The present invention relates to a system for remote control and operation of subsea well completion equipment, such as to set or pull a production tubing and associated tubing hanger in or from a wellhead or wellhead module.
More specifically, the present invention provides an arrangement and method to complete subsea wells without an umbilical connected between the marine riser and the internal work tube. This will eliminate potential damage to the umbilical cord from uncontrolled loads inside the marine riser. The invention therefore facilitates reduction or elimination of large umbilical cord drums and associated operational containers, which are space-demanding on the vessel, especially for deep-water use.
A need exists in the petroleum industry for cost reductions with regard to underwater operations, while maintaining or increasing robustness and safety, compared to current practice. It is widely known that the construction, operation and decommissioning of offshore wells involve major investments and operational costs, especially for petroleum fields which are located in challenging waters with large water depths, high sea states and large underwater currents. Subsea production systems currently are controlled by umbilicals that normally contain hydraulic and electrical power supply and electrical and/or optical communication lines. These umbilicals are typically connected between the platform or intervention vessel and the subsea equipment. In the simplest variant, subsea installations are controlled by direct hydraulic control. Such traditional solutions to, e.g., operate well tools are seen as very reliable, but the experience is that they also have distinct challenges.
The use of hydraulic lines from the surface to the seabed requires extensive use of materials that are heavy and expensive. Larger water depths require large umbilicals to control subsea equipment mounted within, on or next to the wellhead. The hydraulic response time will be slow when the umbilical cord is long. The use and handling of such umbilicals are also challenging, and it is not unusual for the umbilicals to be damaged during use, particularly when the umbilicals are used in areas where they may be squeezed between adjacent and external equipment. An example of this is when the umbilical is used during completion of a subsea well in a so-called well completion operation. Here the hydraulically operated well tools are controlled by direct hydraulic lines from the drilling rig to the wellhead, and it is not unusual for the umbilical cord to contain 15 to 20 separate hydraulic lines. These lines are bundled together, preferably with some electrical conductors for transmitting electrical power to sensors, to form the umbilical. The outside diameter of the umbilical typically ranges from 70 mm to 100 mm. The umbilical is installed by attaching it to the work tube (e.g., with clamps). The work tube is used to install the tubing and its underwater suspension (i.e., a tubing hanger) in the wellhead or wellhead module. The work tube can be a drill string or a smaller riser—typically about 75 mm (3″) to 180 mm (7″) inner diameter. This assembly is lowered through the rig drill floor, where the marine riser of the rig is also connected. The marine riser is a large outer tube (535 mm (21″) outside diameter) which also extends from the drilling rig to the well head, and is connected to the wellhead with a Blow Out Preventer—BOP. The umbilical is situated between the marine riser and the work tube and is in this case subject to large mechanical stresses. This is because the rig and marine riser move as a consequence of environmental loads, such as waves and sea currents.
A solution to protect the umbilical can be to attach centralization clamps, which are intended to avoid too much damage to the umbilical by keeping it away from moving parts. However, the consequence of this would be that the clamps would take the substantial part of the load, and experience shows that they may detach from the work tube and fall down towards the subsea well 16 and end up inside the BOP 11. Such an event can be very costly, as such loose objects in the well must be “fished up” with time-consuming methods and the use of special equipment. Such special equipment may be that which is used in a so-called wireline operation. The rig must therefore use resources and time on unnecessary operations, which can be very costly if the operations should take a long time.
It is therefore desirable to introduce a new method for installing or pulling a subsea completion without the use of an umbilical inside the marine riser, or with the use of an umbilical whose size is minimized. The umbilical has two primary functions: (I) transfer energy in the form of electrical or hydraulic power, and (II) provide a means of communication between the central operational unit and the end function. An example of an end function may be pressure and temperature sensors, pilot operated control valves or hydraulically operated pistons.
