The present invention relates to a system for assisting a field operator, for example an industrial plant maintenance operator, by a remote assistant.
There exist remote maintenance systems, as described for instance in WO2009036782A1 and US2020018975A1, in which a video camera (headcam) is provided mounted to a helmet worn by an operator, and a viewer is also provided to show the images taken by the video camera. These systems are configured so that the images taken on the field are shown to a remote assistant, in order to enable the remote assistant to introduce augmented reality additional data, and in order to enable a field operator to see the additional data through the viewer.
The images from the video camera allow to take pictures of most part of the items to be maintained from a remote location. However, in some instances, the field operator must frame hidden details or details located in places that are hardly or not accessible to the operator's head. In this case, the operator normally uses such a device as a mobile phone to take pictures of these details and sends them directly to remote assistant.
In some cases, the maintenance operations can require enlarged images of microscopic details, or images of the inside of a duct or a hole. To this purpose, special optical instrumentations are available that, unfortunately, do not allow an easy and real-time interaction with the remote assistant.
It is therefore a feature of the present invention to provide a system for assisting an field operator, for example a maintenance operator, by a remote assistant, which allows the field operator to take pictures and/or videos of hidden or hardly accessible details and to instantly share them with a remote assistant.
It is also a feature of the invention to provide such a system that allows the operator to take pictures and/or videos of high-temperature objects and to instantly share them with the remote assistant.
It is then a feature of the invention to provide such a system that allows the operator to take enlarged pictures and/or videos of microscopic details, and to instantly share them with the remote assistant.
It is another feature of the invention to provide such a system that allows the operator to take pictures and/or videos of the inside of ducts or holes and to instantly share them with the remote assistant.
It is also a feature of the present invention to provide such a system that makes it possible to limit the band consumption in a data-exchange connection between the field operator and the remote assistant.
These and other features are attained by a system for assisting a field operator, in particular a maintenance field operator, by a remote assistant, as defined in claim 1. Specific advantageous exemplary embodiments of this system are defined in respective dependent claims.
Briefly, the system for assisting a field operator comprises a first group of components configured to be connected to a support wearable on the operator's head, including a first video camera, a local viewer arranged to be watched by the operator, a first control unit and a first wireless connection interface. The system also comprises a handpiece providing a visual sensor such as a video camera or a thermal imaging camera, a serial port for connecting a peripheral device such as an instrument or a sensor or a video source, a second control unit and a second connection interface. The connection interfaces are configured for mutually exchanging data streams, locally or through a remote server available through a data network, said data streams coming from the video camera, from the visual sensor or from the peripheral device, respectively, and intended to be displayed by the local viewer. Moreover, the connection interfaces are configured for exchanging the data streams with an assistant's remote viewer through the remote server. The system also comprises a scenario-switching device for displaying a same data stream of interest at the same time to the local viewer and to the remote viewer, said data stream of interest selected among data streams related to the scenarios framed by the video camera and by the visual sensor, respectively, and to the data obtained from the peripheral device.
More in detail, according to the invention, this system comprises:
In particular, the scenario-switching device comprises a scenario-switching control means provided in a device selected from the group consisting of: the handpiece; a housing of the first microprocessor processing unit; a remote control device; a terminal associated with the remote viewer. For instance, the scenario-switching control means is a push button, and the scenario-switching device is configured in such a way to select the first data stream, or the second data stream, or the additional data stream as the data stream of interest responsive to a corresponding number of strokes given to the push button.
In an advantageous modification, the first wireless connection interface comprises:
The ambient WiFi network can be a corporate network provided by the manager of a structure where the field operator is expected to operate, or it can be a public WiFi network, or even it can be a hot-spot network created by a dedicated device or a connection kit included in the first wireless connection interface of the system, said device or kit provided with a sim-card for connection to the global data network and configured to create the ambient WiFi network. As an alternative, the ambient WiFi network can be made by such a generalpurpose device as a tablet, a smartphone or the like, provided by the field operator him/herself.
As an alternative, the first connection interface and the inner second connection interfaces are configured to exchange data with each other through a Bluetooth network.
