System for removing a clot from a blood vessel

Information

  • Patent Grant
  • 11944333
  • Patent Number
    11,944,333
  • Date Filed
    Friday, July 30, 2021
    3 years ago
  • Date Issued
    Tuesday, April 2, 2024
    8 months ago
  • Inventors
  • Original Assignees
  • Examiners
    • Gabr; Mohamed G
    Agents
    • TROUTMAN PEPPER HAMILTON SANDERS LLP
Abstract
A system for removing an obstruction from a blood vessel. The system can include a catheter with a proximal section with a proximal section lumen diameter and a distal section with a distal section lumen diameter less than the proximal section lumen diameter. The system can include a clot retrieval device with a clot engaging element. The system can include a shaft advanceable through the lumen of the catheter to the obstruction in the vessel. The shaft can include a shaft proximal section, a shaft distal section attached to the clot engaging element with a diameter less than that of the shaft proximal section and configured to cross the obstruction. The shaft proximal section diameter can be larger than the diameter of the distal section lumen diameter of the catheter, thereby inhibiting the shaft proximal section from distally advancing through the catheter distal section.
Description
INTRODUCTION

Acute ischemic stroke (AIS) is a worldwide problem for which until recently there have been only limited therapy options available for patients. One option for such patients is a lytic drug called tPa, which can be administered either intravenously or intra-arterially. More recently various mechanical thrombectomy and/or revascularization devices have become available which aim to dislodge and remove the clot using mechanical means. These devices are typically advanced through a small catheter (called a microcatheter) to the site of the occlusive blood clot, whereupon they are deployed from this microcatheter and engaged with the clot. It would be advantageous for the patient and physician that this microcatheter be as flexible and small in diameter as possible, as these attributes enable the microcatheter to be advanced through tortuous vessel anatomies with ease without harming the vessel walls, and also enable the microcatheter to be advanced across the clot without pushing the clot further distally or dislodging a portion of the clot which might embolize another vessel. However it may be challenging for a mechanical thrombectomy and/or revascularization device to pass through such a small diameter microcatheter. One particular challenge involves the ability to push the device through the microcatheter, especially around tortuous bends in distal anatomies. Many mechanical thrombectomy and/or revascularization devices consist of a clot engaging element attached to the distal end of an elongate wire or shaft. This shaft extends exterior of the patient and is used by the physician to advance the device through the microcatheter to the site of the obstruction. This shaft therefore needs to be robust enough, and stiff enough, to be able to push the engaging element against significant resistance as it enters regions of tortuosity. However if the device is to be used with a very small diameter microcatheter (as is desirable) then the diameter of the shaft is limited to a size somewhat smaller than the inner diameter of this microcatheter. This trade-off between microcatheter profile and shaft profile means that conventional mechanical thrombectomy and/or revascularization devices either a) are compatible with very small diameter microcatheters but suffer from having flimsy shafts which are easily damaged and cannot effectively transmit a push force to advance the device around significant tortuosity, or b) are fitted with sufficiently large diameter shafts to have good robustness and pushability but are not compatible with very small diameter microcatheters.


It is desirable for a Thrombectomy Device (TD) to have a very low delivery profile in order to cross an occlusive clot easily and without dislodging any clot material. Most TDs are delivered through a microcatheter, and it is the microcatheter (and typically an inner guidewire) that first cross the clot. After that the guidewire is removed and the TD is advanced through the microcatheter. Thus it is desirable that the TD be compatible with microcatheters that are as small as possible in diameter. A further advantage of a small diameter microcatheter is that increased space is available between the microcatheter and the inner surface of a guide catheter or intermediate catheter through which it passes. This increased space makes it easier to aspirate blood and clot from the site of occlusion through the guide or intermediate catheter, which is a method typically used in conjunction with use of a thrombectomy device. Some physicians choose to remove the microcatheter completely before aspirating in order to increase this space and reduce the resistance to flow through an intermediate catheter, particularly if a large diameter microcatheter and/or small diameter intermediate catheter is used. It would be desirable if such a step were not required.


It is generally necessary to have some clearance between the inner diameter of a catheter and the outer diameter of the shaft of a device that is passed through it. Without any clearance the shaft would not move freely through the catheter and would be very difficult to advance. The clearance required depends on both the internal diameter of the catheter (its lumen) and the degree or tortuosity of the vasculature in which it is positioned. In relatively low levels of tortuosity a small clearance between shaft and catheter lumen may be perfectly adequate, but in higher levels of tortuosity greater clearance may be required to permit free movement. For example, in the case of a neurovascular thrombectomy system used in middle cerebral artery via femoral access: a clearance of less than 0.003″ (ie 0.0025″, 0.002″ or even less than 0.002″) may be adequate for the proximal section of the system which sits proximal of the patients aortic arch take off, while a clearance of 0.003″ or more may be required to permit free movement of the thrombectomy device shaft through the microcatheter in the section of the system distal of the common carotid artery.


Many TDs today are compatible with microcatheters with an inner lumen of approximately 0.021″ and an outer diameter of 0.025″ to 0.034″ or more. These TDs can therefore be mounted on shafts that have an outer diameter of up to approximately 0.018″ (to comfortably fit in the 0.021″ lumen). Some TDs are compatible with smaller microcatheters which have a lumen of approximately 0.016″ to 0.17″ and an outer diameter as low as approximately 0.020″. These lower profile catheters may be more easily advanced into tortuous distal vessels and may cross clots more easily due to their lower profile. However a TD that is designed to fit through one of these catheters must have a shaft diameter of approximately 0.014″ or less. The bending stiffness of a 0.014″ shaft is 63% lower than that of a 0.018″ shaft of the same material, because the bending stiffness is proportional to the fourth power of the shaft diameter. Therefore the pushability of the 0.014″ shaft is also much less than that of the 0.018″ shaft. Thus a 0.014″ shaft would need to have a much higher modulus of elasticity than an 0.018″ shaft in order to deliver a similar level of “pushability”. However it is desirable that these shafts are made from a superelastic or shape memory material such as nitinol so that they retain their shape and do not become kinked or deformed after use, as they may need to be reused for additional clot retrieval passes if the first is not successful. One way to attain a higher modulus and hence recover some pushability would be to change shaft material to stainless steel or other relatively high modulus material. However this means compromising on the kink resistance and durability of the nitinol shaft. Thus there is a need for a solution to this undesirable trade-off problem.


The solutions provided herein are applicable not just to AIS, but also to the removal of obstructions from vessels throughout the body, such as peripheral arteries and veins, coronary vessels and pulmonary vessels where embolism can be a serious problem.


STATEMENTS OF INVENTION

According to the invention there is provided a system for removing obstructions from a blood vessel, the system comprising a clot retrieval device and a catheter. The clot retrieval device comprises a clot engaging element and an elongate shaft; the clot engaging element having a first collapsed delivery configuration and a second expanded deployed configuration. The elongate shaft has a shaft proximal section, a shaft distal section and a shaft intermediate section between the shaft distal and proximal sections. The clot engaging element being attached to the shaft distal section of the elongate shaft. The catheter has a catheter proximal section, a catheter distal section, and a catheter intermediate section between the proximal and distal sections. The catheter proximal section has an inner proximal lumen and an outer proximal diameter, the catheter distal section having an inner distal lumen and an outer distal diameter.


In one embodiment the maximum diameter of the shaft proximal section is greater than the inner distal lumen of the catheter distal section.


In one embodiment the maximum diameter of the shaft proximal section is less than 0.003″ smaller than the inner distal lumen of the catheter distal section.


In one embodiment the maximum diameter of the shaft proximal section is less than 0.002″ smaller than the inner distal lumen of the catheter distal section.


In one embodiment the maximum diameter of the shaft proximal section is greater than the maximum diameter of the shaft distal section.


In one case the inner proximal lumen of the catheter is larger than the inner distal lumen of the catheter.


In some cases the outer proximal diameter of the catheter is larger than the outer distal diameter of the catheter.


In one embodiment the outer proximal diameter of the catheter is equal to the outer distal diameter of the catheter (see, e.g., FIG. 6).


The clot engaging element may be self-expandable. The clot engaging element may comprise a self-expanding nitinol body.


