The present invention relates to systems and methods for communicating a fluid containing analytes from a sampling device to a chromatographic column. More specifically, the invention relates to systems and methods in which the sampling device controls the fluid flowing through the column.
Gas chromatography is essentially a physical method of separation in which constituents of a vapor sample in a carrier gas are adsorbed or absorbed and then desorbed by a stationary phase material in a column. A pulse of the sample is introduced into a steady flow of carrier gas, which carries the sample into a chromatographic column. The inside of the column is lined with a liquid, and interactions between this liquid and the various components of the sample—which differ based upon differences among partition coefficients of the elements—cause the sample to be separated into the respective elements. At the end of the column, the individual components are more or less separated in time. Detection of the gas provides a time-scaled pattern, typically called a chromatogram, that, by calibration or comparison with known samples, indicates the constituents, and the specific concentrations thereof, which are present in the test sample. An example of the process by which this occurs is described in U.S. Pat. No. 5,545,252 to Hinshaw.
Various types of sampling devices can be used to obtain a quantity of the analytes from the sample vessels used to collect the samples to be tested and transfer the analytes to the gas chromatograph for the above-described analysis. One common device is a thermal desorption unit, which is often employed to determine the constituents of a particular environment. For example, it is often desired to detect the amount of volatile organic compounds (VOCs) present in a certain sample of air. One way of doing this is by first transporting a tube packed with an adsorbent material into the environment to be tested, and allowing the VOCs in the air to migrate into the tube through natural diffusion, typically termed “diffusive” or “passive sampling.” Alternatively, the VOCs may be collected by drawing a sample of gas (typically ambient air) through such a tube using a small vacuum pump, commonly referred to as “pumped sampling.” In each case, the analytes to be measured (i.e., the VOCs) are retained by and concentrated on the adsorbent as the air passes through the tube.
Once the VOCs are collected in this fashion, the tube is then transported to a thermal desorption unit, where the tube is placed in the flow path of an inert gas, such as Helium or Nitrogen. The tube is subsequently heated, thereby desorbing the analytes, and the carrier gas sweeps the VOCs out of the tube. In some cases, a “trap” is located downstream of the sample tube in order to further pre-concentrate the analytes, and occasionally, remove moisture therefrom, prior to introducing the sample into the chromatographic column. One example is an adsorbent trap, usually cooled to a sub-ambient temperature, which is simply another sorbent tube packed with a suitable adsorbent material, which adsorbs the analytes as the sample gas first passes through the tube, and from which the analytes are then desorbed into the chromatographic column, usually by heating, for subsequent separation and analysis.
Another common sampling device is a headspace sampler. In conventional headspace sampling, sample material is sealed in a vial and subjected to constant temperature conditions for a specified time. Analyte concentrations in the vial gas phase should reach equilibrium with the liquid and/or solid phases during this thermostatting time. The vial is subsequently pressurized with carrier gas to a level greater than the “natural” internal pressure resulting from thermostatting and equilibration. Then the pressurized vial is connected to the chromatographic column in such a way as to allow for the transfer of a portion of the vial gas phase into the column for a short period of time. An example of such a sampling device is disclosed in U.S. Pat. No. 4,484,483 to Riegger et. al. An example of a chromatographic system employing a headspace sampler is disclosed in U.S. Pat. No. 5,711,786 to Hinshaw.
In some applications, the column is directly coupled to a sorbent tube in the sampling device or the device is connected to the column via a transfer line, such as, for example, via a length of fused silica tubing. Other recent applications employ an interface device for performing some additional control or trapping in addition to that already provided by the sampling device, including the thermal desorption system disclosed in U.S. patent application Ser. No. 11/169,935 to Tipler et al., as well as the headspace sampling system disclosed in U.S. Pat. No. 6,652,625 to Tipler, each of which is assigned to the assignee of the present application, and the contents of each of which are herein incorporated by reference in their entirety.
In some embodiments, however, as the column is heated, the viscosity of the gas flowing through it likewise increases. As a result, under isobaric conditions—where the carrier gas is applied at a constant pressure, the flow rate through the column will decrease. Though this has no detrimental effect on system performance in some applications, in other applications that employ a flow-sensitive detector, such as a mass spectrometer, the effect on performance can be dramatic.