However, the network architecture can be structured in a way different from what is described above, in particular, the first and the second control unit, associated with the headcam and with the handcam, respectively, can interact with each other through said first connection interface and said inner second connection interface that are configured to exchange data through a Bluetooth network. In a modification, the first and the second control unit can use a cable connection interface.
The first microprocessor processing unit can be configured to be fixed to the wearable support. As an alternative, the microprocessor processing unit can be resident on an external device, such as a smartphone or a tablet.
In an advantageous modification, the first wireless connection interface and the outer second connection interface each comprise a WiFi card configured to connect with an ambient WiFi network providing an access point to the global data network, in particular to the Internet.
Also in this case, the ambient WiFi network can be a corporate or public network, or it can be a hot-spot network created by a dedicated device or connection kit of the system that is provided with a sim-card for connection to the global data network and is configured to create the ambient WiFi network. As an alternative, the ambient WiFi network can be created by such a generalpurpose device as a tablet, a smartphone or the like, provided by the field operator him/herself.
With such a network architecture, a procedure has to be run to configure the first microprocessor processing unit and the second microprocessor processing unit before the first use with a new ambient WiFi network. To this purpose, advantageously, the first and the second microprocessor processing units include respective Bluetooth connection modules and program means to receive identification data and preferably also login details of the ambient WiFi network through respective Bluetooth connections to a same ambient WiFi network.
Such a network architecture is particularly simple and, for this reason, easy to be used by the field operator, thus ensuring a high stability of the connections to the global data network and therefore to the remote server and to the remote assistant(s).
According to this architecture, both the headcam control unit and the handcam control unit directly interact with the remote server. Therefore, the second data stream generated by the handcam visual sensor reaches the viewer via the remote server, which unavoidably introduces some latency. However, even if the server is at the antipodes of the rest of the system, this latency is at most the same order of magnitude as the sum of the other typical delays of an Internet connection, i.e. time of acquisition, H264 compression time, decoding time, all in the order of some hundreds of milliseconds. In other words, the advantages of conveying the second data stream via the remote server, in both directions, normally overcomes the transmission latency drawback.
In any case, the first microprocessor processing unit and the second microprocessor processing unit can be configured to interact with each other directly through the ambient WiFi network to which they both are connected, directing the second data stream through this ambient WiFi network.
However, the network architecture can be implemented differently from what is described above, in particular the first wireless connection interface and the second connection interface, which in this case is a wireless connection interface as well, can each comprise a connection kit equipped with a sim-card for connection to the global data network.
In particular, the second microprocessor processing unit is configured to suspend an emission of the second data stream when it receives/emits the additional data stream.
The above-mentioned instrument can be any instrument for detecting/measuring physical quantities. In particular, without pretending to list all the possible applications, the instrument can be a microscope, a borescope, a thermometer, a force sensor, a stroke sensor, a concentration sensor for a chemical compound, in particular a hygrometric sensor, an illuminance sensor, an electromagnetic radiation sensor such as a radar sensor, or a combination thereof, for instance, in the form of a plurality of instruments mutually interacting through respective USB ports, or an instrument providing a plurality of functions selected among the above-mentioned ones. The instrument connected through the serial port can also be a video camera or a closed-circuit video camera system. The instrument or the instruments can be included in the system in the form the latter is made available.
Advantageously, the handpiece comprises a video-to-data conversion device associated with the serial communication port. This way, the second microprocessor processing unit can receive data from an instrument configured as a video source, in particular from a borescope or from a microscope or from a terminal of a closed-circuit video camera or video camera system.
Preferably, the handpiece, i.e. the handcam, has an elongated shape and comprises a central handle portion, configured to be grasped by the field operator, and two opposite end portions, at one of which the visual sensor is arranged, while the serial communication or USB port can be advantageously arranged at the other end portion, in order to connect further instruments and peripheral devices.
Advantageously, the system comprises a microphone and an earphone for the field operator, in particular a pair of earphones in the form of a headset, so as to enable a voice communication between the field operator and the remote assistant(s). The first microprocessor processing unit can be configured to receive/send audio signals through the microphone/earphone. As an alternative, the earphone and the microphone are configured to communicate via Bluetooth with an audio connection device configured to connect to an ambient WiFi network or directly to a global data network.