The invention also provides a method for removing obstructions from a blood vessel comprising:—

    • providing a clot retrieval device and a catheter system according to the invention;
    • positioning a guide catheter or sheath proximal of an obstruction in a blood vessel;
    • advancing a guidewire towards the obstruction;
    • advancing the catheter over the guidewire;
    • removing the guidewire;
    • advancing the elongate clot retrieval shaft through the catheter with the clot retrieval element in the collapsed delivery configuration;
    • advancing the catheter and the shaft through the obstruction;
    • deploying the clot engaging element in the obstruction;
    • retracting the catheter to a position proximal of the clot retrieval element; and
    • retrieving the clot retrieval element and the clot captured by the retrieval element.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be more clearly understood from the following description of an embodiment thereof, given by way of example only, with reference to the accompanying drawings, in which:



FIG. 1A is a cross sectional side view of a clot retrieval system according to the invention;



FIG. 1B is a cross sectional side view of a clot retrieval system according to the invention;



FIGS. 2A to 2E are views illustrating the clot retrieval system in use;



FIG. 3 is a cross sectional side view of a portion of a clot retrieval system according to the invention;



FIG. 4 is a cross sectional side view of a portion of a conventional clot retrieval system;



FIG. 5 is a cross sectional view through FIGS. 3 and 4; and



FIG. 6 is a cross sectional side view of a clot retrieval system according to the invention.





DETAILED DESCRIPTION

Referring to FIGS. 1A and 1B of the drawings there is illustrated a system 24 for removing obstructions such as clot from a blood vessel, the system comprising a clot retrieval device 8 having a clot retrieval element 7 mounted at the distal end of an elongate shaft 9 and a catheter 2 which in this case is a microcatheter which is used to deliver the clot retrieval element 7 in a collapsed delivery configuration across a clot. The clot retrieval element 7 is deployed from the catheter 2 into an expanded deployed configuration for clot retrieval. FIG. 1a shows the system with the clot retrieval element 7 in the deployed expanded condition. FIG. 1b shows the system with the clot retrieval element 7 collapsed within the distal portion 16 of the microcatheter 2, just prior to deployment.


The catheter 2 comprises a catheter proximal section 15, a catheter distal section 16, and a catheter intermediate section 6 between the proximal and distal section. The catheter distal section 16 has an inner distal lumen and an outer distal diameter. The catheter proximal section 15 has an inner proximal lumen and an outer proximal diameter. The catheter comprises a hub 19 at its proximal end to which is typically attached a rotating haemostasishemostasis valve (RHV) 20, through which fluids may be injected or aspirated and which incorporates a seal to prevent the ingress of air and loss of blood or other fluids.


The shaft 9 of the clot retrieval device comprises a shaft proximal section 17, a shaft distal section 18 and a shaft intermediate section 10 between the shaft distal and proximal sections. The clot engaging element 7 is attached to the shaft distal section 18 of the shaft 9 at connection point 23 and may be self-expandable. For example, the clot engaging element may be formed from or comprise a self-expanding Nitinol body. Indicator bands 21 and 22 may be provided on the proximal shaft 17, to inform the user of the proximity of the clot retrieval element 7 to the distal end of the microcatheter 2.


The catheter 2 has a stepped diameter. The distal section 16 of the catheter 2 has a low profile (for example 0.16″ inner diameter (ID)/0.020″ outer diameter (OD)) for excellent flexibility and clot crossing capability. The proximal section 15 of the catheter 2 has a larger inner (and outer) diameter to accommodate a robust and pushable proximal shaft 17 of the clot retrieval device.


In one embodiment of the invention the maximum diameter of the shaft proximal section 17 is larger than the inner distal lumen of the catheter distal section 16. In another similar embodiment the shaft proximal section 17 is very slightly smaller than the inner distal lumen of the catheter distal section 16, so that the catheter can be completely withdrawn over the shaft when in a relatively straight configuration, while still benefiting from a robust large diameter shaft.


As the catheter 2 is not typically withdrawn more than a short distance during use, the shaft proximal section 17 may be even larger than the internal diameter (ID) of the distal section 16 of the catheter 2. In some cases the shaft proximal section 17 is only slightly smaller (i.e. 0.003″ or less smaller or 0.002″ or less smaller) than the ID of the distal section 16 of the catheter 2—for example the distal section of the catheter may have a lumen of 0.0175″, and the shaft proximal section may have an OD of 0.016″. This diameter difference allows the microcatheter 2 to be completely withdrawn over the device shaft 9 if desired, provided that the larger diameter proximal portion of the device shaft 17 is not positioned in a region of significant tortuosity.



FIGS. 2a to 2e show a method of use of the clot retrieval system 24 of this invention. FIG. 2a shows a clot 1 lodged in vasculature 25 causing an obstruction to the flow of blood. A large diameter guide catheter or sheath 5 is positioned in a vessel proximal of the obstructive clot. A microcatheter 2 is advanced through the guide or sheath 5 towards the clot 1 with the aid of guidewire 3. A region of tortuosity exists between the distal end of guide or sheath 5 and the clot 1, comprising at least one tight bend 4. Such tortuosity may comprise bends if radii less than 1 Omm and in some cases less than 5 mm, and may also comprise “figure of 8” loops and compound curves are very difficult to navigate through without a highly flexible microcatheter. In addition the clot itself may be difficult to cross. Hence it is advantageous to provide a flexible and low profile distal segment 16 in a microcatheter such as that of this invention, which also comprises a supportive and robust proximal section 15 with which to advance the catheter through the challenging region of tortuosity and across the clot. The length of the distal low profile, flexible section 16 is at least long enough such that only this low profile section reaches the clot 1, and most preferably such that only this low profile section reaches the region of tortuosity distal of the guide or sheath 5. For treatment of AIS this catheter section is therefore ideally at least 5 cm in length and is most preferably between 10 cm and 30 cm in length. In other embodiments the distal section 16 may extend to as much as 100 cm or more, which will provide the benefit of increased luminal space for aspiration within an intermediate catheter (if used), but at the cost of some pushability performance of the microcatheter.


Once the microcatheter has been successfully advanced across the clot 1, the guidewire 3 is removed as shown in FIG. 2b, so that clot retrieval device 8 can be advanced through the lumen of the microcatheter 2 towards the target clot as shown in FIG. 2c. The microcatheter 2 is then retracted to allow the clot retrieval element 7 to expand within and grip the clot 1 as shown in FIG. 2d. The distal shaft section 18 ideally has a longer length than the distal microcatheter section 16, so that the microcatheter can be retracted to a position proximal of the clot retrieval element as shown in FIG. 2d. As with the microcatheter, the larger diameter and stiffer proximal section 17 of the clot retrieval device shaft provides the shaft with greater pushability than would be the case with a lower profile shaft, enabling the user to advance the device more easily through the challenging region of tortuosity distal of the guide or sheath 5, and around tight bend 4.


Once the clot retrieval element 7 has been deployed within the clot it may be left for a few minutes to expand and embed within the clot or it may be withdrawn immediately according to the physicians preference. In either case the clot and retrieval element may be withdrawn directly back into guide or sheath 5, or an intermediate catheter 11 may be used in a “tri-axial” set-up as shown in FIG. 2e. Aspiration though the guide/sheath and/or intermediate catheter is typically used to assist in creating a reversal of blood flow and safely retrieving back the clot and any clot fragments that may be liberated. This aspiration can be applied by means of a syringe or vacuum pump connected to the proximal end of the intermediate catheter. If this aspiration is applied through an intermediate catheter the space within the lumen of this catheter has a significant impact on the flow rate that can be created for a given aspiration force. As a maximum of 1 atmosphere vacuum can be created by a syringe or vacuum pump the luminal space is a critical factor in optimizing the effect of this vacuum on flow rate.



FIG. 3 shows a simplified view of a cross section through a system incorporating an intermediate catheter 11 as shown in use in FIG. 2e. The intermediate catheter 11 may have a stepped profile as shown with a large lumen in proximal section 13 than in distal section 12, or in other embodiments may have a constant inner diameter. The distal luminal space 30 and proximal luminal space 31 are the areas between the outer surface of the microcatheter 2 and the inner surface of the intermediate catheter 11 through the aspiration force is applied. The effective flow rate through such a system is a function of the cross-sectional areas and lengths of spaces 30 and 31, and the viscosity of the fluid in question (which is blood). Thus it is advantageous to maximize the cross-sectional areas and minimize the lengths of spaces 30 and 31.



FIG. 4 shows a simplified view of a cross section through a conventional thrombectomy system incorporating an intermediate catheter 52, a microcatheter 53 with a continuous non-stepped inner lumen, and a clot retrieval device shaft 51. Comparing FIGS. 3 and 4 it can be seen that the system of this invention depicted in FIG. 3 has a much larger distal luminal space 30 than the distal luminal space 60 provided by the conventional system of FIG. 4. This provides a major advantage in that with the system of this invention aspiration can be very effectively applied without the need to remove the microcatheter from the patient. Removal of the microcatheter can be both time consuming and difficult as thrombectomy device shafts are not typically long enough to permit this to be done without the addition of an extension piece to the shaft.



FIG. 5 shows a cross-sectional view representative of that through the systems of both FIG. 3 and FIG. 4, where clot retrieval shaft 82 lies within microcatheter 81, which in turn sits within the lumen of intermediate catheter 80, leaving luminal space 83 between the two for aspiration.


