System for securing a portion of a body

Information

  • Patent Grant
  • 9750496
  • Patent Number
    9,750,496
  • Date Filed
    Tuesday, April 24, 2012
    13 years ago
  • Date Issued
    Tuesday, September 5, 2017
    8 years ago
Abstract
Embodiments may have one or more projections which engage one or more recesses to position the sections of the retainer relative to each other. An applicator assembly may be used to apply energy to the retainer. Energy applied to the retainer may affect bonding of end portions of the projections to bottom portions of recesses in the retainer. The end portions of the projections may function as energy directors which concentrate energy. The applicator assembly may grip the retainer with a predetermined force. While the applicator assembly is gripping the retainer, the applicator assembly may apply energy to the retainer to effect bonding of sections of the retainer together.
Description
BACKGROUND

The present invention relates to a new and improved apparatus and method which are used to secure a suture relative to body tissue.


It has previously been suggested that a retainer may be connected with a suture by applying energy to the retainer. The energy effects a bonding of one portion of the retainer to another portion of the retainer. It has previously been suggested that a retainer could be connected with a suture in the manner disclosed in Japanese laid-open Patent Application No. 8-140,982 and in U.S. Pat. Nos. 6,010,525; 6,174,324; and 6,368,343.


SUMMARY OF THE INVENTION

The present invention relates to a new and improved apparatus and method for use in securing a suture. The suture is positioned relative to sections of an improved retainer. The sections of the retainer are interconnected when the retainer has been positioned relative to a patient's body tissue. The sections of the retainer may be bonded together by the application of energy to the retainer by an improved applicator assembly.


The improved retainer may have one or more projections which engage one or more recesses to position the sections of the retainer relative to each other. An interference fit may be provided between one or more projections and one or more recesses to hold the sections of the retainer in a desired spatial relationship. The projections may have surfaces which at least partially define one or more passages and guide movement of one or more portions of the suture relative to the retainer. In addition, the surfaces on the projections may function to position the suture relative to the retainer.


The improved applicator assembly may be used to apply energy to the retainer. Energy applied to the retainer may effect bonding of end portions of the projections to bottom portions of recesses in the retainer. The end portions of the projections may function as energy directors which concentrate energy. If desired, one or more loops may be formed in the suture around one or more of the projections.


The applicator assembly may grip the retainer with a predetermined force. While the applicator assembly grips the retainer, the applicator assembly may be utilized to slide the retainer along the suture to position the retainer relative to body tissue. While the applicator assembly is gripping the retainer, the applicator assembly may apply energy to the retainer to effect bonding of sections of the retainer together. The applicator assembly may be used to move the retainer into a cannula to engage tissue in a patient's body.


The present invention includes a plurality of different features which may be utilized in combination with each other or separately. The various features of the invention may be used in combination with features of the prior art. For example, the improved retainer may be used with the improved applicator assembly or with a prior art applicator assembly. As another example, the improved applicator assembly may be used with the improved retainer or a prior art retainer. As still another example, the retainer may be moved through a cannula to a desired position relative to body tissue or may be positioned relative to the body tissue without being moved through a cannula.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features of the invention will become more apparent upon consideration of the following description taken in connection with the accompanying drawings wherein:



FIG. 1. is a fragmentary schematic illustration depicting the manner in which a suture and an improved retainer are positioned relative to body tissue;



FIG. 2. is an enlarged schematic pictorial illustration of the retainer of FIG. 1;



FIG. 3. is an exploded schematic pictorial illustration depicting the construction of a base section and cover section of the retainer of FIGS. 1 and 2;



FIG. 4. is an exploded schematic pictorial illustration, further illustrating the construction of the base and cover sections of the retainer;



FIG. 5. is an exploded schematic pictorial illustration, further illustrating the construction of the base and cover sections of the retainer;



FIG. 6. is an exploded schematic pictorial illustration further illustrating the construction of the base and cover sections of the retainer;



FIG. 7. is a schematic sectional view depicting the relationship between the base and cover sections of the retainer of FIGS. 1-6 with portions of the suture disposed in passages in the retainer;



FIG. 8. is a schematic fragmentary sectional view, generally similar to FIG. 7, depicting the manner in which end portions of projections on the cover section of the retainer are bonded to bottom portions of recesses in the base section of the retainer;



FIG. 9. is a highly schematized sectional view illustrating the construction of an improved applicator assembly which is utilized to interconnect sections of the retainer of FIGS. 1-7 in the manner illustrated schematically in FIG. 8;



FIG. 10. is a schematic pictorial illustration of one embodiment of the applicator assembly of FIG. 9;



FIG. 11. is an enlarged fragmentary schematic pictorial illustration of a portion of the applicator assembly of FIG. 10, illustrating a trigger and spring housing;



FIG. 12. is an enlarged fragmentary schematic illustration of an end portion of the applicator assembly of FIG. 10;



FIG. 13. is a schematic illustration depicting the manner in which a suture may be looped around projections on the retainer of FIGS. 1-8;



FIG. 14. is a schematic sectional view, generally similar to FIG. 7 illustrating a second embodiment of the retainer;



FIG. 15. is a schematic illustration, taken generally along the line of 15-15 of FIG. 14, illustrating a relationship of the suture to a cover section of the retainer;



FIG. 16. is a schematic illustration, generally similar to FIG. 15, illustrating the manner in which the suture may be looped around projections on the cover section of the retainer;



FIG. 17. is a schematic sectional view of another embodiment of the retainer;



FIG. 18. is a schematic sectional view of another embodiment of the retainer;



FIG. 19. is a schematic sectional view of another embodiment of the retainer;



FIG. 20. is a schematic plan view of another embodiment of the retainer;



FIG. 21. is a schematic sectional view, taken generally along the line 21-21 of FIG. 20, further illustrating the construction of the retainer;



FIG. 22. is a schematic sectional view of another embodiment of the retainer;



FIG. 23. is a schematic sectional view of another embodiment of the retainer;



FIG. 24. is a fragmentary schematic illustration depicting the manner in which the applicator assembly of FIGS. 9-12 may be utilized to move the retainer of FIGS. 1-8 and 13-23 into a cannula; and



FIG. 25. is a fragmentary schematic illustration, generally similar to FIG. 12, depicting the manner in which a shield may be provided on the distal portion of the applicator assembly of FIGS. 9-12.





