The present invention relates generally to a system of sensors and multiple sensor data for asset and rule management in an industrial process such as plastic drying, conveying and molding. In general, these systems are applicable to a large number of machines used in similar industrial processes such as conveying, machining of metals and woods, fermentation and various other process engineering. More specifically, it relates to predictive maintenance, rule management and process quality assurance of an industrial process using a reconfigurable sensor network.
Conventional sensors for industrial processes are deployed on a fixed position with the apparatuses or they were employed for a single or multiple process measurement. The conventional industrial sensors are designed to be installed at specific locations inside the process apparatuses, for which specialized sensor housings are used which results in increased overall cost of the sensor device and system. Also, different devices require different types of specifically designed conventional sensors and they are wired to external communication and control devices for measurement, analysis and control of the process.
Predictive analytics uses previously real time data and outcome is based on the pattern detected in the data collected in the past. It includes two data type: Training and Prediction set. Using a predictive model, a user can predict the unknown or future outcome. In big machine data collection, either automated or semi-automated techniques can be used to discover previously unknown patterns in data, which includes relationships between desired “prediction” such as a particular failure and machine parameters. A process in an industry is carried out by a single machine or a system of machines. A set of sensors of a same type or different types are attached to the machines for sensing both the process and the machine parameters such as sound or vibration from machines to check the maintenance condition of the machines. Hence, when multiple sensors are used to collect different process or data for predictive maintenance, the relationship between the systems having the sensor should be well defined.
With the advances in the sensor technology, the sensors can be detachable, mobile and reconfigurable. They can be assigned to any machine and any process in any given time. The sensors can be used to measure one or multiple process parameters and the same sensor can perform multiple functions such as predictive maintenance and process quality check. The measured data can be processed for several reasons such as meaningful information for predictive maintenance issues of a machine. In most of the factories, there exists multiple processes using same or different sets of machines.
Therefore to use a reconfigurable sensor network where the same sensor can be allocated to different machines and process, the user has to specify which are the measured quantities by the sensor as it can measure a variety of values resulted from different sensors deployed for different machines. To make the sensor reconfigurable, it should be in terms of physical reconfiguration, a logical reconfiguration, or reconfiguration of a mode of operation of the sensor. The reconfigurable sensors can be used to manage collecting data/information about the machine as well as process and/or modify calibration and/or changing other attributes of one or more sensors using predefined rules. The reconfigurable sensor can perform a different behavior; provide a different output and it should be able to measure different classes. The reconfigurable sensor itself can be used to feed data. The reconfigurable sensor can be configured to provide different types of information to different user classes. Thus, agility to allocate sensors to different machines, sub-assembly, process and prediction must be achieved to use the sensor data effectively for predictive analysis of machine data
The existing process control and quality programs which are designed to address a sensor fixed on a location to measure a predetermined set of process parameters cannot be employed to automatically detect different processes inside a machine solely from measured values of the sensors. Moreover the system cannot automatically detect and distinguish between the machine parameters for predictive maintenance and the process parameter measured by the sensors. Hence, different sensors installed for process measurement and machine data including sound and vibration measurement may enforce the data to be processed separately using two or more independent programs running in a server for process management and predictive maintenance. The separately processed data increases the overall cost for sensors and systems and also leads to under-utilization of the sensors and sensor data.
The above said sensors may be integrated using integration platform that may include rule engine module. The interface may include a rule creation interface. The data analysis module analyzes the collected data and metadata to determine specific semantic label or context relevant to the machine. The rule management module enables configuration, adjustment, and interaction with the sensor devices based on collected data. Since the data amount is very large, and each piece of data must be matched with a set of rules in the big machine data, extremely severe necessity has been raised for data filtering (rule match) engines of application gateways. The system may store a large amount of state information, so it is difficult to achieve a rapid and efficient effect for matching events. In conventional systems for changing a rule, the hardware must be replaced and/or reinstalled. The software coding on the already existing hardware requires complex steps to make the change. Hence a new method and system is required for collecting data and to use commands for modifying the existing rules or to create new rules in the various configuration of sensors without changing hardware devices.
In conventional systems, mobile middleware facilitates the rapid deployment of adaptive applications in wireless sensor networks but with the constraint of injecting special programs for application specific tasks. Major drawbacks in conventional system include the high level of dynamics within the network in terms of changing wireless links and node hardware configurations, wide variety of hardware present in these networks, and extremely limited computational and energy resources available. Hence there exists a need to create a structured assignment between machines, sensors and machine process using simplified architecture. Programs are developed that can connect different mobile applications, machine and systems in the sensor networks and big data machine learning environment.