The invention enables clot retrieval devices with robust and pushable shafts to be used in conjunction with flexible, small diameter microcatheters, and enables aspiration forces to be effectively transmitted through an intermediate or guide catheter without the need for removing the microcatheter.


The clot retrieval device may, for example, be of the type described in our US2013/0345739A or US2014/0371779A the entire contents of which are incorporated herein by reference.


The invention is not limited to the embodiment hereinbefore described, with reference to the accompanying drawings, which may be varied in construction and detail.

Claims
  • 1. A system for removing an obstruction from a blood vessel, the system comprising: a catheter comprising: a proximal section with a proximal section lumen diameter, anda distal section with a distal section lumen diameter less than the proximal section lumen diameter; anda clot retrieval device comprising: a clot engaging element having a first collapsed delivery configuration and a second expanded deployed configuration; anda shaft comprising: a shaft proximal section, anda shaft distal section attached to the clot engaging element and configured to cross the obstruction;wherein intermediate and distal sections of the catheter and shaft are advanceable through the blood vessel towards the obstruction; andwherein the shaft proximal section is stiffer than the shaft distal section.
  • 2. The system as claimed in claim 1, wherein a distal luminal space is maximized between the shaft distal section and the distal section of the catheter.
  • 3. The system as claimed in claim 1, wherein a shaft proximal section diameter is 0.003″ or less than an inner diameter of the catheter distal section.
  • 4. The system as claimed in claim 1, wherein an outer diameter of the proximal section of the catheter is larger than an outer diameter of the distal section of the catheter.
  • 5. The system as claimed in claim 1, wherein an outer diameter of the shaft proximal section is greater than an inner diameter of the distal section of the catheter thereby inhibiting the shaft proximal section from distally advancing through the distal section of the catheter.
  • 6. The system as claimed in claim 1, wherein the proximal section of the catheter is substantially robust and the catheter distal section is substantially flexible.
  • 7. The system as claimed in claim 1, the shaft further comprising the shaft intermediate section distal of the shaft proximal section and extended between the shaft distal section and the shaft proximal section.
  • 8. A system, comprising: a shaft comprising a proximal section with a proximal section diameter and a distal section with a distal section diameter smaller than the proximal section diameter;an expandable clot engaging element attached to the distal section of the shaft;a first catheter comprising a first catheter proximal section, a first catheter distal section, and a lumen extending therethrough, the first catheter proximal section comprising a proximal section lumen diameter larger than a distal section lumen diameter; anda second catheter comprising a second catheter proximal section and a second catheter distal section, an outer diameter of the second catheter proximal section being larger than an outer diameter of the second catheter distal section; andwherein the proximal section diameter of the shaft is greater than the distal section lumen diameter of the first catheter distal section.
  • 9. The system as claimed in claim 8, wherein an outer diameter of the first catheter proximal section is larger than an outer diameter of the first catheter distal section.
  • 10. The system as claimed in claim 8, wherein the second catheter has a lumen extending therethrough having a diameter larger than an outer diameter of the first catheter proximal section, the first catheter being advanceable within the lumen of the second catheter.
  • 11. The system as claimed in claim 8, the first catheter distal section comprising an axial length between approximately 10 cm and approximately 30 cm.
  • 12. The system as claimed in claim 8, the proximal section diameter of the shaft inhibiting the proximal section of the shaft from distally advancing through the catheter distal section.
  • 13. A method, comprising: advancing a clot engagement element, by distally advancing a shaft through a first catheter, wherein the shaft comprises: a shaft proximal section,a shaft distal section with a diameter less than the shaft proximal section, the shaft distal section being attached to the clot engagement element, anda shaft intermediate section between the shaft proximal and distal sections,extending the first catheter across an obstruction in a blood vessel, wherein the first catheter comprises: a first catheter proximal section,a first catheter distal section with a diameter less than a diameter of the first catheter proximal section,a first catheter intermediate section between the first catheter proximal section and the first catheter distal section;advancing a second catheter to a first location proximal of the obstruction;advancing a guide catheter to a second location proximal of the obstruction;retracting the first catheter so as to expand and deploy the clot engagement element distal of the first catheter within the obstruction; andwithdrawing the clot engaging element into a lumen of at least one of the second catheter or the guide catheter to retrieve the clot engagement element and the obstruction from the blood vessel.
  • 14. The method as claimed in claim 13, wherein the shaft intermediate section is advanceable through the first catheter proximal section, the first catheter intermediate section, and the blood vessel towards the obstruction.
  • 15. The method as claimed in claim 13, further comprising: inhibiting the shaft proximal section from distally advancing through the first catheter distal section by preventing the proximal section diameter of the shaft from passing through the distal section lumen of the first catheter distal section.
  • 16. The method as claimed in claim 13, further comprising: visualizing the shaft through a radiopaque indicator of the shaft.
  • 17. The method as claimed in claim 13, further comprising the shaft proximal section being stiffer than the shaft distal section.
  • 18. The method as claimed in claim 13, further comprising: maximizing a distal luminal space defined between the shaft distal section and the first catheter distal section.
  • 19. The method as claimed in claim 13, further comprising: advancing a guidewire across the obstruction and through the first catheter, and removing the guidewire from the first catheter after advancing the first catheter.
  • 20. The method as claimed in claim 13, wherein the second catheter comprises a second catheter proximal section that extends to a second catheter distal section, wherein an outer diameter of the second catheter proximal section is larger than an outer diameter of the second catheter distal section so that the second catheter distal section is advanceable at least up to and through the first catheter proximal section.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/294,661, filed Mar. 6, 2019, which is a continuation of U.S. patent application Ser. No. 14/698,552, now U.S. Pat. No. 10,265,086, filed Apr. 28, 2015, which claims the benefit of U.S. Provisional Application No. 62/019,137, filed Jun. 30, 2014, the contents of all of which are incorporated herein by reference in their entirety.