DESCRIPTION OF SPECIFIC EMBODIMENTS

Suture Retainer


An improved retainer 30 is utilized to fixedly interconnect opposite portions 32 and 34 of a suture 36. The portions 32 and 34 of the suture 36 extend in opposite directions through the retainer 30. An intermediate portion 38 of the suture extends between the portions 32 and 34 and extends around body tissue 40 to the retainer 30. It should be understood that the suture 36 and retainer 30 could be connected with each other and/or the body tissue 40 in a manner which is different than the specific manner illustrated in FIG. 1. For example, the portions 32 and 34 of the suture 36 may extend in the same direction from the retainer 30.


It is contemplated that the suture 36 and retainer 30 may be utilized to secure body tissue 40 in many different ways. For example, the suture 36 and retainer 30 may be utilized to secure one piece of body tissue to another piece of body tissue. The suture 36 and retainer 30 may be utilized to secure soft body tissue to hard body tissue (bone). The suture 36 and retainer 30 may be utilized to connect hard body tissue to hard body tissue in the manner disclosed in U.S. Pat. No. 6,238,395. The suture 36 and retainer 30 may be disposed entirely within a patient's body or may engage a surface area on the patient's body.


It is contemplated that the suture 36 can be constructed of a single filament or of a plurality of filaments. The suture 36 may be formed of biodegradable or nonbiodegradable material. Similarly, the retainer 30 may be formed of biodegradable or nonbiodegradable material.


It is believed that it may be desired to form the retainer 30 from Poly-L-Lactic Acid (PLLA) or other resorbable polymer. Although it is believed that it may be desired to form the retainer 30 and suture 36 of the same material, the retainer and suture may be formed of different materials. For example, the suture 36 and retainer 30 may both be formed of a biodegradable material. Alternatively, one of the suture 36 and retainer 30 may be formed of a biodegradable material and the other one formed of a nonbiodegradable material.


It is contemplated that the suture 36 and retainer 30 may be positioned relative to the body tissue 40 using laproscopic or arthroscopic surgical procedures. The retainer 30 and suture 36 may be moved into a patient's body through a cannula. Fiber optics may be used in association with the cannula to facilitate positioning of the suture 36 and retainer 30. The cannula may have any one of the constructions disclosed in U.S. Pat. Nos. 6,338,730 and 6,358,266. The positioning of the retainer 30 and suture 36 using endoscopic surgical procedures may be preferred in order to minimize the size of an incision in a patient's body. Of course, the retainer 30 and suture 36 may be used with an open incision which is relatively large.


Regardless of whether the retainer 30 and suture 36 are positioned in a patient's body using open or minimally invasive surgical techniques, it is contemplated that it may be desired to tension the suture 36 with a predetermined force. A predetermined tension is applied to the suture 36 by pulling the portions 32 and 34 of the suture from the retainer 30 with a predetermined force. The suture 36 is tensioned with a force which is a function of the size and strength of the suture.


The manner in which the suture 36 is tensioned with a predetermined force may be the same as is disclosed in U.S. Pat. No. 6,159,234 or in U.S. patent application Ser. No. 09/556,458 filed May 3, 2000 by Peter M. Bonutti and entitled Method And Apparatus For Securing Tissue. The suture 36 is tensioned with a predetermined force by pulling the portions 32 and 34 of the suture before securing the retainer 30 to the suture to hold the suture. When the retainer 30 has been secured to the suture 36 to hold the suture, the retainer grips the portions 32 and 34 of the suture 36 to maintain a tension, corresponding to the predetermined force, in the suture.


It is contemplated that a robotic mechanism may be utilized to position the retainer 30 and/or suture 36 relative to the body tissue. An imaging device may be utilized in association with the robotic mechanism to facilitate positioning of the retainer 30 and suture 36 relative to the body tissue. The robotic mechanism and/or imaging device may have any one of the constructions and be used in any one of the ways disclosed in U.S. patent application Ser. No. 10/102,413 filed Mar. 20, 2002 by Peter M. Bonutti and entitled Methods of Securing Body Tissue. During the surgery, the patient may be covered by a drapery system which is connected with a surgeon so as to maintain a sterile field between the surgeon and the patient in the manner disclosed in U.S. patent application Ser. No. 09/941,185 filed Aug. 28, 2001 by Peter M. Bonutti and entitled Method of Performing Surgery. Of course, any desired sterile drapery system may be provided to cover the patient.


In order to minimize the size of an incision in the patient, it is contemplated that minimally invasive surgical techniques disclosed in the aforementioned U.S. patent application Ser. No. 09/941,185 filed Aug. 28, 2001 by Peter M. Bonutti and entitled Method of Performing Surgery may be utilized. It is believed that the utilization of minimally invasive surgical techniques may be particularly advantageous when used in association with a robotic mechanism and/or imaging apparatus in the manner disclosed in U.S. patent Ser. No. 10/102,413 filed Mar. 20, 2002 by Peter M. Bonutti. It is contemplated that a magnetic suturing system having a construction similar to that in U.S. patent application Ser. No. 10/005,652 filed by Peter M. Bonutti on Dec. 3, 2001 and entitled Magnetic Suturing System and Method may be used to position the suture 36.


The retainer 30 includes a lower or base section 46 (FIGS. 2 and 3) and an upper or cover section 48. The portions 32 and 34 of the suture 36 extend through passages 52 and 54 (FIGS. 2 and 7) formed between the upper and lower sections 46 and 48 of the retainer 30. The passages 52 and 54 have a cross sectional area which is slightly greater than the cross sectional area of the suture 36 (FIG. 7). Therefore, the portions 32 and 34 of the suture 36 can be readily pulled through the passages 52 and 54 when the retainer 30 is in the initial or undeformed condition illustrated in FIG. 7. It should be understood that the passages 52 and 54 could have a configuration other than the configuration illustrated in FIG. 7.


Once the suture 36 has been tensioned with a desired force, the retainer 30 is plastically deformed in the manner illustrated schematically in FIG. 8. This results in the portions 32 and 34 of the suture 36 being securely gripped between the lower and upper sections 46 and 48 of the retainer 30. The portions 32 and 34 of the suture 36 are gripped with a clamping action which holds them against movement relative to each other and to the retainer 30. This results in the desired tension being maintained in the suture 36.


The lower section 46 of the retainer 30 includes a right (as viewed in FIG. 3) recess 58 and a left recess 60. The right and left recesses 58 and 60 have the same configuration and are disposed the same distance from a central axis of the circular lower section 46 of the retainer 30. Although the recesses 58 and 60 could have many different configurations, the illustrated recesses have elongated configurations with parallel longitudinal central axes which extend perpendicular to the central axis of the circular lower section 46.


