The present invention relates to the field of smoke detectors and other safety and security systems, and more specifically, to providing specific instructions to a particular location.
A home monitoring system is an important feature in any residential building. This system can provide a user with varied monitoring facilities. One such monitoring facility includes a fire monitoring system. Usually, to provide fire safety, the home monitoring system uses various smoke detectors installed at various locations in a house. A smoke detector detects presence of smoke at a location where it is mounted and then sounds an alarm. In order to ensure maximum safety, it is important that the smoke detector detects the smoke and sounds the alarm very early.
There are a number of different smoke alarm systems. One such system interconnects the smoke detectors together. These interconnected smoke detectors are mounted at different locations in the house. The interconnection is in the form of a hard-wire connection and enables one smoke detector to signal other smoke detectors when it detects smoke.
Another system issues vocal instructions on what do when smoke is detected. The recorded voice message is more effective than the alarm, especially for elderly people and children, and can guide people out of the house. However, the vocal smoke detector plays the recorded voice message only at the location where it is mounted. In this case, the recorded voice message may not be audible at other locations in the house. Moreover, the single voice message played by the vocal smoke detector may not pertain to the location of the smoke. In other words, the same voice message may not be applicable to different locations of the fire in the home. Hence, is not able to guide people out of the house effectively.
The present invention is illustrated by way of example, and not limitation, in the accompanying figures, in which like references indicate similar elements, and in which:
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.
In this document, relational terms such as first and second, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms ‘comprises,’ ‘comprising,’ or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element preceded by ‘comprises . . . a’ does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
Memory 206 stores a plurality of messages indexed by the various addresses of the detectors that transmit problem signals. In one example, the messages stored in the memory 206 include vocal instructions recorded into the controller 102 by a user. If the system is to be used in a home with children, it can be additionally beneficial to have one of the parents record the vocal instructions so that in a true emergency the children will hear the familiar voice of the parent and not panic in order to follow the instructions providing the best route to exit the home. The vocal instructions may be recorded using various known techniques for recording. These vocal instructions provide directions to exit the home 101 in the event of an emergency. The multiple vocal instructions provide many alternative directions for exiting the home 101.
In one illustrative system, processor 204 requests one or more messages from memory 206. In this system processor 204 formats its request for messages from memory 206 based on the address of the detector that sent the problem signal. Processor 204 then forwards the one or more messages returned by memory 206 to transmitter 208. Transmitter 208 then transmits the one or more messages to one or more detectors 104, 106, 108, 110 and 112 and audio device 120. Once some or all of the detectors 104, 106, 108, 110, and 112 and audio device 120 receive the one or messages, they play the vocal instructions which typically includes directions on how best to exit home 101. For example, in the event of an emergency, the controller 102 is able to place a call to a user on his/her mobile phone, and play a pre-recorded voice message, informing the user about the emergency.
In one illustrative system, the receiver 202 and the transmitter 208 are integrated into a transceiver. The transceiver receives and transmits signals wirelessly or via wired connections. In another illustrative system, a PSTN interface 210 is included in controller 102 to enable communication with the one or more audio devices. For example, consider a case where at least one audio device is a PSTN phone, and the controller 102 is connected to it through a hybrid 2/4 wire used in the register jack (RJ-11) port of the phone. On detecting an emergency situation or adverse condition, controller 102 can signal the PSTN phone to ring and play out vocal instructions upon receipt of the call.
In another illustrative system the PSTN interface 210 is used to automatically place a call to a monitoring service, such as an alarm company, in the event any detector reports the presence of smoke or some other adverse condition at its location. In this system, memory 206 stores a relevant, pre-recorded vocal instruction, for an emergency situation such as a fire. The PSTN interface 210 is then able to retrieve the special pre-recorded vocal instruction from memory 206 via the processor 204, and play it during the call.
Database 300 also includes a plurality of rows arranged into subsets 320, 325 and 330. It should be noted that more row subsets may be used in a particular implementation but only two are shown in
Detector 104 then receives one or more messages from controller 102 via receiver 404. Receiver 404 forwards the received messages to processor 410. Processor 410 converts the vocal instructions from the messages into a format for audio output. Examples of the types of processing performed by processor 410 include decoding, decrypting and D/A conversion. The properly formatted data is then output to audio output 408 where it is played for the user.
If detector 104 is not designed to provide vocal instructions but is instead designed to detect an adverse condition and generate a problem signal, receiver 404 and audio output 408 may be omitted. In addition, one illustrative example for audio device 120 includes receiver 404, audio output 408 and processor 410. Audio device does not need sensor 402 to detect an adverse condition nor transmitter 406 to transmit a problem signal as that is not its purpose.