US Referenced Citations (828)
Number Name Date Kind
4243040 Beecher Jan 1981 A
4324262 Hall Apr 1982 A
4351342 Witta et al. Sep 1982 A
4575371 Nordqvist et al. Mar 1986 A
4592356 Gutierrez Jun 1986 A
4719924 Crittenden et al. Jan 1988 A
4738666 Fuqua Apr 1988 A
4767404 Renton Aug 1988 A
4793348 Palmaz Dec 1988 A
4873978 Ginsburg Oct 1989 A
5011488 Ginsburg Apr 1991 A
5092839 Kipperman Mar 1992 A
5102415 Guenther et al. Apr 1992 A
5122136 Guglielmi et al. Jun 1992 A
5123840 Nates Jun 1992 A
5171233 Amplatz Dec 1992 A
5234437 Sepetka Aug 1993 A
5256144 Kraus et al. Oct 1993 A
5261916 Engelson Nov 1993 A
5372124 Takayama et al. Dec 1994 A
5385562 Adams Jan 1995 A
5387219 Rappe Feb 1995 A
5387226 Miraki Feb 1995 A
5396902 Brennen et al. Mar 1995 A
5449372 Schmaltz Sep 1995 A
5520651 Sutcu May 1996 A
5538512 Zenzon et al. Jul 1996 A
5549626 Miller et al. Aug 1996 A
5558652 Henke Sep 1996 A
5601600 Ton Feb 1997 A
5609627 Goicoechea et al. Mar 1997 A
5624461 Mariant Apr 1997 A
5639277 Mariant Jun 1997 A
5645558 Horton Jul 1997 A
5658296 Bates Aug 1997 A
5662671 Barbut Sep 1997 A
5695519 Summer et al. Dec 1997 A
5709704 Nott et al. Jan 1998 A
5713853 Clark Feb 1998 A
5728078 Powers, Jr. Mar 1998 A
5769871 Mers Kelly Jun 1998 A
5779716 Cano Jul 1998 A
5810874 Lefebvre Sep 1998 A
5814064 Danniel et al. Sep 1998 A
5827304 Hart Oct 1998 A
5846251 Hart Dec 1998 A
5855598 Pinchuk Jan 1999 A
5893869 Barnhart et al. Apr 1999 A
5895398 Wensel Apr 1999 A
5897567 Ressemann Apr 1999 A
5904698 Thomas et al. May 1999 A
5911725 Boury Jun 1999 A
5935139 Bates Aug 1999 A
5938645 Gordon Aug 1999 A
5947995 Samuels Sep 1999 A
5968057 Taheri Oct 1999 A
5971938 Hart et al. Oct 1999 A
5997939 Moechnig et al. Dec 1999 A
6022343 Johnson et al. Feb 2000 A
6063113 Kavteladze May 2000 A
6066149 Samson et al. May 2000 A
6066158 Engelson May 2000 A
6093196 Okada Jul 2000 A
6093199 Brown et al. Jul 2000 A
6096053 Bates Aug 2000 A
6099534 Bates Aug 2000 A
6102932 Kurz Aug 2000 A
6106548 Roubin et al. Aug 2000 A
6129739 Khosravi Oct 2000 A
6142957 Diamond et al. Nov 2000 A
6146396 Kónya et al. Nov 2000 A
6146404 Kim Nov 2000 A
6165194 Denardo Dec 2000 A
6165199 Barbut Dec 2000 A
6168604 Cano Jan 2001 B1
6168622 Mazzocchi Jan 2001 B1
6174318 Bates et al. Jan 2001 B1
6179861 Khosravi Jan 2001 B1
6203561 Ramee Mar 2001 B1
6214026 Lepak Apr 2001 B1
6221006 Dubrul Apr 2001 B1
6238412 Dubrul May 2001 B1
6245087 Addis Jun 2001 B1
6251122 Tsukernik Jun 2001 B1
6254571 Hart Jul 2001 B1
6264663 Cano Jul 2001 B1
6306163 Fitz Oct 2001 B1
6309379 Willard Oct 2001 B1
6312407 Zando-Azizi et al. Nov 2001 B1
6312444 Barbut Nov 2001 B1
6315778 Gambale et al. Nov 2001 B1
6325819 Pavcnik et al. Dec 2001 B1
6334864 Amplatz et al. Jan 2002 B1
6336934 Gilson et al. Jan 2002 B1
6348056 Bates Feb 2002 B1
6350271 Kurz et al. Feb 2002 B1
6361545 Macoviak Mar 2002 B1
6371963 Nishtala et al. Apr 2002 B1
6375668 Gifford et al. Apr 2002 B1
6383205 Samson et al. May 2002 B1
6383206 Gillick May 2002 B1
6391037 Greenhalgh May 2002 B1
6402771 Palmer Jun 2002 B1
6409683 Fonseca et al. Jun 2002 B1
6416541 Denardo Jul 2002 B2
6425909 Dieck et al. Jul 2002 B1
6432122 Gilson et al. Aug 2002 B1
6436112 Wensel Aug 2002 B2
6458139 Palmer Oct 2002 B1
6346116 Brooks et al. Nov 2002 B1
6485497 Wensel Nov 2002 B2
6485501 Green Nov 2002 B1
6485502 Don Michael Nov 2002 B2
6511492 Rosenbluth Jan 2003 B1
6517551 Driskill Feb 2003 B1
6520934 Lee et al. Feb 2003 B1
6520951 Carrillo, Jr. Feb 2003 B1
6530935 Wensel Mar 2003 B2
6530939 Hopkins Mar 2003 B1
6540768 Diaz et al. Apr 2003 B1
6544279 Hopkins Apr 2003 B1
6551341 Boylan et al. Apr 2003 B2
6551342 Shen et al. Apr 2003 B1
6575997 Palmer et al. Jun 2003 B1
6582448 Boyle Jun 2003 B1
6585756 Strecker Jul 2003 B1
6589265 Palmer et al. Jul 2003 B1
6592607 Palmer et al. Jul 2003 B1
6592616 Stack Jul 2003 B1
6602271 Adams Aug 2003 B2
6602272 Boylan et al. Aug 2003 B2
6605102 Mazzocchi et al. Aug 2003 B1
6610077 Hancock et al. Aug 2003 B1
6616679 Khosravi Sep 2003 B1
6632241 Hanoock et al. Oct 2003 B1
6638245 Miller Oct 2003 B2
6638293 Makower et al. Oct 2003 B1
6641590 Palmer et al. Nov 2003 B1
6652555 VanTassel et al. Nov 2003 B1
6656218 Denardo et al. Dec 2003 B1
6660021 Palmer et al. Dec 2003 B1
6663650 Sepetka Dec 2003 B2
6673089 Yassour et al. Jan 2004 B1
6685722 Rosenbluth Feb 2004 B1
6692504 Kurz et al. Feb 2004 B2
6692508 Wensel Feb 2004 B2
6692509 Wensel Feb 2004 B2
6702782 Miller Mar 2004 B2
6712834 Yassour et al. Mar 2004 B2
6726701 Gilson et al. Apr 2004 B2
6730104 Sepetka May 2004 B1
6726703 Broome et al. Aug 2004 B2
6824545 Sepetka Nov 2004 B2
6855155 Denardo et al. Feb 2005 B2
6878163 Denardo et al. Apr 2005 B2
6890340 Duane May 2005 B2
6913612 Palmer Jul 2005 B2
6913618 Denardo et al. Jul 2005 B2
6953472 Palmer et al. Oct 2005 B2
6989019 Mazzocchi Jan 2006 B2
6989021 Bosma et al. Jan 2006 B2
6994718 Groothuis et al. Feb 2006 B2
6997939 Linder Feb 2006 B2
7004954 Voss et al. Feb 2006 B1
7004955 Shen Feb 2006 B2
7004956 Palmer Feb 2006 B2
7008434 Kurz et al. Mar 2006 B2
7033376 Tsukernik Apr 2006 B2
7041116 Goto May 2006 B2
7048758 Boyle May 2006 B2
7058456 Pierce Jun 2006 B2
7063707 Bose Jun 2006 B2
7153320 Euteneuer et al. Dec 2006 B2
7175655 Malaei Feb 2007 B1
7179273 Palmer et al. Feb 2007 B1
7220269 Ansel May 2007 B1
7220271 Clubb May 2007 B2
7226464 Garner et al. Jun 2007 B2
7229472 DePalma et al. Jun 2007 B2
7232462 Schaeffer Jun 2007 B2
7288112 Denardo et al. Oct 2007 B2
7306618 Demond Dec 2007 B2
7316692 Huffmaster Jan 2008 B2
7323001 Cubb Jan 2008 B2
7331976 McGuckin, Jr. et al. Feb 2008 B2
7344550 Carrison et al. Mar 2008 B2
7399308 Borillo et al. Jul 2008 B2
7410491 Hopkins Aug 2008 B2
7452496 Brady et al. Nov 2008 B2
7491215 Vale et al. Feb 2009 B2
7491216 Brady Feb 2009 B2
7510565 Gilson et al. Mar 2009 B2
7534252 Sepetka May 2009 B2
7556636 Mazzocchi Jul 2009 B2
7582111 Krolik et al. Sep 2009 B2
7594926 Linder Sep 2009 B2
7604649 McGuckin et al. Oct 2009 B2
7618434 Santra et al. Nov 2009 B2
7662165 Gilson et al. Feb 2010 B2
7670356 Mazzocchi Mar 2010 B2
7691121 Rosenbluth Apr 2010 B2
7691124 Balgobin Apr 2010 B2
7708770 Linder May 2010 B2
7736385 Agnew Jun 2010 B2
7766934 Pal Aug 2010 B2
7771452 Pal Aug 2010 B2