The upper section 48 has a circular body 64 from which right (as viewed in FIG. 3) and left projections 66 and 68 extend. The right and left projections 66 and 68 have the same cross sectional configuration which corresponds to the cross sectional configuration of the recesses 58 and 60 (FIGS. 4, 5, 6, and 7). The projections 66 and 68 have an elongated configuration with parallel longitudinal central axes which extend perpendicular the central axis of the circular body 64 of the upper section 48 of the retainer 30. The projections 66 and 68 are disposed the same distance from a central axis of the upper section 48. It is contemplated that the projections 66 and 68 could have a configuration which is different than the specific configuration illustrated in FIGS. 4-7.


A center projection 72 is disposed on the lower section 46 of the retainer 30 at a location midway between the right and left recesses 58 and 60 (FIGS. 3, 4 and 7). The left and right projections 66 and 68 on the upper section 48 of the retainer 30 are telescopically received in the right and left recesses 58 and 60 in the lower section 46 of the retainer 30 (FIGS. 2, 3, and 7). This results in the upper section 38 of the retainer being positioned in a coaxial relationship with the lower section 36 of the retainer. The center projection 72 is disposed midway between the right and left projections 66 and 68 when they engage the right and left recesses 58 and 60. The right and left recesses 58 and 60 cooperate with the right and left projections 66 and 68 to orient the upper section of the retainer 48 with the longitudinal axes of the right and left projections 66 and 68 extending parallel to the longitudinal axis of the center section 72.


When the right and left projections 66 and 68 are disposed in the right and left recesses 58 and 60 (FIG. 7), the center projection 72 cooperates with the right and left projections to partially form the passages 52 and 54. The bottom (as viewed in FIG. 7) of the passage 52 is formed by a gripper surface area 78. The bottom of the passage 54 is formed by a gripper surface area 80.


The gripper surface areas 78 and 80 on the lower section 46 face and are parallel to gripper surface areas 82 and 84 (FIG. 7) on the upper section 48. The gripper surface areas 78, 80, 82 and 84 cooperate with the projections 66, 68 and 72 to define the parallel passages 52 and 54. The gripper surface areas 78, 80, 82 and 84 may be roughened or knurled to enhance their ability to grip the suture 36.


The right and left projections 66 and 68 have flat parallel longitudinally extending inner side surfaces 88 and 90 (FIGS. 4 and 7). The inner side surfaces 88 and 90 on the projections 66 and 68 extend perpendicular to the gripper surface areas 82 and 84 on the circular body 64 of the upper section 48 of the retainer 30. In addition, the right and left projections 68 and 70 have outer side surfaces 92 and 94 which extend parallel to the inner side surfaces 88 and 90.


The center projection 72 has parallel right and left side surfaces 96 and 98 which extend perpendicular to the gripper surface areas 78 and 80 on the lower section 46 (FIG. 4). When the right and left projections 66 and 68 on the circular body 64 of the upper section 48 of the retainer 30 are disposed in the right and left recesses 58 and 60 on the lower section 46 (FIG. 7), the right and left side surfaces 96 and 98 on the center projection 72 extend parallel to the inner side surfaces 88 and 90 on the right and left projections 66 and 68.


The passages 52 and 54 through the retainer 30 are formed by flat surfaces on the lower and upper sections 46 and 48 of the retainer. The flat side surfaces which form the parallel passages 52 and 54 are effective to guide a leading end of a portion of a suture 36 as the suture is inserted into the passage. Thus, the leading end of the portion 32 of the suture is directed by the side surfaces 78, 88, 82, and 98 (FIG. 7) formed on the lower section 46, right projection 66, body 64 and center projection 72 respectively. Similarly, the leading end of the portion 34 of the suture 36 is directed by the side surfaces 80, 90, 84 and 96 formed on the lower section 46, left projection 68, body 64 and center projection 72. By forming the passages 52 and 54 with elongated side surfaces, insertion of the portions 32 and 34 of the suture 36 into the passages is facilitated. This is because once a portion 32 or 34 of the suture 36 has been inserted into one of the passages 52 or 54, the side surfaces of the passage maintain the leading end of the suture in a desired relationship with the passage as the suture continues to be moved into the passage.


The center projection 72 is effective to position the portions 32 and 34 of the suture 36 so that they are disposed on opposite sides of and equal distances from a central axis of the retainer 30. This results in off setting movements being applied to the retainer 30 by forces transmitted to the retainer from the portions 32 and 34 of the suture 36. Therefore, there is little or no tendency for the retainer 30 to rotate or flip relative to the body tissue 40.


The right and left projections 66 and 68 on the upper section 48 of the retainer 30 are disposed in the recesses 58 and 60 in the lower section 46 of the retainer 78 (FIG. 7) during insertion of the portions 32 and 34 of the suture 36 into the passages 52 and 54 in the retainer 30. To hold the projections 66 and 68 in the recesses 58 and 60, there is an interference fit between the projections and the recesses. Thus, the distance between an outer side surface 102 of the right recess 58 (FIG. 7) and an inner side surface 104 of the right recess is slightly less than the distance between the outer side surface 92 and inner side surface 88 on the right projection 66. The resulting interference between the right projection 66 and the right recess 58 is effective to hold the right projection in the right recess.


Similarly, the left recess 60 has parallel outer and inner side surfaces 110 and 112. The outer and inner side surfaces 110 and 112 of the left recess 60 are spaced apart by distance which is slightly less than the distance between the outer side surface 94 and inner side surface 90 on the left projection 68. When the left projection 68 is pressed into the left recess 60, the resulting interference between the side surfaces 90 and 94 on the projection 68 and the side surfaces 110 and 112 on the recess 60 hold the left projection in the left recess. The side surfaces 102, 104, 110 and 112 on the recesses 58 and 60 extend parallel to the side surfaces 96 and 98 on the center projection 72 and perpendicular to the gripper surface areas 78 and 80 on the lower section 46.


The interference fit between the projections 66 and 68 on the upper section 48 of the retainer with the recesses 58 and 60 in the lower section 46 of the retainer holds the two sections of the retainer against movement relative to each other during insertion of the portions 32 and 34 of the suture 36 into the passages 52 and 54. However, it is contemplated that the upper section 48 and lower section 46 of the retainer 30 may be held against movement relative to each other by means other than an interference fit. For example, latch surfaces on the projections 66 and 68 may engage latch surfaces formed on the sides of the recesses 58 and 60. These latch surfaces may have a generally wedge shaped configuration. Alternatively, a pin may extend through at least a portion of the lower section 46 of the retainer and the projections 66 and 68 on the upper section 48 of the retainer to hold the upper section against movement relative to the lower section.