An alternative implementation of detector 104 is also shown in
Memory 412 holds a modified database to that shown in
Once the source addresses have been determined, processor 204 generates a request for specific vocal instructions from memory 206 and memory 206 responds by returning the requested vocal instructions and destination addresses at step 520. At step 525, processor 204 forwards the vocal instructions to transmitter 208 where the vocal instructions are transmitted to some or all of the detectors 104, 106, 108, 110 and 112 and audio device 120 in messages. Each detector and audio device receives its vocal instructions via the destination address retrieved from column 515 from memory 206. At step 550 the audio detectors and/or devices play their respective vocal instructions.
The intercommunication between the controller 102 and various detectors 104, 106, 108, 110, and 112 and audio device 120 may be explained in conjunction with various illustrative systems. As an example, detectors 104, 106, 108, 110, and 112, are smoke detectors communicating with the controller 102 in the home monitoring system. Each detector 104, 106, 108, 110, and 112 is constructed as shown in
In a similar fashion, if detector 112 in the kitchen detects smoke, controller 102 will forward different messages. Messages will be sent to detectors 104, 106 and 108 and audio device 120 that include vocal instructions telling the occupants to exit the home using the first stairwell and the front door (attached to the living room but not shown). Likewise, occupants in the living room will be told to exit the home through the front door via detector 110 while occupants in the kitchen will be told to exit using the safest available exit via detector 112.
In yet another example, if detectors 110 and 112 detect smoke in the living room and the kitchen at substantially the same time, they will each forward problem signals to controller 102. Since processor 204 receives two problem signals at substantially the same time, it must generate a unique data point to form its query of memory 206. One way to do this is to add the source addresses together. Of course it should be noted that any other number of methods may be practiced to generate a unique number from two or more source addresses. Referring to
Memory 206 responds by returning the vocal instructions in column 310 and destination addresses in column 315 from subset 330. Processor 204 then transmits the vocal instructions using the various destination addresses. Detectors 104, 106 and 108 and audio device 120 play the vocal instructions that provide directions to exit the respective bedrooms via the windows in the bedrooms because it is presumed that the fire may be large enough to be in both the living room and the kitchen. Thus, exiting via the first or second stairways may actually bring the occupants closer to the fire and put them in jeopardy. In similar fashion, detectors 110 and 112 will play vocal instructions telling the occupants to exit each room using the safest available exit.
The above systems and methods also allow for dynamic presentation of vocal instructions. For example, suppose a fire begins in the living room and is detected by detector 110 at time to. Controller 102 will forward messages to detectors 104, 106 and 108 and audio device 120 at time t1. Detectors 104, 106 and 108 and audio device 120 will play vocal instructions telling the occupants of the respective bedrooms to exit the home via the second staircase and back door attached to the kitchen as previously described at time t2. If later the fire spreads into the kitchen, detector 112 will then begin transmitting messages to controller 102 at time t3. Meanwhile controller 102 will continue to receive messages from detector 116 so that controller 102 will receive messages from both detectors 110 and 112 substantially at the same time at time t4. Controller 102 will then transmit different messages to detectors 104, 106, 108 and audio device 120 at time t5. At time t6 the detectors 104, 106, 108 and audio device 120 will play a different vocal message telling the occupants of the respective bedrooms to exit the home via the windows and thereby avoid the fire on the first floor.
The above systems may also be implemented with non-vocal detectors. For example, the first bedroom does not need a vocal detector. Instead, detector 104 may simply detect a problem and transmit a problem signal to controller 102 or the audio detectors 104, 106, 108, 110 and 112 and audio devices 120 directly in the home. Audio device 120 receives either the problem signal from detector 104 or a message from controller 102 and plays the correspondingly appropriate vocal instructions to the occupants.
While the above systems and methods have been described with specific details above, it is understood that those of ordinary skill in the art may implement similar systems and methods with slightly varying details. For example, the functional blocks shown in
In yet another alternative system, PSTN interface 210 in
The process shown in
Number | Name | Date | Kind |
---|---|---|---|
4796018 | Nakanishi et al. | Jan 1989 | A |
5889468 | Banga | Mar 1999 | A |
5973603 | Judy | Oct 1999 | A |
6353395 | Duran | Mar 2002 | B1 |
6583720 | Quigley | Jun 2003 | B1 |
6703930 | Skinner | Mar 2004 | B2 |
7342488 | Wolfe et al. | Mar 2008 | B2 |
Number | Date | Country | |
---|---|---|---|
20070171044 A1 | Jul 2007 | US |