Advantageously, the first wireless connection interface is configured to:
In a modification, the first microprocessor processing unit is configured to transfer the first data stream to the local viewer, and the local viewer is configured to display an image of the first scenario to a field operator starting from the first data stream, so as to provide a see-through augmented reality video mode.
In an exemplary embodiment, the support belongs to the system in the form of a helmet or protective helmet of a type normally in use by mine or industrial plant operators, or the like, the support provided as a component of a mounting kit, together with at least one element selected among the first video camera, the local viewer, the first microprocessor processing unit and the first wireless connection interface.
In a modification, not shown, the first video camera, the local viewer, the first microprocessor processing unit and the first wireless connection interface can be integrated in a pair of “smart glasses” of known type, including the software configurations allowing the connectivity to the network, according to the above description.
The invention will be now shown with the description of a few exemplary embodiments and modifications, exemplifying but not limitative, with reference to the attached drawings, in which:
Systems 1 and 2 allow a field operator to send visual data to at least one remote assistant 51 through a global data network 3, typically through the Internet, and to ask assistant(s) 51 about the actions to be performed. Similarly, systems 1 and 2 allow assistant(s) 51 to provide instructions to a field operator in real time. The field operator and remote assistant 51 can be located everywhere, provided a terminal is available including a viewer 50 and enabling a terrestrial or satellite connection to the global data network.
Each of systems 1 and 2 comprises a first video camera 11 equipped with all that is required to be fixed to an operator's wearable support 10, in particular, a support intended to be worn on the operator's head. For this reason, video camera 11 is also indicated as “headset” 11. As shown in
Each of systems 1 and 2 also comprises a local viewer or local display 13 configured to be positioned along an operator's line of sight, at a place where he/she can see the images on the viewer without hindering the natural vision. In particular, also local viewer 13 includes a fastening means to be fixed to wearable support 10, in a front position laterally shifted with respect to the operator's eyes, as shown, for instance, still in
In order to direct data stream 12 from first video camera 11 towards local viewer 13, both system 1 and system 2 basically include a first microprocessor processing unit 15. A first wireless connection interface 19 to global data network 3 is also provided, through which first microprocessor processing unit 15 can exchange data with a remote server 99 via global data network 3. In particular, first microprocessor processing unit 15 can send first data stream 12 generated by first video camera 11 to remote server 99. The latter, in turn, is configured to direct data stream 12 to one or more remote viewers 50 available to respective remote assistants 51.
First microprocessor processing unit 15 and/or wireless connection interface 19 are advantageously housed in a same housing or box 18, which is also preferably configured to be connected to support 10. If support 10 is a protective helmet, as shown in
Remote server 99 can be a part of system 1 or 2, or it can be a server of a remote assistance service provider, configured to operate according to the invention.
A basic component of both systems 1 and 2 is a handpiece 20, otherwise indicated as a “handcam” or “hand torch”. This can have, for instance, the shape shown in
Visual sensor 21 can also be a video camera, indicated as second video camera, or a thermal imaging camera, but this is not a list including all possible visual sensors 21 of handpiece 20. The second video camera and thermal imaging camera 21 can be interchangeable devices for handpiece 20, or they can be integrated in a same device, of known type, which can selectively operate as a video camera or as a thermal imaging camera, according to the needs.
In any case, visual sensor 21 can frame a second scenario 21′ from handpiece 20, which is practically the scenario the operator can frame by visual sensor 21 by handling handpiece 20 and introducing his/her arm into an otherwise inaccessible environment. Starting from this second scenario 21′, which necessarily changes as the operator moves his/her arm and hand by which he/she grips handpiece 20, visual sensor 21 generates a second data stream 22.
Another use of handpiece 20 can consist in arranging it in a remote position from the field operator, in order to frame a scenario and to take a picture thereof in an environment where the operator same it is not allowed or safe to stay for a long time, or to frame the field operator him/herself while he/she is operating as required, in order to be visible to remote assistant 51 during this operation.