The lower section 46 and upper section 48 of the retainer 30 are formed as two separate pieces. However, it is contemplated that the lower and upper sections 46 and 48 of the retainer 30 could be formed as one piece. If this is done, relatively weak connectors may be provided between the projections 66 and 68 and the base section 46 to hold the base and upper sections 46 and 48 in a desired spatial relationship with each other during insertion of the portions 32 and 34 of the suture 36 into the passages 52 and 54. The weak connectors may be broken to enable the portions 32 and 34 of the suture 36 to be gripped between the retainer sections 46 and 48. Alternatively, a flexible strap may be formed between the base section 46 and upper section 48. By deflecting the strap, the projections 66 and 68 may be inserted into the recesses 58 and 60.


When the right and left projections 66 and 68 are telescopically inserted into the right recess 58 and left recess 60, the leading or lower (as viewed in FIG. 7) end portions of the projections engage flat bottom surfaces 118 and 120 of the recesses 58 and 60 (FIG. 7). The flat bottom surfaces 118 and 120 extend parallel to the gripper surface areas 78 and 80 on the lower section 46 and perpendicular to the side surfaces 102, 104, 110 and 112 of the recesses 58 and 60. Engagement of end portions 124 and 126 of the projections 66 and 68 with the bottom surfaces 118 and 120 of the recesses 58 and 60 positions the lower and upper sections 46 and 48 of the retainer relative to each other and determines the size of the passages 52 and 54. This results in the passages 52 and 54 being sized so as to have a cross sectional area which is slightly greater than the cross sectional area of the portions 32 and 34 of the suture 36 to enable the suture to be readily inserted into the passages.


The center projection 72 has a flat upper side surface 130 which extends parallel to the gripper surfaces 78, 80, 82 and 84. The upper side surface 130 on the center projection 72 is spaced from the upper section 48 when the end portions 124 and 126 of the projections 66 and 68 are in engagement with the bottom surfaces 118 and 120 of the recesses 58 and 60. However, if desired, the center projection 72 may be disposed in engagement with the upper section 48 when the end portions 124 and 126 of the projections 66 and 68 are in engagement with the bottom surfaces 118 and 120 of the recesses 58 and 60.


When the end portions 124 and 126 of the projections 66 and 68 are in engagement with the bottom surfaces 118 and 120 of the recesses 58 and 60, the portions 32 and 34 of the suture 36 can be freely moved in the passages 52 and 54 to enable the retainer 60 to be slid along the suture 36 to a desired position relative to the body tissue 40. The retainer 30 may be slid along the suture 36 under the influence of force manually applied against the retainer or under the influence of force applied against the retainer by a surgical instrument, such as forceps. As this occurs, the intermediate portion 38 (FIG. 1) of the suture is tightened around the body tissue with a desired force.


Once the retainer 30 has been positioned in a desired location relative to the body tissue 40 and the suture 36 tensioned with a predetermined force, the retainer is plastically deformed from the initial condition illustrated in FIG. 7 to the condition illustrated in FIG. 8. Plastic deformation of the retainer 30 results in the size of the passages 52 and 54 being decreased. In addition, the upper side 130 on the center projection 72 moves into engagement with the upper section 48 of the retainer 30. Engagement of the center projection 72 with the upper section 48 of the retainer 30 tends to limit the extent to which the lower and upper section 46 and 48 of the retainer are pressed together to thereby limit plastic deformation of the retainer 30.


If the retainer 30 is constructed so that the center projection 72 engages the upper section 48 of the retainer when the end portions 124 and 126 of the projections 66 and 68 are in engagement with the bottom surface areas 118 and 120 of the recesses 58 and 60, the center projection would also be deformed when the retainer is plastically deformed from the initial condition of FIG. 7 to the condition of FIG. 8. With this construction of the retainer 30, the center projection 72 would be deformed to the same extent as the projections 66 and 68. Therefore, the center projection 72 may be formed with an upper end portion which has the same configuration as the lower end portions 124 and 126 of the projections 66 and 68.


To plastically deform and interconnect the lower and upper sections 46 and 48 of the retainer 30, a member 140 (FIG. 8) is moved into a groove 142 in the lower section 46. In addition, a second member 144 engages a flat outer side surface 146 on the upper section 48 of the retainer 30. The lower and upper sections 46 and 48 of the retainer 30 are firmly pressed together by force transmitted between the members 140 and 144 through the retainer. While the lower and upper sections 46 and 48 of the retainer 30 are gripped between the members 140 and 144 with a clamping action, energy is transmitted from the member 144 to the retainer 30.


The energy applied to the retainer 30 is effective to heat the end portions 124 and 126 of the projections 66 and 68 into a transition temperature range for the polymeric material of the projections. Force applied against the retainer 30 by the members 140 and 144 (FIG. 8) causes the heat softened material of the projections 66 and 68 to flow in the recesses 58 and 60. To a lesser extent, material of the lower section 46 is heated and also flows in the recesses 58 and 60.


As this occurs, the heated material of the projections 66 and 68 may be forced upward toward the portions 32 and 34 of the suture 36. The heated material tends to bond to the portions 32 and 34 of the suture 36. it should be understood that the extent of deformation and flow of the heat softened material of the projections 66 and 68 may be and probably will be greater than the extent illustrated schematically in FIG. 8.


If the retainer 30 is constructed so that the center projection 72 is deformed to the same extent as the projections 66 and 68, heat softened material of the center projection would flow into the passages 52 and 54. If the upper section 48 of the retainer 30 has the construction shown in FIG. 4, the upper end portion of the center projection would engage the flat lower side surface of the body 64. However, the upper section 48 of the retainer 30 may be formed with a recess to receive the upper end portion of the center projection 72. This recess may have the same configuration as the recesses 58 and 60 in the lower section 46 of the retainer 30.


If desired, the retainer 30 may be constructed with the center projection 72 extending from the upper section 48 of the retainer. If this is done, the center projection 72 from the upper section 48 of the retainer may have the same configuration as the illustrated configuration of the center projection in FIGS. 4 and 5. A recess may be provided in the lower section 46 to receive a portion of a center projection from the upper section 48 of the retainer 30.