Some gas chromatographs are equipped with programmable pneumatic controls, and thus, the chromatograph is able to compensate for such changes in gas viscosity by increasing the column inlet pressure at a rate calculated to maintain a constant flow rate through the column, which requires constant knowledge of the column temperature in order to calculate the viscosity at that temperate and make the appropriate adjustments to the applied pressure. However, this solution is not available when the gas pressure is controlled on a device remote from the chromatograph, such as on a thermal desorption unit or a headspace sampler, where the gas is supplied from the device along a transfer line and the remote device does not know the temperature of the column.
The present teachings include systems and methods for communicating a fluid containing analytes from a sampling device to a chromatographic column such that a substantially constant flow rate through the column is maintained as the column temperature changes. Further, systems and methods are provided for communicating a fluid containing analytes from a sampling device to a chromatographic column such that a substantially constant gas velocity in the column is maintained as the column temperature changes. Also, systems and methods are provided that minimize user input and human error.
To achieve at least some of the objects listed, the invention comprises a system for regulating fluid flowing through a chromatographic column, comprising a sampling device that supplies a carrier gas containing analytes to be measured and a gas chromatograph in fluid communication with the sampling device, where the chromatograph includes a chromatographic column that receives the carrier gas containing the analytes supplied by the sampling device and a temperature sensor connected to the sampling device that measures the temperature of the column and sends a signal to the sampling device indicating the measured temperature, wherein the sampling device controls the pressure of the carrier gas supplied to the column based on the signal received from the sensor.
In some embodiments, the sampling device adjusts the pressure of the carrier gas supplied to the column such that a substantially constant flow rate is maintained in the column. In some of these embodiments, the pressure of the carrier gas supplied to the column is calculated in accordance with the equation
where Tt is the transfer line absolute temperature, Tc is the column absolute temperature, Ta is the standard ambient absolute temperature, Po is the gas pressure at the column outlet, Pa is the standard ambient pressure, and a and b represent πd/256Lηfor the transfer line and the column, respectively, where d is the diameter thereof, L is the length thereof, and η is the viscosity of the gas flowing therethrough.
In some embodiments, the sampling device adjusts the pressure of the carrier gas supplied to the column such that a substantially constant velocity is maintained in the column. In some of these embodiments, the pressure of the carrier gas supplied to the column is calculated in accordance with the equation
where
where Px is the gas pressure at the column inlet, which is calculated in accordance with the equation
In certain embodiments, the invention comprises a method for regulating fluid flowing through a chromatographic column, including providing a sampling device that supplies a carrier gas containing analytes to be measured, providing a chromatographic column that receives the carrier gas containing the analytes supplied by the sampling device, measuring the temperature of the column with a temperature sensor, sending a signal that indicates the measured temperature to the sampling device, calculating a pressure at which the carrier gas is supplied to the column based on the signal received by the sampling device, and supplying the carrier gas to the column at the calculated pressure.
In some embodiments, the steps of measuring the temperature, sending a signal, calculating a pressure, and supplying the carrier gas are repeated so as to supply the carrier gas to the column such that a substantially constant flow rate is maintained in the column.
In some embodiments, the steps of measuring the temperature, sending a signal, calculating a pressure and supplying the carrier gas are repeated so as to supply the carrier gas to the column such that a substantially constant velocity is maintained in the column.
In some embodiments, the temperature sensor is a platinum resistor thermometer. In other embodiments, the temperature sensor is a thermocouple.
In some embodiments, the sampling device is a thermal desorption unit. In certain embodiments, the invention further includes a transfer line assembly through which the carrier gas is communicated from the thermal desorption unit to the column and a signal cable by which the temperature sensor is connected to the sampling device, wherein the signal cable is bound into the transfer line assembly. In certain embodiments, the thermal desorption unit includes a removable sample vessel for obtaining a sample from an environment to be tested, a sample station positioned in the flow path of a carrier gas for receiving the sample vessel, and a heating device for heating the sample vessel in the sample station to thermally desorb the analytes therein.
In some embodiments, the sampling device is a headspace sampler.