According to a first exemplary embodiment of the invention, in order to manage second data stream 22 generated by visual sensor 21, system 1 and system 2 provide a second microprocessor processing unit 25 and an inner second connection interface 26 or an outer second connection interface 29.
In the case of system 1 of
Second microprocessor processing unit 25 and inner or outer second connection interface 26,29 are also configured to receive and forward, besides data stream 22, an additional data stream 32 generated by a further possible peripheral device 30 connected to handpiece 20. This peripheral device 30 can comprise various instruments and sensors, or it can be an outlet device of a further closed-circuit video camera or of a video camera closed-circuit environmental imaging system, in particular, to take pictures of an apparatus to be supervised.
To this purpose, handpiece 20 can comprise a serial communication port 24, for example in the form of a USB port or the like, as shown, for instance, in
Examples of possible instruments 30 that can be connected to handpiece 20 through serial communication port 24 include microscopes, borescopes, thermometers, force sensors, stroke sensors, chemical concentration sensors such as hygrometric sensors, illuminance sensors, electromagnetic radiation sensors of various type such as radar sensors, or instruments providing these functions together. Instruments 30 can be a part of the system.
Handpiece 20 can also comprise a video-to-data conversion device associated with serial communication port 24, so as to receive data from sensor 30, typically from a borescope or from a microscope, or from a different peripheral device configured as a video source, for example, a terminal of a further closed-circuit video camera or of a closed-circuit video camera network.
Each instrument or sensor 30 is normally configured to measure a physical quantity, in the case of microscopes and borescopes the physical quantities being image parameters, and to generate additional data stream 32 starting from the measured quantity.
Therefore, second microprocessor processing unit 25 is functionally connected to serial communication port 24 through which it can receive additional data stream 32. This way, second microprocessor processing unit 25 can transfer additional data stream 32 in the same way it transfers second data stream 22, through second connection interface 26 or 29:
Second microprocessor processing unit 25 is preferably configured to suspend the transmission of second data stream 22 coming from visual sensor 21 when, during or immediately after a measure carried out by instrument 30, it receives/emits additional data stream 32, and vice-versa.
More in detail, in the case of system 1 of
Owing to its connection with inner second connection interface 26 of handpiece 20, first microprocessor processing unit 15 is also configured to transfer second data stream 22 and additional data stream 32 to server 99 via global data network 3, as well as first data stream 12. As in the case of first data stream 12, server 99 is configured to direct second data stream 22 or additional data stream 32 to at least one remote viewer 50. This makes it possible to display second scenario 21′, as well as the data obtained from any peripheral device 30, to remote assistant(s) 51.
Instead, as anticipated, in the case of system 2 according to the second exemplary embodiment of the invention, in order to manage second data stream 22 generated by visual sensor 21 and additional data stream 32 generated by any peripheral device 30 connected to handpiece 20, system 2 of
First data stream 12 can be sent to viewer 50 of remote assistant(s) 51 in a way similar to system 1 of the first exemplary embodiment of
System 1 or 2 also includes a scenario-switching device 80 diagrammatically shown in
More in detail, in the first exemplary embodiment of
Instead, in the second exemplary embodiment of
In an exemplary embodiment, scenario-switching device 80 comprises a push button 20d or an equivalent control means, preferably arranged on handpiece 20, as shown in
In particular, as shown in
As an alternative, scenario-switching device 80 can be configured to be operated through an external device such as a smartphone or a tablet.
Similarly, as shown in
The network architecture used by system 1′ according to a preferred modification of the first exemplary embodiment of
In this modification, first wireless connection interface 19 comprises an external communication WiFi card 191 configured to connect with an ambient WiFi network 5, in particular a 2.4 GHz network, which provides an access point 6 to global data network 3, in particular, to the Internet. First wireless connection interface 19 also comprises an internal communication WiFi card 192 configured to create a local WiFi network 7, in particular a 5 GHz network. This way, first data stream 12 can be directed from first wireless connection interface 19 to global data network 3 through external communication WiFi card 191, ambient WiFi network 5 and access point 6.