As the heated material of the projections 66 and 68 is caused to flow in the recess 58 and 60, the size of the passages 52 and 54 is decreased. This results in the portions 32 and 34 of the suture 36 being firmly clamped between the gripper surface areas 78 and 80 on the lower section 46 and the gripper surface areas 82 and 84 on the upper section 48 of the retainer 30. The force applied to the portions 32 and 34 of the suture 36 by the gripper surface areas 78, 80, 82 and 84 on the lower and upper sections 46 and 48 of the retainer 30 is effective to deform the suture from the circular cross sectional configuration illustrated in FIG. 7 to a generally oval cross sectional configuration illustrated schematically in FIG. 8. Although the illustrated suture 36 is a monofilament, it is contemplated that the suture could be formed by a plurality of filaments which are braided or twisted together.


The energy which is applied to the retainer 30 by the member 144 may be thermal energy, vibratory energy, or light energy. The energy may be transmitted by radio frequency waves, ultrasonic waves, heat waves, or light waves. The energy may be vibratory ultrasonic or radio frequency energy. Rather than positioning the member 140 in the groove 142 in the lower section 46 of the retainer 30, the groove 142 may be omitted and a flat member, similar to the member 144, may be pressed against the lower section 46 of the retainer 30. Energy may be transmitted to the retainer through either the member 140 or the member 144 or both of the members 140 and 144.


In the embodiment of the invention illustrated in FIG. 8, the portions 32 and 34 of the suture 36 are clamped between the lower section 46 and upper section 48 of the retainer 30. The clamping force applied against the portions 32 and 34 of the suture 36 by the retainer 30, holds the retainer and the portions of the suture against relative movement. This results in the suture 36 and retainer 30 being securely interconnected.


There is some bonding of material of the retainer to the portions 32 and 34 of the suture 36 to further interconnect suture and the retainer. However, the amount of force and energy transmitted from the member 140 or both of the members 140 and 144 to the retainer 30 is sufficient to effect a plastic deformation of the material of the retainer without excessive plastic deformation of the material of the suture 36. By avoiding excessive deformation of the material of the suture 36, weakening of the suture is avoided. Thus, once the plastic deformation of the retainer 30 has been effected by the transmission of force and energy to the retainer, the lower and upper sections 46 and 48 of the retainer are fixedly interconnected with the suture 36 without significantly weakening of the suture.


The end portions 124 and 126 of the projections 66 and 68 have a pointed configuration. Thus, the end portion 124 of the projection 66 includes a flat side surface area 150 which intersects a flat side surface area 152 at a linear point or peak. Therefore, there is line contact between the end portion 124 of the right projection 66 and the flat bottom surface 118 of the right recess 58. Similarly, the end portion 126 of the left projection 68 has a flat side surface 156 which intersects a flat side surface 158 at a linear point or peak on the end portion 126 of the left projection 68. This results in line contact between the pointed end portion of the left projection 68 and the flat bottom surface 120 of the left recess 60. However, the end portions 124 and 126 of the projections 66 and 68 may have a conical configuration if desired.


By forming the end portions 124 and 126 of the right and left projections 66 and 68 with a pointed configuration, the end portions of the projections are effective to function as energy directors for ultrasonic vibratory energy. The pointed end portions 124 and 126 of the right and left projections 66 and 68 are effective to direct ultrasonic vibratory energy transmitted from the member 144 to the ends of the projections and to the bottom surfaces 118 and 120 of the recesses 58 and 60. The pointed configuration of the end portions 124 and 126 of the projections 66 and 68 concentrates the energy and facilitates melting of the material of the projections. To a lesser extent, the material of the lower section 46 of the retainer 30 is melted adjacent to the bottom surfaces 118 and 120. This results in a secure bonding and interconnection between the lower and upper sections 46 and 48 of the retainer 30.


Applicator Assembly


An improved applicator assembly 172 (FIGS. 9-12) is utilized to grip the retainer 30 with a constant predetermined force, to move the retainer 30 along the suture 36 to a desired position relative to the body tissue 40, and to transmit energy to the retainer 30. The applicator assembly 172 may be used to perform any one or more of foregoing functions rather than all of the functions.


The applicator assembly 172 includes a rigid energy transmission member 174 (FIG. 9) which corresponds to the member 144 in FIG. 8. A rigid tubular force transmitting member 176 extends around and is coaxial with the cylindrical energy transmission member 174. The cylindrical force transmitting member 176 corresponds to the member 140 in FIG. 8.


A biasing assembly 178 continuously urges the force transmitting member 176 toward the left (as viewed in FIG. 9) with a constant predetermined force. The illustrated embodiment of the biasing assembly 178 includes a helical spring 180 which is disposed between an annular flange 182 on a reaction member 184 and an annular piston 186. The annular piston 186 is fixedly connected to a housing 188. The housing 188 is connected to the tubular force transmitting member 176. The reaction member 184 is fixedly connected to a manually engagable handle 194.


A trigger 198 is pivotally connected with the handle 194. The trigger 198 is manually pivotal in a clockwise direction (as viewed in FIGS. 9 and 11). Clockwise pivotal movement of the trigger 198 transmits force through a yoke 200. The force transmitted through the yoke 200 moves the housing 188 toward the right (as viewed in FIGS. 9 and 11). This rightward movement of the housing 188 moves a flange 204 on the right (as viewed in FIGS. 9 and 12) or distal end of the tubular force transmitting member 176 away from a circular end surface 206 on the energy transmission member 174.


The rightward (as viewed in FIGS. 9 and 12) movement of the force transmitting member 176 relative to the energy transmission member 174 increases space between the flange 204 and end surface 206 on the energy transmission member 174. Increasing the space between the flange 204 and the end surface 206 enables the retainer 30 to be positioned between the flange 204 and the end surface 206 with the portions 32 and 34 of the suture 36 extending through the passages 52 and 54 in the retainer 30 in the manner illustrated in FIG. 7.


When the retainer 30 is positioned in the gap between the end surface 206 (FIGS. 9 and 12) on the energy transmission member 174 and the flange 204 connected with the force transmitting member 176, the flange 204 is positioned in the groove 142 in the retainer 30 in the same manner as in which the member 140 is illustrated as engaging the groove 142 in FIG. 8. The end surface 206 (FIGS. 9 and 12) on the energy transmission member 174 is disposed in engagement with the surface 146 on the upper section 48 of the retainer 30 in the same manner as in which the member 144 (FIG. 8) engages the surface 146.