7780694 Palmer Aug 2010 B2
7780696 Daniel et al. Aug 2010 B2
7819893 Brady et al. Oct 2010 B2
7828815 Mazzocchi Nov 2010 B2
7846176 Mazzocchi Nov 2010 B2
7846175 Bonnette et al. Dec 2010 B2
7850708 Pal Dec 2010 B2
7887560 Kusleika Feb 2011 B2
7901426 Gilson et al. Mar 2011 B2
7914549 Morsi Mar 2011 B2
7922732 Mazzocchi Apr 2011 B2
7927349 Brady et al. Apr 2011 B2
7927784 Simpson Apr 2011 B2
7931659 Bose et al. Apr 2011 B2
7998165 Huffmaster Aug 2011 B2
8002822 Glocker et al. Aug 2011 B2
8021379 Thompson et al. Sep 2011 B2
8021380 Thompson et al. Sep 2011 B2
8043326 Hancock et al. Oct 2011 B2
8048151 O'Brien et al. Nov 2011 B2
8052640 Fiorella et al. Nov 2011 B2
8057497 Raju et al. Nov 2011 B1
8066757 Ferrera et al. Nov 2011 B2
8070791 Ferrera et al. Dec 2011 B2
8088140 Ferrera et al. Jan 2012 B2
8100935 Rosenbluth et al. Jan 2012 B2
8109941 Richardson Feb 2012 B2
8118829 Carrison et al. Feb 2012 B2
8123769 Osborne Feb 2012 B2
8137377 Palmer Mar 2012 B2
8142422 Makower et al. Mar 2012 B2
8142442 Palmer et al. Mar 2012 B2
8182508 Magnuson et al. May 2012 B2
8187298 Pal May 2012 B2
8246641 Osborne et al. Aug 2012 B2
8246672 Osborne Aug 2012 B2
8252017 Paul, Jr. et al. Aug 2012 B2
8252018 Valaie Aug 2012 B2
8357178 Grandfield et al. Jan 2013 B2
8357179 Grandfield et al. Jan 2013 B2
8357893 Xu et al. Jan 2013 B2
8361095 Osborne Jan 2013 B2
8366663 Fiorella Feb 2013 B2
8372133 Douk et al. Feb 2013 B2
8382742 Hermann et al. Feb 2013 B2
8409215 Sepetka et al. Apr 2013 B2
8419748 Valaie Apr 2013 B2
8460312 Bose et al. Jun 2013 B2
8460313 Huffmaster Jun 2013 B2
8486104 Samson et al. Jul 2013 B2
8529596 Grandfield et al. Sep 2013 B2
8574262 Ferrera et al. Nov 2013 B2
8579915 French et al. Nov 2013 B2
8585643 Vo et al. Nov 2013 B2
8585713 Ferrera et al. Nov 2013 B2
8608761 Osbourne et al. Dec 2013 B2
8679142 Slee et al. Mar 2014 B2
8696622 Fiorella et al. Apr 2014 B2
8702652 Fiorella et al. Apr 2014 B2
8702724 Olsen et al. Apr 2014 B2
8784434 Rosenbluth et al. Jul 2014 B2
8784441 Rosenbluth et al. Jul 2014 B2
8795305 Grandfield et al. Aug 2014 B2
8795317 Grandfield et al. Aug 2014 B2
8795345 Grandfield et al. Aug 2014 B2
8814892 Galdonik et al. Aug 2014 B2
8814925 Hilaire et al. Aug 2014 B2
8900265 Ulm, III Dec 2014 B1
8939991 Krolick et al. Jan 2015 B2
8945143 Ferrera et al. Feb 2015 B2
8945172 Ferrera et al. Feb 2015 B2
8968330 Rosenbluth et al. Mar 2015 B2
9039749 Shrivastava et al. May 2015 B2
9072537 Grandfield et al. Jul 2015 B2
9113936 Palmer et al. Aug 2015 B2
9119656 Bose et al. Sep 2015 B2
9138307 Valaie Sep 2015 B2
9149609 Ansel et al. Oct 2015 B2
9155552 Ulm, III Oct 2015 B2
9161766 Slee et al. Oct 2015 B2
9173668 Ulm, III Nov 2015 B2
9186487 Dubrul et al. Nov 2015 B2
9198687 Fulkerson et al. Dec 2015 B2
9204887 Cully et al. Dec 2015 B2
9221132 Bowman Dec 2015 B2
9232992 Heidner Jan 2016 B2
9532792 Galdonik et al. Jan 2017 B2
9532873 Kelley Jan 2017 B2
9533344 Monetti et al. Jan 2017 B2
9539011 Chen et al. Jan 2017 B2
9539022 Bowman Jan 2017 B2
9539122 Burke et al. Jan 2017 B2
9539382 Nelson Jan 2017 B2
9549830 Bruszewski et al. Jan 2017 B2
9554805 Tompkins et al. Jan 2017 B2
9561125 Bowman et al. Feb 2017 B2
9572982 Burnes et al. Feb 2017 B2
9579484 Barnell Feb 2017 B2
9585642 Dinsmoor et al. Mar 2017 B2
9615832 Bose et al. Apr 2017 B2
9615951 Bennett et al. Apr 2017 B2
9622753 Cox Apr 2017 B2
9636115 Henry et al. May 2017 B2
9636439 Chu et al. May 2017 B2
9642635 Vale et al. May 2017 B2
9642675 Werneth et al. May 2017 B2
9655633 Leynov et al. May 2017 B2
9655645 Staunton May 2017 B2
9655989 Cruise et al. May 2017 B2
9662129 Galdonik et al. May 2017 B2
9662238 Dwork et al. May 2017 B2
9662425 Lilja et al. May 2017 B2
9668898 Wong Jun 2017 B2
9675477 Thompson Jun 2017 B2
9675782 Connolly Jun 2017 B2
9676022 Ensign et al. Jun 2017 B2
9692557 Murphy Jun 2017 B2
9693852 Lam et al. Jul 2017 B2
9700262 Janik et al. Jul 2017 B2
9700399 Acosta-Acevedo Jul 2017 B2
9717421 Griswold et al. Aug 2017 B2
9717500 Tieu et al. Aug 2017 B2
9717502 Teoh et al. Aug 2017 B2
9724103 Cruise et al. Aug 2017 B2
9724526 Strother et al. Aug 2017 B2
9750565 Bloom et al. Sep 2017 B2
9757260 Greenan Sep 2017 B2
9764111 Gulachenski Sep 2017 B2
9770251 Bowman et al. Sep 2017 B2
9770577 Li et al. Sep 2017 B2
9775621 Tompkins et al. Oct 2017 B2
9775706 Paterson et al. Oct 2017 B2
9775732 Khenansho Oct 2017 B2
9788800 Mayoras, Jr. Oct 2017 B2
9795391 Saatchi et al. Oct 2017 B2
9801980 Karino et al. Oct 2017 B2
9808599 Bowman et al. Nov 2017 B2
9833252 Sepetka et al. Dec 2017 B2
9833604 Lam et al. Dec 2017 B2
9833625 Waldhauser et al. Dec 2017 B2
10028759 Wallace et al. Jul 2018 B2
10149692 Turjman et al. Dec 2018 B2
10172634 Horowitz Jan 2019 B1
10265086 Vale Apr 2019 B2
10610668 Burkholz et al. Apr 2020 B2
10716915 Ogle et al. Jul 2020 B2
10835271 Ma Nov 2020 B2
11076876 Vale Aug 2021 B2
20010001315 Bates May 2001 A1
20010011182 Dubrul et al. Aug 2001 A1
20010016755 Addis Aug 2001 A1
20010041899 Foster Nov 2001 A1
20010044598 Parodi Nov 2001 A1
20010044634 Don Michael et al. Nov 2001 A1
20010051810 Dubrul Dec 2001 A1
20020002383 Sepetka et al. Jan 2002 A1
20020016609 Wensel Feb 2002 A1
20020022859 Hogendijk Feb 2002 A1
20020026211 Khosravi Feb 2002 A1
20020049468 Streeter Apr 2002 A1
20020052620 Barvut May 2002 A1
20020068954 Foster Jun 2002 A1
20020072764 Sepetka Jun 2002 A1
20020082558 Samson Jun 2002 A1
20020091407 Zadno-Azizi et al. Jul 2002 A1
20020095171 Belef Jul 2002 A1
20020123765 Sepetka Sep 2002 A1
20020143362 Macoviak et al. Oct 2002 A1
20020156455 Barbut Oct 2002 A1
20020161393 Demond Oct 2002 A1
20020165576 Boyle et al. Nov 2002 A1
20020173819 Leeflang et al. Nov 2002 A1
20020177800 Bagaoisan et al. Nov 2002 A1
20020188276 Evans Dec 2002 A1
20030004536 Boylan et al. Jan 2003 A1
20030004538 Secrest Jan 2003 A1
20030004542 Wensel Jan 2003 A1
20030009146 Muni Jan 2003 A1
20030009191 Wensel Jan 2003 A1
20030023204 Vo et al. Jan 2003 A1
20030040769 Kelley et al. Feb 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030050663 Khachin Mar 2003 A1
20030100847 D'Aquanni et al. May 2003 A1
20030105484 Boyle et al. Jun 2003 A1
20030125798 Matrin Jul 2003 A1
20030130682 Broome et al. Jul 2003 A1
20030144687 Brady et al. Jul 2003 A1