Any new method must therefore replace these two main functions so that the planned completion can be carried out even without a controlling hydraulic umbilical cord. The present approach presents an alternative method in which the well tool is operated with locally stored hydraulic energy but is controlled remotely by means of feedthroughs in the lower marine riser 9 or the BOP 11.
With very few exceptions, a BOP has multiple feedthroughs located close to the safety valves. These are actively used in well control situations where some of these feedthroughs are connected to smaller external tubes—so-called “choke and kill” lines. The production tubing must be oriented when it is suspended in the wellhead or wellhead module to facilitate subsequent operation. The openings in the BOP are used in connection with this by inserting an activatable rotational pin into one of the openings which engages with a helix when the production tubing is being suspended in the wellhead.
Likewise, such a feedthrough may be used to insert a remotely operated communication unit that controls the functions of the well completion tool. The communication unit may be an acoustic, light or radio wave transmitter or other suitable means for communicating in the medium contained in the main bore of the BOP and/or the marine riser. It is possible to place containers of hydraulic power and associated control valves on the work tube above the downhole tool, or on the downhole tool proper, which is used to suspend the production tubing in the wellhead or wellhead module. Containers with hydraulic energy are also known as accumulators, where internal gas creates a pressure in a hydraulic fluid.
Alternative methods to reduce the size of or eliminate the umbilical inside the marine riser are described in the patent publications NO334934, GB2448262B, US2005269096A1 and US2008202761A1. All of these solutions depend on energy to actuate the operations coming from the vessel or rig at the surface. None of these publications shows a solution which utilizes locally stored hydraulic energy located inside the BOP/marine riser, close to the well tool, where the communication and control is carried out with feedthroughs in the BOP or marine riser.
US 2012/205561 shows an underwater LMRP control system (local control module) arranged in-line and below a flex joint and a riser, wherein at least one accumulator for local storage of energy is provided either in the LMRP control system or the BOP stack directly above a wellhead (see FIGS. 1, 2 and paragraphs [0036], [0039]). This arrangement further comprises an external umbilical cord on the outside of the riser for communication and remote control to and from an operating surface vessel and internal pressure control valves.
US 2006/042791 discloses a system and methods for completing operations of a subsea wellhead, wherein the protection of the umbilical during completion operations is a major objective (see paragraph [0008] and [0022]). FIGS. 2 to 3 show feedthroughs between an inner tube and a marine riser, through which cables of umbilicals can pass (see paragraph [0025]). This reference further discloses the use of an ROV (FIG. 5) for direct communication or wireless communication (FIG. 6) from the surface to the subsea well tool.
All of these prior art arrangements depend on energy for actuation of the operations coming from the surface rig or vessel. The present invention has as its main objective the avoidance of such transfer of energy from the surface.
The invention will now be described with reference to the accompanying drawings, in which:
The downhole tool 13 is also known in the industry as a Tubing Hanger Running Tool (THRT) and can be hydraulically operated. It is also possible to control deep set functions further down in the well using the landing string 12 and the well tool 13, such as a Down Hole Safety Valve (DHSV), production zone valves, formation isolation valves, gas lift valves, or sensors. A landing string may also contain local safety valves and a disconnect module for shutdown of the well stream. The combination of the landing string valves and the disconnect module is known in the industry as a subsea test tree. The control module will in this system provide the necessary hydraulic energy to operate the desired functions, thus replacing the current supply through the umbilical 7. It is therefore essential to the invention that the control module contains a hydraulic power source and a method of controlling the hydraulic power source for carrying out the end functions.
A traditional umbilical cord 7 may also include means for communication. Consequently, the present invention must be able to replace this.
The transmitter 19 will sometimes be exposed to high pressure on one side (inside the BOP) and hydrostatic water pressure on the other side (exterior of the BOP). Consequently, the transmitter must be able to withstand a relatively high differential pressure, which is known in the industry per se. Generally, devices for such a feedthrough of power or communications are referred to as “penetrators”. It would not be appropriate to use penetrators, which slide in for activation, as this will require precise tolerances between the interconnected mechanical parts. The transmitter 19 and the receiver 20 should therefore be capable of a certain distance and skewing after the production tubing is landed in the wellhead or wellhead module. The same will apply if the planned operation is to pull the production tubing to replace it or to plug and shut down a subsea well.