Once the retainer 30 has been positioned in the space between the flange 204 and the end surface 206 on the energy transmission member 174 (FIGS. 9 and 12), the trigger 198 is released. When the trigger 198 is released, the biasing spring 180 is effected to urge the housing 188 toward the left (as viewed in FIGS. 9 and 11). The leftward force applied by the spring 180 against the housing 188 is transmitted through the force transmitting member 176 and flange 204 to the retainer 30. This results in the retainer 30 being clamped between the flange 204 on the force transmitting member 176 and end surface 206 on the energy transmission member 174. The spring 180 is effective to apply a constant predetermined biasing force to the piston ring 186. This constant biasing force is transmitted through the housing 188 and force transmitting member 176 to the retainer 30.


Prior to the transmission of energy to the retainer 30 through the energy transmission member 174, the force applied against the retainer 30 is ineffective to cause significant plastic deformation of the material of the retainer 30. At this time, the end portions 124 and 126 (FIG. 7) of the right and left projections 66 and 68 are pressed against the bottom surfaces 118 and 120 of the recesses 58 and 60 with a constant force. The portions 32 and 34 of the suture 36 are freely movable in the passages 52 and 54.


While the retainer 30 is gripped with a predetermined constant force by the applicator assembly 172, the retainer is moved to a desired position relative to the body tissue 40. To position the retainer 30 relative to the body tissue, the surgeon holds the handle 194 of the applicator assembly 172 in one hand and tensions the portions 32 and 34 of the suture 36 with the other hand. The surgeon then manually applies force against the handle 194 to slide the retainer 30 along the tensioned portions 32 and 34 of the suture 36 toward the body tissue 40. The relatively long force transmitting member 176 and energy transmitting member 174 enable the applicator assembly 172 to move the retainer 30 through a small incision to a remote location in a patient's body as the retainer slides along the suture 36.


During performance of a surgical procedure, the suture 36 may be moved through a cannula to a location disposed within a patient's body. The suture 36 is then positioned relative to the tissue 40 at the remote location in the patient's body. However, it should be understood that the cannula may be omitted and the suture 36 moved through an open incision.


Once the suture 36 has been moved to the desired location relative to the tissue 40 in the patient's body, the portions 32 and 34 of the suture may be positioned in the passages 52 and 54 through the retainer while the retainer is disposed outside of the patient's body. Once the portions 32 and 34 of the suture 36 have been positioned in the passages 52 and 54 to the retainer 30, the retainer is gripped by the applicator assembly 172. The flange 204 on the force transmitting member 176 and end surface 206 on the energy transmission member 174 of the applicator assembly 172 are effective to apply a predetermined constant force against opposite sides of the retainer 30 to securely grip the retainer with the applicator assembly 172.


While the retainer is gripped by the applicator assembly 172, the end portions 32 and 34 of the suture are manually tensioned and the retainer is slid along the portions 32 and 34 of the suture toward the body tissue. As the retainer 30 is slid along the suture 36 toward the body tissue 40, the applicator assembly 172 moves the retainer into the patient's body. As the retainer 30 is moved into the patient's body, it is gripped with a constant predetermined force by the applicator assembly 172.


Alternatively, the retainer 30 may be gripped by the applicator assembly 172 outside of the patient's body prior to insertion of the portions 32 and 34 of the suture through the passages 52 and 54. The portions 32 and 34 of the suture 36 may then be inserted through the passages 52 and 54 in the retainer 30 while the retainer is gripped by the applicator assembly 172. If desired, insertion of the portions 32 and 34 of the suture 36 through the passages 52 and 54 in the retainer 30 may be performed with the retainer inside the patient's body.


If the applicator assembly 172 is utilized to move the retainer 30 through a cannula into the patient's body before the suture 36 is inserted into the passages 52 and 54 through the retainer, suitable instruments may be utilized to grip the portions 32 and 34 of the suture in the patient's body and to move the portions 32 and 34 of the suture through the passages 52 and 54. The instruments which engage the suture and move it through the passages 52 and 54 while the retainer 40 is gripped by the applicator assembly 172, may extend through the cannula along with the applicator assembly. Alternatively, the instruments which move the portions 32 and 34 of the suture 36 through the passages 52 and 54 may be moved into the patient's body through a cannula spaced from the cannula through which the applicator assembly 172 moves the retainer into the patient's body. In order to minimize incisions in the patient's body, it may be preferred to utilize a single cannula to accommodate movement of the applicator assembly 172, retainer 30, suture positioning instruments, and the suture 36 into the patient's body.


It is contemplated that it may be desired to position the suture 36 and retainer 30 in a patient's body with a robotic mechanism. When this is to be done, the manually engagable handle 194 and trigger 198 on the applicator assembly 172 may be eliminated. The remainder of the applicator assembly may then be connected with the robotic mechanism. A suitable motor may be provided in the robotic mechanism to move the force transmitting member 176 against the influence of the biasing spring 180. Even though the handle 194 and trigger 198 are eliminated, the retainer 30 would be gripped between the flange 204 on the force transmitting member 176 and end surface 206 on the energy transmission member 174 with a constant force.


The robotic mechanism with which the applicator assembly 172 is connected may have a plurality of adaptive arms which are effective to move the retainer 30 and other instruments in a patient's body. The robotic mechanism may be a reprogrammable, multifunctional manipulator designed to move through various program motions for the performance of selected one of a plurality of surgical procedures. The robotic mechanism may have manually operable controls which provide for interaction between a surgeon and the robotic mechanism. The robotic mechanism may have any one of many different constructions and may be operated in any one of many different manners, including those disclosed in U.S. patent application Ser. No. 10/102,413 filed Mar. 20, 2002 by Peter M. Bonutti and entitled Methods of Securing Body Tissue.


When the applicator assembly 172 is to be utilized in association with a robotic mechanism, it is believed that it may be desired to utilize a monitor or display in association with the robotic mechanism. A single imaging device or a plurality of imaging devices may be used. If a plurality of imaging devices are used, it is contemplated that stereoscopic and/or video stereoscopic viewing at a location where a surgical procedure is being performed may be accommodated by the imaging apparatus. The imaging apparatus may include a plurality of endoscopes.


A navigation system may be utilized to provide inputs to the computer to assist in the control of the robotic mechanism and the performance of a surgical procedure. The navigation system may be an optical navigation system in which end portions of navigation members are illuminated by light. The navigation members may be connected with one or more tissues in a patient's body. The tissue with which the navigation members are connected may either bone or soft tissue.