U.S. Pat. No. 8,150,340 B2 discusses a heating control system, comprising temperature transducer element having a downstream voltage transformer. A logic assembly is coupled to the energy storage device and has sequence control. A data transmission unit is coupled to the logic assembly. A sensor, coupled to the logic assembly, measures ambient parameters. It uses the logic assembly to be connected to at least one sensor. Measurement data from the at least one sensor can then be recorded and read by the logic assembly applied to the transmission message, interrogating one or more sensors. The patent discusses a logic based system and mechanism. Further, the application fails to disclose reconfigurable engine and rule management in big data machine learning.
U.S. Pat. No. 5,150,289A discusses a system for closed-loop control of equipment that performs a process and responds to a controlled variable signal to vary a measurable characteristic of the process. An error signal is generated as the difference between the mean signal and a signal representing a target value of the monitored characteristic, divided by the value of the standard deviation signal. The system monitors the error signal to detect selected changes in the process by generating two disparate or extreme-value accumulation signals. One is a high-value accumulation signal that represents time-wise summation of successive values of the difference between the error signal and a predetermined high slack value. The other is a low-value accumulation signal that represents a time-wise summation of successive values of the difference between a negated error signal and a predetermined low slack value. The high slack value and the low slack value which may, for example, be specified by the operator at run time, are independent of one another. That is, although the operator may set the values equal to each other, in principle they can be set to different levels. This independence of the disparate accumulation signals permits enhanced accurate control of a wide range of manufacturing processes. This patent amongst others fails to show any means of collecting real time data and also fails to adapt or learn.
It is evident from the discussion of the aforementioned prior arts that none of them pave way for rule management, predictive maintenance and quality assurance of a process and machine using sensor networks.
Therefore, there exists a need for an automated system that would allow the use of same set of sensors for process and predictive maintenance data measurement in a process. The needed system would be able to distinguish between the measured process and machine maintenance/state parameters for automated process management and predictive maintenance of the system using reconfigurable sensors. Moreover the needed system would be able to detect an anomaly in the process or machine by comparing against a normal standard test value set by an automated rule engine. The needed system would be able to automatically set different rules for the optimal operation of the process and the machine. Further the needed system would be able to operate independently without assistance from the system controllers (such as Profinet from Siemens) for automated detection of the process, machine parameters, rule setting and predictive maintenance and process quality assurance. The present invention accomplishes these objectives.
This disclosure extends a new concept of “Machine Wearable Sensors” as opposed to sensors that goes inside the process of a machine. The basic idea is to plug sensors outside the machine and try to investigate machine and process issues from “Wearable sensors” as the concept leads to reduction of cost, ease of maintenance and ease of data communication since they are not deployed as “in process” sensors.
Disclosed are a method, an apparatus and/or a system for rule management, predictive maintenance and quality assurance of a process and machine using sensor networks and big data machine learning
In one aspect, the present invention is a system for the purpose of rule management, predictive maintenance and process quality assurance of at least one process or in general multiple processes using automatic rule formation. The system comprises a plurality of sensors capable of being attached to at least one machine or multiple machines, in general, for measuring information about at least one process or multiple processes in general or maintenance information about the machine. The multiple sensors attached to the machines are connected to a server of the system via a wireless communication channel. The servers are connected to at least one controller for the machines or the processes via the same wireless network or a separate dedicated wireless network. The server receives the information collected by the multiple sensors over the wireless channel. The controller is connected to a reconfigurable engine that is either associated with the server or with a mobile application connected to the server over a wireless network. The multiple sensors attached to the machines performing one or different processes can measure process parameters and predictive maintenance parameters. The reconfigurable engine of the present embodiment automatically collects and classifies the information regarding the process parameters and the predictive maintenance parameters from the sensors into individual stream with enough data “tuplet” to do analytical processing for extracting useful information on sensor data for predictive maintenance and process quality assurance.
In another aspect, reconfiguring a sensor or a rule that governs the sensor analytic is deployed via a mobile application that syncs up a local reconfigurable database with a server database for rule and sensor asset management.
In another aspect of the present invention, the server can include an algorithm to auto detect the type of process or the machine predictive maintenance data from the measured process or machine parameters. The reading from one sensor can act as a reference for others for auto-discovery of a process without having data or receiving an update from the controller. The controller for the process can be mapped to the reconfigurable engine running in the server for classifying the predictive maintenance data and controller data to perform analytical processing for extracting useful information on sensor data for predictive maintenance and process quality assurance. A process discovery algorithm associated with the server uses one or multiple process data as reference for discovering a process automatically without controller data. A set of fixed or dynamic rules are created from normal state of operation data assigned to a particular process or predictive maintenance and the process were run for obtaining an ideal normal operating mode called “Test Mode” and the data can be used to compare and detect an anomaly process with anomaly being identified and rules for identifying a normal versus a particular anomaly is created automatically within the server program. Thus the system can be used for automatic discovery of rules, which can be further utilized for predictive maintenance, automatic process identification and process quality assurance.