Communications from the transmitter and receiver in the BOP to the operating vessel 1 can now be simply transferred with an individual electric and/or optic umbilical 24. Advantageously, a seabed-located central module 26, which can also control a wellhead module during completion, may be used so that the umbilical cord outside the marine riser can become a common control cable. Alternatively, communications to and from the transmitter 19 may be transferred to the operation vessel 1 by the use of an ROV 21. Most ROVs have one or more auxiliary outputs for temporarily connecting to equipment, such as the transmitter/receiver 19.
A more detailed functional layout of the control module 25 is shown in
Control valves 30 and 34 are controlled by a control module 27, which in turn is supplied, if necessary, by electric power from an electric energy source 36, which may be a battery, capacitor or other suitable electric means. A hydraulic flow meter 29 and sensors 32, 33 for measuring pressure may advantageously be included in the control module 25, as shown in
Operational Steps:
The system is operated by lifting the downhole tool 13 up to the drill floor 2 with the landing string 12. The landing string is then hung off from the drilling deck while still connected to the production tubing 14, which at this time is partly run into the wellbore. The control module 25 is hoisted up to the drill deck and lowered onto the well tool 13. A test unit for the control module 25 is then connected to control the operation of the control module while on the drill floor. The module 25 drives the locking function of the downhole tool 13 so that the tool is locked to the production tubing. Other functions are tested, such as tubing hanger functions, deep-set well functions and any sensors mounted on the tubing. Then the downhole tool 13 is lifted up together with the production tubing and hanger 14. During the lowering of the production tubing, hydraulic pressure is applied on the well tool 13 lock function. This is to prevent the production tubing from being dropped into the well during running.
When the production tube approaches the suspension point in the wellhead 16, it is lowered slowly onto a wellhead shoulder. Now the acoustic transmitter (19) and receiver 20 will be within range and communication will be achieved through the underwater module 26 or ROV 21.
The control module 25 now communicates via the subsea module 26 and cable 24 up to the rig or operating vessel. Here the control module will be operated from a test station with the necessary control programs.
When the tubing hanger 14 has been suspended, a locking feature is pressurized so that the tubing is locked in the well on the shoulder at which the production tubing is hung off. Then, relevant seals are tested by pressure tests and any downhole hydraulic and electric functions are tested and is operated as needed. All of this activity is controlled and supplied from the control module 25 via its hydraulic and electrical functions.
The downhole tool 13 is now disconnected from the production tubing 14, which is done by pressurizing the function for disconnect from the control module 25. The work tube 8 with the control module 25, landing string 12 and downhole tool 13 is now pulled back to the drill floor.
Number | Date | Country | Kind |
---|---|---|---|
20150570 | May 2015 | NO | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/NO2016/050079 | 5/2/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/182449 | 11/17/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3405387 | Koomey et al. | Oct 1968 | A |
3680311 | Harbonn et al. | Aug 1972 | A |
4636934 | Schwendemann | Jan 1987 | A |
8725302 | Niemeyer | May 2014 | B2 |
20050269096 | Milberger et al. | Dec 2005 | A1 |
20060042791 | Hosie et al. | Mar 2006 | A1 |
20080202761 | Trewhella | Aug 2008 | A1 |
20120111572 | Cargol, Jr. | May 2012 | A1 |
20120205561 | Baugh | Aug 2012 | A1 |
20130153242 | Flight et al. | Jun 2013 | A1 |
20160305232 | Bird | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
1 595 529 | Aug 1981 | GB |
2 448 262 | Nov 2008 | GB |
WO 02088516 | Nov 2002 | WO |
WO 2008074995 | Jun 2008 | WO |
WO 2014072521 | May 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20180156005 A1 | Jun 2018 | US |