It is also contemplated that imaging devices such as a fluoroscope, and/or magnetic resonance imaging unit and/or ultrasonic imaging unit may be utilized with the robotic mechanism. If desired, endoscopes may be utilized in association with the various imaging units. The imaging units and robotic mechanisms may have a construction and cooperate with each other in the same manner as described in the aforementioned U.S. patent application Ser. No. 10/102,413 filed Mar. 20, 2002 by Peter M. Bonutti.


Once the retainer 30 has been positioned in a desired relationship with body tissue 40 and the suture 36, the portions 32 and 34 of the suture 36 are pulled with a predetermined force. This results in a predetermined tension being established in the portions 32 and 34 of the suture 36. While the predetermined tension is maintained in the suture 36, the retainer 30 is plastically deformed to connect the retainer with the portions 32 and 34 of the suture 36 and hold the portions 32 and 34 of the suture against movement relative to each other and the retainer 30. To effect plastic deformation of the retainer 30 and connection of the retainer with the suture 36, energy is transmitted from an energy source 212 (FIG. 9) through the energy transmission member 174 to the retainer 30. At this time, the retainer 30 is clamped between the flange 204 on the force transmitting member 176 and the end surface 206 on the energy transmission member 174.


In the illustrated embodiment of the applicator assembly 172, the energy source 212 is a source of ultrasonic vibratory energy at a frequency above that which can normally be detected by the human ear, that is about 16 to 20 kilohertz. Although there are a wide range of frequencies which may be utilized, it is believed that it may be desirable to use ultrasonic energy having a frequency of between 20 kilohertz and 70 kilohertz. It is believed that it may be desired to use ultrasonic vibratory energy of a frequency between 39.5 and 41 kilohertz. When a foot pedal actuated switch 214 (FIG. 9) is closed, ultrasonic vibratory energy is transmitted through the energy transmission member 174 to the retainer 30. The ultrasonic vibratory energy creates frictional heat at the pointed end portions 124 and 126 of the projections 66 and 68. The frictional heat provided by the ultrasonic vibratory energy is effective to heat material of the suture retainer 30 into its transition temperature range while the material of the suture 36 remains at a temperature below its transition temperature range. For example, the suture 36 may be formed of a material having a transition temperature range which is above 190 degrees Celsius. The suture retainer 40 may have a transition temperature range which begins at a temperature below 190 degrees Celsius.


However, it should be understood that even the entire transition temperature range for the suture 36 could be co-extensive with the transition temperature range for the retainer 30. In fact, the transition temperature range of the suture 36 could extend below the transition temperature range of the retainer 30. However, it is believed that it may be preferred to have the transition temperature range for the suture 36 above at least a portion of the transition temperature range of the retainer 30.


Ultrasonic vibratory energy is transmitted from the energy transmission member 174 to the upper section 48 of the retainer 30. The right and left projections 66 and 68 (FIG. 7) from the upper section 48 of the retainer 30 function as energy directors which direct the ultrasonic vibratory energy to the locations where the end portions 124 and 126 of the projections 66 and 68 engage the bottom surfaces 118 and 120 of the recesses 58 and 60 in the lower section 46 of the retainer 30. The pointed end portions 124 and 126 of the projections 66 and 68 concentrate the vibratory energy transmitted through the energy transmission member 174 at the locations where the projections engage the bottom surfaces 118 and 120 of the recesses 58 and 60.


The ultrasonic vibratory energy is effective to soften and make the material forming the end portions 124 and 126 of the projections 66 and 68 flowable under the influence of the constant predetermined force transmitted from the biasing spring 180 through the force transmission member 176 and flange 204 to the lower section 46 of the retainer 30. As the temperature of the end portions 124 and 126 of the projections 66 and 68 increases, the lower section 46 of the retainer 30 moves toward the upper section 48 of the retainer. This results in material which originally formed the pointed end portions 124 and 126 of the projections 66 and 68 being deflected sideways in the lower (as viewed in FIG. 7) portions of the recesses 58 and 60.


The continued application of a constant clamping force to the retainer 30 and the transmission of vibratory energy to the retainer causes the end surface 130 on the center projection 72 to move into engagement with the circular body 64 of the upper section 48. There may be a limited heating, melting and deformation of the center projection 72 as a result of engagement of the center projection with the upper section 48.


Although it is believed that it will be preferred to apply ultrasonic vibratory energy to the retainer 30, other forms of energy may be applied to the retainer if desired. For example, thermal or light (laser) energy may be applied to the retainer if desired. The energy application apparatus may be separate from the apparatus which is used to position the retainer relative to the body tissue 40 and suture 36. Thus, the retainer 30 may be positioned relative to body tissue 40 and the suture 36 manually or by using a first apparatus. Energy may then be applied to the retainer 30 using a second apparatus.


The heated, flowable material of the end portions 124 and 126 of the projections 66 and 68 may flow along the side surfaces 102, 104, 110 and 112 of the recesses 58 and 60. Some of the material of the end portions 124 and 126 of the projections 66 and 68 may engage and bond to the portions 32 and 34 of the suture 36.


At the same time, the portions 32 and 34 of the suture 36 are deflected from their original circular configuration (FIG. 7) to an oval configuration under the influence of force applied against the portions of the suture disposed between the lower section 46 and upper section 48 of the retainer 30. Although the portions 32 and 34 of the suture 36 are resiliently deflected to the configuration illustrated schematically in FIG. 8, there is minimal bonding of the material with the retainer 30 to the suture 36 and no significant loss of strength of the suture. Due to the clamping action between the flange 204 and end surface 206 on the energy transmission member 174 (FIG. 9) against the retainer 30, the overall height of the retainer is decreased. At the same time, the overall diameter of the retainer increases.


When the transmission of ultrasonic vibratory energy through the energy transmission member 174 is interrupted, the material of the retainer 30 cools and there is an ultrasonic welding of the lower section 46 of the retainer to the upper section 48 of the retainer. The bonding between the lower section 46 and upper section 48 of the retainer 30 occurs mainly between the projections 66 and 68 and the lower section 48 of the retainer. There may be some bonding of the center projection 130 to the circular body 64 of the upper section 48 of the retainer. In addition, there may be some bonding material of the lower section 46 and upper section 48 of the retainer to the portions 32 and 34 of the suture 36.


The portions 32 and 34 of the suture 36 are held against movement relative to each other and to the retainer primarily 30 by a clamping action between surfaces on the lower section 46 and surfaces on the upper section 48 of the retainer. Thus, the portions 32 and 34 of the suture 36 are securely gripped between the gripper surface areas 78 and 80 on the lower section 46 of the retainer 30 and the gripper surface areas 82 and 84 on the upper section 48 of the retainer 30. By holding the portions 32 and 34 of the suture 36 against movement relative to each other and to the retainer 30 with a clamping action, there is minimal deformation of the suture and the strength of the suture is not impaired.