The basic components of one embodiment of a chromatographic system 10 for measuring analytes in accordance with the invention are illustrated in
The system 10 includes a sampling device 20, which, in the particular embodiment described below, is a thermal desorption unit, but, in other embodiments, may include other sampling devices, such as a headspace sampler. The system 10 further includes a gas chromatograph 22, which includes a chromatographic column 24 connected to a detector 26. The thermal desorption unit 20 is in fluid communication with the chromatograph 22 via a transfer line 28, through which a sample mixture is communicated from the unit 20 to the chromatograph 22 (indicated by arrows A), which may, for example, comprise a length of fused silica restrictor tubing.
The chromatograph 22 further includes a temperature sensor 60 for measuring the temperature of the column 24. The sensor 60 may, for example, be a platinum resistor thermometer, or may, as another example, be a thermocouple. The sensor 60 is connected to the thermal desorption unit 20 via a signal cable 62, through which a signal indicating the value of the column temperature can be communicated to the unit 20. In some embodiments, the signal cable 62 is bound into the transfer line assembly.
As illustrated in
In operation, a sample tube 32, which contains the analytes obtained from the environment to be tested, is first disposed in the sample station 30 of the thermal desorption unit 20, as illustrated in
As shown in
Accordingly, the column temperature Tc is monitored and used to change the pressure P at which the gas containing the analytes is supplied to the transfer line 28. This is accomplished by recognizing that the flow rate Fo of the gas exiting the column 24 at the column outlet can be represented according to the following equation:
Where:
Fo is the flow rate at the column outlet
dc is the internal diameter of the column
Lc is the length of the column
ηc is the viscosity of the carrier gas in the column
P is the carrier gas pressure at the column inlet
Po is the carrier gas pressure at the column outlet
When using a temperature programmed column where the carrier gas is applied to the column inlet at a constant pressure, the only variable that will alter so as to change the flow rate Fo at the column outlet is the viscosity ηc of the gas flowing through the column, which will increase as the temperature of the column is increased. Therefore, a corresponding increase in inlet pressure P can be applied at the column inlet as the viscosity ηc increases, thereby allowing a constant flow rate Fo at the column outlet to be maintained.
The viscosity varies with respect to changes in temperature in a relatively predictable manner for the common carrier gases. This relationship between viscosity and temperature can be approximated according to the following equation:
Where:
The coefficients for the three most common carrier gases, for example, are provided in the following table:
Accordingly, by determining the column temperature Tc, one can determine the viscosity ηc using Equation 2 and Table 1. The viscosity ηc can then be used with Equation 1 to determine the value of P at the column inlet necessary to maintain a required flow rate Fo at the column outlet by employing a suitable algorithm such as successive approximation.
When using a system that employs a sampling device 20 connected to the column 24 via a transfer line 28, the transfer line must also be taken into account. Typically, the geometry (length and diameter) of the transfer line 28 will differ from that of the column. Accordingly, a combined function will be required to determine the relative values of this serially connected system, as described below.
As with Equation 1, the flow rate Ft of the gas exiting the transfer line 28 at the transfer line outlet can be represented according to the following equation:
Where:
Ft is the flow rate at the transfer line outlet
dt is the internal diameter of the transfer line
Lt is the length of the transfer line
ηt is the viscosity of the carrier gas in the transfer line
Pi is the carrier gas pressure at the transfer line inlet
Px is the carrier gas pressure at the transfer line outlet
The flow rate Fi of the gas entering the column 24 at the column inlet can be represented according to the following equation:
However, because the transfer line 28 is connected directly to the column 24, the gas pressure P at the column inlet is the same as the gas pressure Px at the transfer line outlet, and thus, Equation 4 can be represented as follows:
By substituting a for
and b for
Equations 3 and 5 can be replaced with Equations 6 and 7, respectively, as follows:
Again, because the transfer line 28 is connected directly to the column 24, the gas eluting from the line 28 and the gas entering the column 24 will have the same pressure, and therefore, will have the same mass flow. However, because they will have different temperatures, they will have different volumetric flows, which must be accounted for. This relationship is represented in the following equation:
Where: Tc is the column absolute temperature
Tt is the transfer line absolute temperature
Using Equation 8 in Equation 6 yields the following equation:
Combining Equation 9 with Equation 7 then yields the following Equation:
Equation 10, can then be reduced as follows:
By substituting b into Equation 1, the flow rate Fo at the column outlet can be represented as follows:
Equations 13 and 14 can then be combined to produce Equations 15 through 18, below:
The column outlet will normally be at an elevated temperature and possibly at a pressure different from ambient. It is normal practice to express (and apply) the flow rate corrected to Standard Ambient Temperature and Pressure (SATP), as shown below:
Where:
Fa is the flow rate at the column outlet (corrected to SATP)
Ta is the standard ambient absolute temperature (298.15 K)
Pa is the standard ambient pressure (100 kPa)
Substituting Equation 18 into Equation 17 produces Equations 19 and 20, below:
Equation 20 may be employed to calculate the pressure Pi at the transfer line inlet to maintain a constant flow rate Fa at the column outlet. During a column temperature program, only the values of Tc and b will change, and therefore, the remaining values may be calculated in advance of the chromatographic analysis in order to reduce processing time.
