No. 15/450,404, filed Mar. 6, 2017. |
Office Action regarding Canadian Patent Application No. 2,934,860, dated May 4, 2017. |
Number | Date | Country | |
---|---|---|---|
20140260342 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61789913 | Mar 2013 | US |