In the same modification, inner second connection interface 26 comprises a further WiFi card 261 configured to connect with local WiFi network 7 created by internal communication WiFi card 192. This way, second data stream 22 and additional data stream 32 can reach first wireless connection interface 19 through local WiFi network 7. From first wireless connection interface 19, second data stream 22 and additional data stream 32 can be sent to global data network 3 through external communication WiFi card 191, ambient WiFi network 5 and access point 6, similarly to first data stream 12. Moreover, second data stream 22 and additional data stream 32 can reach viewer 13 through a cable data connection between first wireless connection interface 19 and viewer 13.
The network architecture used by system 2′ according to a preferred modification of the second exemplary embodiment of
In this modification, first wireless connection interface 19 and outer second wireless connection interface 29 each comprise a WiFi card, not shown, configured to connect with an ambient WiFi network 5 providing an access point 6 to global data network 3, in particular, to the Internet.
Both in the case of system 1′ according to the first exemplary embodiment and in the case of system 2′ according to the second exemplary embodiment, ambient WiFi network 5 can be a corporate WiFi network or a public WiFi network. As an alternative, as shown in
In a further modification, not shown, first wireless connection interface 19 and/or outer second wireless connection interface 29 comprises a connection kit provided with a sim-card for connection to global data network 3.
With reference to
To include components 21,25 and 26 or 29, handpiece 20 can comprise a box consisting of a container 20 and a cover 20b, preferably separable from each other and fixed to each other by means of fastening elements 20c preferably arranged along both sides of handpiece 20.
As anticipated, handpiece 20 advantageously comprises a control element of the scenario-switching device to select the image, i.e. the data, to be displayed on local viewer 13 and on remote viewer(s) 50, in particular to select which data stream has to be used to form this image, among first data stream 12 related to the scenario framed by first video camera 11, second data stream 22 related to the scenario framed by visual sensor 21, and additional data stream 32 coming from further peripheral device or instrument 30 via serial connection port 24 of handpiece 20. In a handpiece advantageously including a thermal imaging camera or a video camera as the visual sensor 21, the switching device can also be configured to select the data stream to form the image among first data stream 12 generated by first video camera 11, second data stream 22 generated by a thermal imaging camera provided as the visual sensor 21, second data stream 22 generated by a thermal imaging camera provided as the visual sensor 21, and additional data stream 32.
As anticipated, a push button 20d can be provided on the outer surface of handpiece 20 as the control element of scenario-switching device 80, more in particular, push button 20d can protrude from cover 20b, as shown in
As shown in
As shown in
System 2″ shown in
To this purpose, first wireless connection interface 19 is configured to receive the augmented reality data stream 37 and to transfer it to first microprocessor processing unit 15, which manages the data streams directed to viewer 13. In the above-mentioned modification, not shown, of system 1 of
In particular, in a further modification of systems 1 and 2, first microprocessor processing unit 15 is configured to transfer also first data stream 12 to local viewer 13, related to the image of first scenario 11′ framed by first video camera 11, and first microprocessor processing unit 15 and/or server 99 are configured to conventionally associate the augmented reality data stream 37 also to first data stream 12 directed to viewer 13, superimposing the augmented reality graphic signs to the image of first scenario 11′ framed by first video camera 11, implementing a see-through augmented reality video mode.
Both system 1 of
The foregoing description of exemplary embodiments and modifications of the invention will so fully reveal the invention according to the conceptual point of view, so that others, by applying current knowledge, will be able to modify and/or adapt in various applications these exemplary embodiments and modifications without further research and without parting from the invention, and, accordingly, it is meant that such adaptations and modifications will have to be considered as equivalent to an exemplary embodiments of the invention and of the respective modifications. The means and the materials to put into practice the different functions described herein could have a different nature without, for this reason, departing from the field of the invention. It is to be understood that the phraseology or terminology employed herein is for the purpose of description and not of limitation.
Number | Date | Country | Kind |
---|---|---|---|
102020000013000 | May 2020 | IT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2021/054769 | 5/31/2021 | WO |