Accordingly, in operation, the temperature sensor 60 measures the column temperature Tc and sends a signal reflecting this value to the thermal desorption unit 20 via the signal line 62. The unit 20 then uses this value to calculate the pressure Pi at which it applies the carrier gas to the inlet of the transfer line 28 in accordance with Equation 20. Once the pressure Pi is calculated, the unit 20 uses a pressure regulator 70 or other appropriate device to adjust the pressure Pi applied to the transfer line 28. By adjusting the pressure Pi in this way, a constant flow through the column 24 can be maintained.
As illustrated in
Similarly, the temperature Tc can be monitored and used to calculate the pressure at which the unit 20 should apply the carrier gas containing the analytes to the transfer line 28 in order to maintain a constant velocity of the gas flowing through the column 24. This can be achieved by recognizing that the velocity of a gas through a column, which is normally expressed as the mean gas velocity, is related to the outlet flow rate (at the temperature and pressure applied there). Additionally, because the gas is compressible, the Martin and James compressibility factor can be applied, resulting in the following representation of gas velocity:
Where: u is the mean carrier gas velocity through the column
j is the compressibility factor
Using Equation 17 in equation 21 results in the following representation of the mean gas velocity for a particular applied pressure Pi.
Equation 22 can be rearranged to represent the required pressure Pi (like Equation 20) as follows:
However, computation would be very complex because of the presence of the compressibility factor j in this equation. This results from the fact that the compressibility factor j is represented as follows:
and the value of Px is obtained using Pi as a parameter, as shown in Equation 13.
Therefore, an alternative computational approach is to use numeric methods to solve Equation 22. For example, a successive approximation method may be employed to optimize the value of Pi in order to achieve a target gas velocity.
Accordingly, in operation, the temperature sensor 60 measures the column temperature Tc and sends a signal reflecting this value to the thermal desorption unit 20. A pressure Pi is selected, and a velocity
Though the aforementioned example has been described with respect to a transfer line connected in series with a column in order to communicate fluid from a sampling device to a column, the system of the present invention is also applicable to other chromatographic applications involving serial connections of fluid conduits such as columns and/or transfer lines.
For example, as illustrated in
Similarly, flow and velocity can also be controlled for systems employing more than two fluid conduits that are serially connected. This can be more easily seen by first rewriting Equations 19 and 20, without abbreviations a and b, as Equations 25 and 26, respectively:
Referring to
where:
Similarly, the above methods can be used in applications employing serially connected columns. For example, one such application is that of comprehensive two-dimensional (or multi-dimensional) gas chromatography. As illustrated in
It should be understood that the foregoing is illustrative and not limiting, and that obvious modifications may be made by those skilled in the art without departing from the spirit of the invention. Accordingly, reference should be made primarily to the accompanying claims, rather than the foregoing specification, to determine the scope of the invention.
This is a continuation of copending U.S. patent application Ser. No. 11/189,467, filed Jul. 26, 2005, which claims priority benefits under Title 35, United States Code, Section 119(e), U.S. Provisional Patent Application No. 60/521,951, filed Jul. 26, 2004 and U.S. Provisional Patent Application No. 60/657,210, filed Feb. 28, 2005, the contents of each of which are herein incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
60521951 | Jul 2004 | US | |
60657210 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11189467 | Jul 2005 | US |
Child | 11751327 | May 2007 | US |