20030144689 Brady et al. Jul 2003 A1
20030153940 Nohilly et al. Aug 2003 A1
20030153943 Michael et al. Aug 2003 A1
20030153944 Phung Aug 2003 A1
20030163064 Vrba Aug 2003 A1
20030163158 Wlite Aug 2003 A1
20030171769 Barbu Sep 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030187495 Cully et al. Oct 2003 A1
20030195537 Dubrul Oct 2003 A1
20030195554 Shen Oct 2003 A1
20030199917 Knudson Oct 2003 A1
20030204202 Palmer Oct 2003 A1
20030212430 Bose Nov 2003 A1
20030216611 Q. Vu Nov 2003 A1
20030236533 Wilson Dec 2003 A1
20040010280 Adams et al. Jan 2004 A1
20040010282 Kusleika Jan 2004 A1
20040014002 Lundgren Jan 2004 A1
20040068288 Palmer et al. Apr 2004 A1
20040073243 Sepetka Apr 2004 A1
20040079429 Miller Apr 2004 A1
20040082962 Demarais et al. Apr 2004 A1
20040093065 Yachia et al. May 2004 A1
20040133231 Maitland Jul 2004 A1
20040138692 Phung Jul 2004 A1
20040153049 Hewitt et al. Aug 2004 A1
20040153118 Clubb Aug 2004 A1
20040193107 Pierpont et al. Sep 2004 A1
20040199202 Dubrul et al. Oct 2004 A1
20040260333 Dubrul et al. Dec 2004 A1
20050015047 Shah Jan 2005 A1
20050020974 Noriega Jan 2005 A1
20050033348 Sepetka Feb 2005 A1
20050038447 Huffmaster Feb 2005 A1
20050038468 Panetta et al. Feb 2005 A1
20050049619 Sepetka Mar 2005 A1
20050049669 Jones Mar 2005 A1
20050049670 Jones et al. Mar 2005 A1
20050055033 Leslie et al. Mar 2005 A1
20050055047 Greenhalgh Mar 2005 A1
20050059993 Ramzipoor et al. Mar 2005 A1
20050059995 Sepetka Mar 2005 A1
20050085849 Sepetka Apr 2005 A1
20050090857 Kusleika et al. Apr 2005 A1
20050119524 Sckine et al. Jun 2005 A1
20050119668 Teague et al. Jun 2005 A1
20050125024 Sepetka Jun 2005 A1
20050131449 Salahieh et al. Jun 2005 A1
20050149111 Kanazawa et al. Jul 2005 A1
20050171566 Kanamaru Aug 2005 A1
20050187570 Nguyen et al. Aug 2005 A1
20050267491 Kellett et al. Aug 2005 A1
20050216030 Sepetka Sep 2005 A1
20050216050 Sepetka Sep 2005 A1
20050288686 Sepetka Sep 2005 A1
20050228417 Teitelbaum et al. Oct 2005 A1
20060009785 Maitland et al. Jan 2006 A1
20060009799 Kleshinski et al. Jan 2006 A1
20060010636 Vacher Jan 2006 A1
20060030933 DeLeggge et al. Feb 2006 A1
20060036271 Schomer et al. Feb 2006 A1
20060058836 Bose Mar 2006 A1
20060058837 Bose Mar 2006 A1
20060058838 Bose Mar 2006 A1
20060064151 Guterman et al. Mar 2006 A1
20060149313 Arguello et al. Jul 2006 A1
20060155305 Freudenthal Jul 2006 A1
20060155322 Sater et al. Jul 2006 A1
20060161187 Levine et al. Jul 2006 A1
20060195137 Sepetka Aug 2006 A1
20060224177 Finitsis Oct 2006 A1
20060224179 Kucharczyk Oct 2006 A1
20060229638 Abrams et al. Oct 2006 A1
20060282111 Morsi Dec 2006 A1
20060287701 Pal Dec 2006 A1
20070088383 Pal et al. Apr 2007 A1
20070142858 Bates Jun 2007 A1
20070149996 Coughlin Jun 2007 A1
20070156170 Hancock Jul 2007 A1
20070165170 Fukuda Jul 2007 A1
20070179513 Deutsch Aug 2007 A1
20070191866 Palmer et al. Aug 2007 A1
20070198028 Miloslavski Aug 2007 A1
20070198051 Clubb et al. Aug 2007 A1
20070198075 Levy Aug 2007 A1
20070208367 Fiorella Sep 2007 A1
20070208371 French Sep 2007 A1
20070213765 Adams et al. Sep 2007 A1
20070225749 Martin Sep 2007 A1
20070239182 Glines et al. Oct 2007 A1
20070239254 Chia et al. Oct 2007 A1
20070244505 Gilson et al. Oct 2007 A1
20070270902 Slazas et al. Nov 2007 A1
20070288038 Bimbo Dec 2007 A1
20070293887 Okushi et al. Dec 2007 A1
20080045881 Teitelbaum et al. Feb 2008 A1
20080082107 Miller et al. Apr 2008 A1
20080086190 Ta Apr 2008 A1
20080091223 Pokorney Apr 2008 A1
20080097398 Mitelberg Apr 2008 A1
20080109031 Sepetka May 2008 A1
20080109032 Sepetka May 2008 A1
20080119886 Greenhalgh et al. May 2008 A1
20080177296 Sepetka Jul 2008 A1
20080183197 Sepetka Jul 2008 A1
20080183198 Sepetka Jul 2008 A1
20080183205 Sepetka Jul 2008 A1
20080188876 Sepetka Aug 2008 A1
20080188885 Sepetka Aug 2008 A1
20080188928 Salahieh Aug 2008 A1
20080200946 Braun Aug 2008 A1
20080215077 Sepetka Sep 2008 A1
20080221600 Dieck et al. Sep 2008 A1
20080228209 DeMello et al. Sep 2008 A1
20080234706 Sepetka Sep 2008 A1
20080243170 Jenson Oct 2008 A1
20080255596 Jenson Oct 2008 A1
20080262528 Martin Oct 2008 A1
20080262532 Martin Oct 2008 A1
20080269774 Garcia et al. Oct 2008 A1
20080275488 Fleming Nov 2008 A1
20080275493 Farmiga Nov 2008 A1
20080281350 Sepetka Nov 2008 A1
20080312681 Ansel Dec 2008 A1
20090024157 Anukhin Jan 2009 A1
20090054918 Henson Feb 2009 A1
20090069828 Martin Mar 2009 A1
20090076539 Valaie Mar 2009 A1
20090105722 Fulkerson Apr 2009 A1
20090105737 Fulkerson Apr 2009 A1
20090131908 McKay May 2009 A1
20090163846 Aklog et al. May 2009 A1
20090177206 Lozier et al. Jul 2009 A1
20090182336 Brenzel et al. Jul 2009 A1
20090221967 Thommen et al. Sep 2009 A1
20090270815 Stamp et al. Oct 2009 A1
20090281610 Parker Nov 2009 A1
20090292297 Ferrere Nov 2009 A1
20090292307 Razack Nov 2009 A1
20090299374 Tilson et al. Dec 2009 A1
20090299393 Martin Dec 2009 A1
20090306702 Miloslavski Dec 2009 A1
20100004607 Wilson et al. Jan 2010 A1
20100016957 Jager et al. Jan 2010 A1
20100030186 Stivland Feb 2010 A1
20100030256 Dubrul et al. Feb 2010 A1
20100036312 Krolik et al. Feb 2010 A1
20100087908 Hilaire Apr 2010 A1
20100114017 Lenker May 2010 A1
20100125326 Kalstad May 2010 A1
20100125327 Agnew May 2010 A1
20100137846 Desai et al. Jun 2010 A1
20100191272 Keating Jul 2010 A1
20100211094 Sargent, Jr. Aug 2010 A1
20100249815 Jantzen et al. Sep 2010 A1
20100268264 Bonnett et al. Oct 2010 A1
20100268265 Krolik et al. Oct 2010 A1
20100292726 Olsen et al. Nov 2010 A1
20100305566 Rosenblatt et al. Dec 2010 A1
20100305604 Pah Dec 2010 A1
20100318178 Rapaport et al. Dec 2010 A1
20100324649 Mattsson Dec 2010 A1
20100331949 Habib Dec 2010 A1
20110009875 Grandfield et al. Jan 2011 A1
20110009940 Grandfield et al. Jan 2011 A1
20110009942 Gregorich Jan 2011 A1
20110022149 Cox et al. Jan 2011 A1
20110054514 Arcand Mar 2011 A1
20110054516 Keegan Mar 2011 A1
20110060359 Hannes Mar 2011 A1
20110071432 Carrillo, Jr. et al. Mar 2011 A1
20110077620 deBeer Mar 2011 A1
20110098683 Wiita et al. Apr 2011 A1
20110054504 Wolf et al. May 2011 A1
20110125181 Brady et al. May 2011 A1
20110130756 Everson, Jr. et al. Jun 2011 A1
20110152920 Eckhouse et al. Jun 2011 A1
20110160763 Ferrera et al. Jun 2011 A1