Alternative embodiments of the invention have other aspects, elements, features, and steps in addition to or in place of what is described above. These potential additions and replacements are described throughout the rest of the specification.
Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be apparent to one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, circuits, and networks have not been described in detail so as not to unnecessarily obscure aspects of the embodiments.
According to another embodiment of
In the above said preferred embodiment of
Further, system 100 may be utilized for predictive maintenance, automatic process identification and process quality assurance. Machine learning classification algorithms like support vector machines (SVM), K-mean, Neural Network, Random Forest, Logistic Regression, Decision Tree, p-Tree may be used on the data collected during test period. Further, rules may be generated from learning algorithms.
Further the system 100 may be used for predictive maintenance, automatic process identification and process quality assurance based on the automated dynamic rules formed using the reconfigurable engine 116 associated with the server 106. Thus, the system 100 may form a fully automated processing system. The fully automated processing system may measure parameters of the automated processing system, identify different parameters measured using the same sensors and/or different sensors, compare the values with nominal values and finding anomalies in particular process and/or machine. Further, the automated system may create dynamic rules based on the normal values and can reconfigure the system 100. Also, the automated system may automatically process for predictive maintenance, automatic process identification and process quality assurance. Moreover, a user can monitor and/or control the system 100 remotely using a portable device having a mobile application configured to interface with the sensors and having the reconfigurable rule program running on the portable device.
Thus a system for rule management, predictive maintenance and quality assurance of a process using automatic rule formation comprising a plurality of sensors capable of being attached to one or more machines for measuring one or more information about the process and machine operation is described according to the disclosure. A server may be associated with one or more sensors over a wireless communication network. The server may be running a reconfigurable rule management program for identifying and processing the particular process and machine information related to the one or more processes received from the plurality of sensors.
A controller in communication with the server may be capable of controlling the process based on a rule set by the rule engine. The rule engine automatically detects the normal process data, classifies the received data based on the dynamic rules formed by the rule engine and finds anomalies in the process and/or machine operation.
In one or more embodiments, a method and system of three tier architecture for calibration and value management may include calibrating sensors based on an auto calibration signal, base-lining one or more of a sensor data and a machine data through a combination of database architecture, data training architecture, and a base-lining algorithm. Further, the three level calibration may include calibrating a Predictive maintenance gauge.
The sensor calibration 702 may be based on an auto calibration signal received from another system. The sensor calibration 702 may be needed due to aging sensors and electronics. The baselining 704 may include a combined calibration of a machine and vibration sensors. The baselining 704 may be necessary to increase compatibility with older machines when housing and model positioning remain unchanged. The baselining 704 may include calibrating vibration levels produced by one or more machines during installation of sensors onto machines. The calibration of the predictive maintenance gauge 706 may be necessary to a large variety of users. Different users may perceive a predictive maintenance scale differently. Therefore, ranges associated with predictive maintenance states may be adjusted according to a perception of a user as opposed to a factory default.
In one or more embodiments, mobile middleware may associated with the three tier architecture. The mobile middleware may facilitate rapid deployment of adaptive mobile applications in wireless sensor networks. The mobile middleware may allow calibration and value management at an increased pace as compared to conventional systems. The mobile middleware may be associated with mobile applications.
In one or more embodiments, a three tier architecture of calibration, i,e, sensor, sensor with machine and sensor, machine with predictive algorithm may be used to create an unified IoT (Internet of Things) based approach to get robust and reliable results for predictive maintenance and process simulation values.
Although the present embodiments have been described with reference to specific example embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the various embodiments. For example, the various devices and modules described herein may be enabled and operated using hardware circuitry, firmware, software or any combination of hardware, firmware, and software (e.g., embodied in a machine readable medium).
The foregoing description of the specific embodiments will so fully reveal the general nature of the embodiments herein that others can, by applying current knowledge, readily modify and/or adapt for various applications such specific embodiments without departing from the generic concept, and, therefore, such adaptations and modifications should and are intended to be comprehended within the meaning and range of equivalents of the disclosed embodiments. It is to be understood that the phraseology or terminology employed herein is for the purpose of description and not of limitation. Therefore, while the embodiments herein have been described in terms of preferred embodiments, those skilled in the art will recognize that the embodiments herein can be practiced with modification within the spirit and scope of the appended claims.
Although the embodiments herein are described with various specific embodiments, it will be obvious for a person skilled in the art to practice the invention with modifications. However, all such modifications are deemed to be within the scope of the claims.
This application claims priority to the U.S. Provisional patent application No. 62/081,198, filed in the United States Patent and Trademark Office on Nov. 18, 2014, entitled “System for rule management, predictive maintenance and quality assurance of a process and machine using sensor networks and big data machine learning”. The specification of the above referenced patent application is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62081198 | Nov 2014 | US |