20110166586 Sepetka et al. Jul 2011 A1
20110196414 Porter et al. Aug 2011 A1
20110202088 Eckhouse et al. Aug 2011 A1
20110213290 Chin et al. Sep 2011 A1
20110213297 Aklog et al. Sep 2011 A1
20110213393 Aklog et al. Sep 2011 A1
20110213403 Aboytes Sep 2011 A1
20110218564 Drasler et al. Sep 2011 A1
20110224707 Miloslavaski et al. Sep 2011 A1
20110264132 Strauss et al. Oct 2011 A1
20110276120 Gilson et al. Nov 2011 A1
20110319917 Ferrera et al. Dec 2011 A1
20120041449 Eckhouse et al. Feb 2012 A1
20120041474 Eckhouse et al. Feb 2012 A1
20120059356 diPama et al. Mar 2012 A1
20120089216 Rapaport et al. Apr 2012 A1
20120101510 Lenker et al. Apr 2012 A1
20120116351 Chomas et al. May 2012 A1
20120116440 Leynov et al. May 2012 A1
20120143237 Cam et al. Jun 2012 A1
20120143239 Aklog et al. Jun 2012 A1
20120150147 Leynov et al. Jun 2012 A1
20120165858 Eckhouse et al. Jun 2012 A1
20120165859 Eckhouse et al. Jun 2012 A1
20120215250 Grandfield et al. Aug 2012 A1
20120277788 Cattaneo Nov 2012 A1
20120283768 Cox et al. Nov 2012 A1
20120296362 Cam et al. Nov 2012 A1
20120316600 Ferrera et al. Dec 2012 A1
20130006284 Aggerholm et al. Jan 2013 A1
20130025934 Aimi et al. Jan 2013 A1
20130030461 Marks et al. Jan 2013 A1
20130046330 McIntosh et al. Feb 2013 A1
20130046333 Jones et al. Feb 2013 A1
20130046334 Jones et al. Feb 2013 A1
20130116774 Strauss et al. May 2013 A1
20130131614 Hassan et al. May 2013 A1
20130144326 Brady et al. Jun 2013 A1
20130144328 Weber et al. Jun 2013 A1
20130158592 Porter Jun 2013 A1
20130184703 Shireman et al. Jul 2013 A1
20130184739 Brady et al. Jul 2013 A1
20130197567 Brady et al. Aug 2013 A1
20130226146 Tekulve Aug 2013 A1
20130268050 Wilson et al. Oct 2013 A1
20130281788 Garrison Oct 2013 A1
20130289697 Baker et al. Oct 2013 A1
20130325055 Eckhouse et al. Dec 2013 A1
20130325056 Eckhouse et al. Dec 2013 A1
20130345739 Brady et al. Dec 2013 A1
20140012281 Wang et al. Jan 2014 A1
20140046359 Bowman et al. Feb 2014 A1
20140052097 Petersen et al. Feb 2014 A1
20140081243 Zhou et al. Mar 2014 A1
20140121672 Folk May 2014 A1
20140128905 Molaei May 2014 A1
20140135812 Divino et al. May 2014 A1
20140180377 Bose et al. Jun 2014 A1
20140188127 Dubrul et al. Jul 2014 A1
20140194919 Losardo et al. Jul 2014 A1
20140200607 Sepetka et al. Jul 2014 A1
20140200608 Brady et al. Jul 2014 A1
20140236220 Inoue Aug 2014 A1
20140257018 Farnan Sep 2014 A1
20140257362 Eldenschink Sep 2014 A1
20140276922 McLain et al. Sep 2014 A1
20140277003 Hendrick Sep 2014 A1
20140277053 Wang et al. Sep 2014 A1
20140277079 Vale et al. Sep 2014 A1
20140309657 Ben-Ami Oct 2014 A1
20140309673 Dacuycuy et al. Oct 2014 A1
20140330302 Tekulve et al. Nov 2014 A1
20140343585 Ferrera et al. Nov 2014 A1
20140364896 Consigny Dec 2014 A1
20140371769 Vale et al. Dec 2014 A1
20140371777 Rudakov et al. Dec 2014 A1
20140371779 Vale et al. Dec 2014 A1
20140371780 Vale et al. Dec 2014 A1
20140379023 Brady et al. Dec 2014 A1
20150018859 Quick et al. Jan 2015 A1
20150018860 Quick et al. Jan 2015 A1
20150080937 Davidson Mar 2015 A1
20150081003 Wainwright et al. Mar 2015 A1
20150112376 Molaei et al. Apr 2015 A1
20150133990 Davidson May 2015 A1
20150142043 Furey May 2015 A1
20150164523 Brady et al. Jun 2015 A1
20150173782 Garrison et al. Jun 2015 A1
20150173783 Tah et al. Jun 2015 A1
20150238314 Börtlein et al. Aug 2015 A1
20150250497 Marks et al. Sep 2015 A1
20150257775 Gilvarry et al. Sep 2015 A1
20150258270 Kunis Sep 2015 A1
20150290437 Rudakov et al. Oct 2015 A1
20150297252 Miloslavski et al. Oct 2015 A1
20150306311 Pinchuk et al. Oct 2015 A1
20150313617 Grandfield et al. Nov 2015 A1
20150320431 Ulm, III Nov 2015 A1
20150351770 Fulton, III Dec 2015 A1
20150352325 Quick Dec 2015 A1
20150359547 Vale et al. Dec 2015 A1
20150374391 Quick et al. Dec 2015 A1
20150374393 Brady et al. Dec 2015 A1
20150374479 Vale Dec 2015 A1
20160015402 Brady et al. Jan 2016 A1
20160022296 Brady et al. Jan 2016 A1
20160066921 Brady et al. Mar 2016 A1
20160074067 Furnish et al. Mar 2016 A1
20160106448 Brady et al. Apr 2016 A1
20160106449 Brady et al. Apr 2016 A1
20160113663 Brady et al. Apr 2016 A1
20160113664 Brady et al. Apr 2016 A1
20160113665 Brady et al. Apr 2016 A1
20160120558 Brady et al. May 2016 A1
20160121080 Cottone May 2016 A1
20160135829 Holochwost et al. May 2016 A1
20160143653 Vale et al. May 2016 A1
20160151079 Aklog et al. Jun 2016 A1
20160192953 Brady et al. Jul 2016 A1
20160192954 Brady et al. Jul 2016 A1
20160192955 Brady et al. Jul 2016 A1
20160192956 Brady et al. Jul 2016 A1
20160228134 Martin et al. Aug 2016 A1
20160256180 Vale et al. Sep 2016 A1
20160262880 Li et al. Sep 2016 A1
20160317168 Brady et al. Nov 2016 A1
20160346002 Avneri et al. Dec 2016 A1
20170007264 Cruise et al. Jan 2017 A1
20170007265 Guo et al. Jan 2017 A1
20170020670 Murray et al. Jan 2017 A1
20170020700 Bienvenu et al. Jan 2017 A1
20170027640 Kunis et al. Feb 2017 A1
20170027692 Bonhoeffer et al. Feb 2017 A1
20170027725 Argentine Feb 2017 A1
20170035436 Morita Feb 2017 A1
20170035567 Duffy Feb 2017 A1
20170042548 Lam Feb 2017 A1
20170049596 Schabert Feb 2017 A1
20170065401 Fearnot et al. Mar 2017 A1
20170071614 Vale et al. Mar 2017 A1
20170071737 Kelley Mar 2017 A1
20170072452 Monetti et al. Mar 2017 A1
20170079671 Morero et al. Mar 2017 A1
20170079680 Bowman Mar 2017 A1
20170079766 Wang et al. Mar 2017 A1
20170079767 Leon-Yip Mar 2017 A1
20170079812 Lam et al. Mar 2017 A1
20170079817 Sepetka et al. Mar 2017 A1
20170079819 Pung et al. Mar 2017 A1
20170079820 Lam et al. Mar 2017 A1
20170086851 Wallace et al. Mar 2017 A1
20170086862 Vale et al. Mar 2017 A1
20170086863 Brady et al. Mar 2017 A1
20170086864 Greenhalgh et al. Mar 2017 A1
20170086996 Peterson et al. Mar 2017 A1
20170095138 Nakade et al. Apr 2017 A1
20170095259 Tompkins et al. Apr 2017 A1
20170100126 Bowman et al. Apr 2017 A1
20170100141 Morero et al. Apr 2017 A1
20170100142 Look et al. Apr 2017 A1
20170100143 Granfield Apr 2017 A1
20170100183 Iaizzo et al. Apr 2017 A1
20170105743 Vale et al. Apr 2017 A1
20170112515 Brady et al. Apr 2017 A1
20170113023 Steingisser et al. Apr 2017 A1
20170147765 Mehta May 2017 A1
20170151032 Loisel Jun 2017 A1
20170165062 Rothstein Jun 2017 A1
20170165065 Rothstein et al. Jun 2017 A1
20170165454 Tuohy et al. Jun 2017 A1
20170172554 Bortlein et al. Jun 2017 A1
20170172581 Bose et al. Jun 2017 A1
20170172766 Vong et al. Jun 2017 A1
20170172772 Khenansho Jun 2017 A1
20170189033 Sepetka et al. Jul 2017 A1
20170189035 Porter Jul 2017 A1
20170215902 Leynov et al. Aug 2017 A1
20170216484 Cruise et al. Aug 2017 A1
20170224350 Shimizu et al. Aug 2017 A1
20170224355 Bowman et al. Aug 2017 A1
20170224467 Piccagli et al. Aug 2017 A1
20170224511 Dwork et al. Aug 2017 A1
20170224953 Tran et al. Aug 2017 A1
20170231749 Perkins et al. Aug 2017 A1
20170238953 Yang et al. Aug 2017 A1
20170239447 Yang et al. Aug 2017 A1
20170252043 Fuller et al. Sep 2017 A1
20170252064 Staunton Sep 2017 A1
20170259042 Nguyen et al. Sep 2017 A1
20170265983 Lam et al. Sep 2017 A1
20170281192 Tieu et al. Oct 2017 A1
20170281331 Perkins et al. Oct 2017 A1
20170281344 Costello Oct 2017 A1
20170281909 Northrop et al. Oct 2017 A1
20170281912 Melder et al. Oct 2017 A1
20170290593 Sethna Oct 2017 A1
20170290654 Sethna Oct 2017 A1
20170296324 Argentine Oct 2017 A1
20170296325 Marrocco et al. Oct 2017 A1
20170303939 Greenhalgh et al. Oct 2017 A1
20170303942 Greenhalgh et al. Oct 2017 A1
20170303947 Greenhalgh et al. Oct 2017 A1
20170303948 Wallace et al. Oct 2017 A1
20170304041 Argentine Oct 2017 A1
20170304097 Corwin et al. Oct 2017 A1
20170304595 Nagasrinivasa et al. Oct 2017 A1
20170312109 Le Nov 2017 A1
20170312484 Shipley et al. Nov 2017 A1
20170316561 Helm et al. Nov 2017 A1
20170319826 Bowman et al. Nov 2017 A1
20170333228 Orth et al. Nov 2017 A1
20170333236 Greenan Nov 2017 A1
20170333678 Bowman et al. Nov 2017 A1
20170340383 Bloom et al. Nov 2017 A1
20170348014 Wallace et al. Dec 2017 A1
20170348514 Guyon et al. Dec 2017 A1
20180008407 Maimon et al. Jan 2018 A1
20180042623 Batiste Feb 2018 A1
20180193050 Hawkins et al. Jul 2018 A1
20180193591 Jaroch et al. Jul 2018 A1
20180235743 Farago et al. Aug 2018 A1
20180256177 Cooper et al. Sep 2018 A1
20180303610 Anderson Oct 2018 A1
20190021755 Johnson et al. Jan 2019 A1
20190021759 Krolik et al. Jan 2019 A1
20190029820 Zhou et al. Jan 2019 A1
20190029825 Fitterer et al. Jan 2019 A1
20190046219 Marchand et al. Feb 2019 A1
20190192175 Chida et al. Jun 2019 A1
20190209206 Patel et al. Jul 2019 A1
20190216476 Barry et al. Jul 2019 A1
20190239907 Brady et al. Aug 2019 A1
20190247627 Korkuch et al. Aug 2019 A1
20190255290 Snyder et al. Aug 2019 A1
20190269491 Jalgaonkar et al. Sep 2019 A1
20190274810 Phouasalit et al. Sep 2019 A1
20190298396 Gamba et al. Oct 2019 A1
20190365411 Avneri et al. Dec 2019 A1
20190366049 Hannon et al. Dec 2019 A1
20200038628 Chou et al. Feb 2020 A1
20200155180 Follmer May 2020 A1
20200214859 Sherburne Jul 2020 A1
20200281611 Kelly et al. Sep 2020 A1
20200353208 Merhi et al. Nov 2020 A1
20200383698 Miao et al. Dec 2020 A1
20210085935 Fahey et al. Mar 2021 A1
20210153883 Casey et al. May 2021 A1
20210153884 Casey et al. May 2021 A1
20210154433 Casey et al. May 2021 A1
20210219821 Appling et al. Jul 2021 A1
20210228223 Casey et al. Jul 2021 A1
20220117614 Salmon et al. Apr 2022 A1
20220125450 Sirhan et al. Apr 2022 A1
20220313426 Gifford, III et al. Oct 2022 A1
20230054898 Gurovich et al. Mar 2023 A1
Foreign Referenced Citations (106)
Number Date Country
2015271876 Sep 2017 AU
1658920 Aug 2005 CN
1972728 May 2007 CN
103071195 May 2013 CN
104507380 Apr 2015 CN
104905873 Sep 2015 CN
105007973 Oct 2015 CN
105307582 Feb 2016 CN
105726163 Jul 2016 CN
106232059 Dec 2016 CN
113040865 Jun 2021 CN
20 2009 001 951 Apr 2010 DE
10 2009 056 450 Jun 2011 DE
10 2010 010 849 Sep 2011 DE
10 2010 014 778 Oct 2011 DE
10 2010 024 085 Dec 2011 DE
10 2011 014 586 Sep 2012 DE
20 2020 107013 Jan 2021 DE
2301450 Mar 2011 EP
2628455 Aug 2013 EP
3302312 Apr 2018 EP
3335647 Jun 2018 EP
3 420 978 Jan 2019 EP
4049704 Aug 2022 EP
2498349 Jul 2013 GB
9-19438 Jan 1997 JP
WO 9304722 Mar 1993 WO
9424926 Nov 1994 WO
9727808 Aug 1997 WO
9738631 Oct 1997 WO
9920335 Apr 1999 WO
9956801 Nov 1999 WO
9960933 Dec 1999 WO
0121077 Mar 2001 WO
0202162 Jan 2002 WO
0211627 Feb 2002 WO
0243616 Jun 2002 WO
02070061 Sep 2002 WO
02094111 Nov 2002 WO
03002006 Jan 2003 WO
03018085 Mar 2003 WO
03030751 Apr 2003 WO
03051448 Jun 2003 WO
2004028571 Apr 2004 WO
2004056275 Jul 2004 WO
2005000130 Jan 2005 WO
2005027779 Mar 2005 WO
WO 2005027751 Mar 2005 WO
2006021407 Mar 2006 WO
2006031410 Mar 2006 WO
2006107641 Oct 2006 WO
2006135823 Dec 2006 WO
2007054307 May 2007 WO
2007068424 Jun 2007 WO
2008034615 Mar 2008 WO
2008051431 May 2008 WO
2008131116 Oct 2008 WO
WO 2009019664 Feb 2009 WO
2009031338 Mar 2009 WO
2009076482 Jun 2009 WO
2009086482 Jul 2009 WO
2009105710 Aug 2009 WO
WO 2009103125 Aug 2009 WO
2010010545 Jan 2010 WO
2010046897 Apr 2010 WO
2010075565 Jul 2010 WO
2010102307 Sep 2010 WO
2010146581 Dec 2010 WO
2011013556 Feb 2011 WO
2011066961 Jun 2011 WO
2011082319 Jul 2011 WO
2011095352 Aug 2011 WO
2011106426 Sep 2011 WO
2011110316 Sep 2011 WO
2012052982 Apr 2012 WO
2012064726 May 2012 WO
2012081020 Jun 2012 WO
2012110619 Aug 2012 WO
2012120490 Sep 2012 WO
2012156924 Nov 2012 WO
2013016435 Jan 2013 WO
2013072777 May 2013 WO
2013105099 Jul 2013 WO
2013109756 Jul 2013 WO
2014081892 May 2014 WO
2014139845 Sep 2014 WO
2014169266 Oct 2014 WO
2014178198 Nov 2014 WO
WO 2014188300 Nov 2014 WO
2015061365 Apr 2015 WO
2015134625 Sep 2015 WO
2015179324 Nov 2015 WO
WO 2015179377 Nov 2015 WO
2015189354 Dec 2015 WO
2016010995 Jan 2016 WO
WO 2017004234 Jan 2017 WO
WO 2017097616 Jun 2017 WO
2018193603 Oct 2018 WO
WO 2018178979 Oct 2018 WO
WO 2019064306 Apr 2019 WO
WO 2019079296 Apr 2019 WO
WO 2020139979 Jul 2020 WO
WO 2021016213 Jan 2021 WO
WO 2021162678 Aug 2021 WO
WO 2021167653 Aug 2021 WO
WO 2022020366 Jan 2022 WO
Non-Patent Literature Citations (2)
Entry
US 6,348,062 B1, 02/2002, Hopkins (withdrawn)
Struffert, T., et al. “Intravenous flat detector CT angiography for non-invasive visualisation of intracranial flow diverter: technical feasibility” Eur Radiol 21:1797-1801 (2011).
Related Publications (1)
Number Date Country
20210353318 A1 Nov 2021 US
Provisional Applications (1)
Number Date Country
62019137 Jun 2014 US
Continuations (2)
Number Date Country
Parent 16294661 Mar 2019 US
Child 17444074 US
Parent 14698552 Apr 2015 US
Child 16294661 US