Although one specific preferred embodiment of the applicator assembly 172 has been illustrated in FIGS. 10-12, it is contemplated that the applicator assembly could have a different construction and/or mode of operation. For example, the applicator assembly 172 may have any one of the constructions and mode of operations disclosed in U.S. patent application Ser. No. 10/076,919 filed Feb. 15, 2002 by Peter M. Bonutti, et al and entitled Method of Using Ultrasonic Vibration to Secure Body Tissue. Although it is believed that a retainer having a construction similar to that illustrated in FIGS. 1-8 may be preferred, it is contemplated that the applicator assembly 172 of FIGS. 9-12 may be utilized with retainers having a different construction. For example, the applicator assembly 172 may be utilized in association with a retainer having any one of the constructions disclosed in the aforementioned U.S. patent application Ser. No. 10/076,919 filed Feb. 15, 2002 by Peter M. Bonutti or any one of the constructions disclosed in U.S. Pat. No. 6,010,525.


The leading end portion of the force transmitting member 176 (FIG. 12) extends part way around the end surface 206 on the energy transmission member 174. This results in the formation of a shield 220 which extends part way around the retainer 30 when the retainer 30 is clamped between the flange 204 and the end surface 206 on the energy transmission member 174. The shield 220 has an inner side surface 222 which forms a portion of a cylinder. The side surface 222 engages the cylindrical periphery of the retainer 30 to position the retainer relative to the energy transmission member 174 in a direction transverse to a longitudinal central axis of the energy transmission member.


The shield 220 is effective to at least partially block engagement of body tissue with the retainer 30 as the retainer is positioned in a patient's body and as energy is transmitted to the retainer from the energy transmission member 174. It is contemplated that the shield 220 could be constructed in such a manner as to extend completely around the retainer 30. This would allow use of the applicator assembly 172 in a moist environment or in an aqueous environment in which the retainer is completely or almost completely submerged in liquid.


The force transmitting member 176 has a flange 204 which engages the groove 142 in the same manner as which the member 140 is schematically depicted as engaging a groove 142 in FIG. 8. However, it is contemplated that the flange 204 could be eliminated and a circular end plate provided at the distal end of the force transmitting member 176. The use of a plate would provide for a wider area of engagement of the force transmitting member 176 with the lower section 46 of the retainer 30. The use of a circular end plate in place of the flange 204 would allow the groove 142 in the lower section 46 of the retainer to be eliminated.


Prior to connecting the retainer 30 with the suture 36, the portions 32 and 34 of the suture are pulled with a predetermined tension. Tensioning the suture with a predetermined force may be accomplished in the manner disclosed in the aforementioned U.S. patent application Ser. No. 09/556,458 filed May 3, 2000 by Peter M. Bonutti and entitled Method and Apparatus For Securing Tissue or in the manner disclosed in U.S. patent application Ser. No. 10/102,413 filed Mar. 20, 2002 by Peter M. Bonutti and entitled Methods of Securing Body Tissue. Once a desired tension has been established in the intermediate portion 38 (FIG. 1) of the suture 36, the applicator assembly 172 is utilized to interconnect the lower section 46 and upper section 48 of the retainer in the manner previously discussed.


Since the portions 32 and 34 of the suture 36 were positioned in the passages 52 and 54 on opposite sides of the center projection 72, the portion 32 of the suture applies force against the lower section 46 of the retainer on the right (as viewed in FIG. 7) side of the central axis of the retainer. The portion 34 of the suture applies force against the lower section 46 of the retainer on the left side of the center projection 72. This results in the application of offsetting movements to the lower section 46 of the retainer. Therefore, the retainer 30 does not tend to rotate on an axis disposed between the portions 32 and 34 of the suture 36 and is stable relative to the body tissue 40.


Although it is believed that it may be desired to use the applicator assembly 172 to position the retainer 30 relative to body tissue, it should be understood that other ways of positioning the retainer elative to body tissue may be utilized. For example, a surgeon may grasp the retainer 30 with one hand and tension the portions 32 and 34 of the suture 36 with the other hand. The surgeon would then manually apply force against the retainer 30 to slide the retainer along the tensioned portions 32 and 34 of the suture toward the body tissue. Rather than gripping the retainer 30 with one hand, the surgeon may grip the retainer 30 with a manually actuated instrument.


If the retainer 30 is manually positioned relative to body tissue or positioned with a manually actuated instrument, a source of energy will have to be provided to interconnect the sections 46 and 48 of the retainer. The energy source may have any of the constructions disclosed in U.S. Pat. No. 6,368,343. Alternatively, the energy source may have the construction disclosed in U.S. Pat. No. 3,513,848.


Looped Suture


In FIGS. 1-8, the portions 34 and 36 of the suture extend straight through the retainer 30 in a generally parallel relationship with each other. However, it is contemplated that the portions 34 and 36 of the suture may be looped around portions of the retainer to increase the strength of the connection between the suture 36 and the retainer 30. In the embodiment of FIG. 13, the suture is looped around the projections 66 and 68 from the upper section 48 of the retainer. By looping the portions 32 and 34 of the suture around the projections 66 and 68, in the manner illustrated in FIG. 13, the strength of the grip which the retainer 30 obtains on the suture is increased.


When the suture 36 is to be positioned relative to the retainer 30 and looped around the projections 66 and 68, in the manner illustrated schematically in FIG. 13, the portion 32 of the suture is inserted through the passage 52 between the right projection 66 from the upper section 48 of the retainer. The portion 32 of the suture is then wrapped around the projection 66 and again inserted through the passage 52 to form a loop around the projection 66. The portion 34 of the suture 36 is looped around the projection 68 from the upper section 48 of the retainer 30 in the same manner as in which the portion 32 of the suture is looped around the projection 66.


As was previously mentioned, the portions 32 and 34 of the suture 36 are moved in opposite directions into the retainer 30. Thus, when the portion 32 of the suture 36 is initially moved through the passage 52, the suture is moved downward (as viewed in FIG. 13) through the passage and then wrapped upwardly around the projection 66 in a counter clockwise direction (as viewed in FIG. 13) and again moved downward through the passage 52. When the portion 34 of the suture is to be positioned in the passage 54 in the retainer 30, the portion 34 of the suture is first moved upward (as viewed in FIG. 13) through the passage 54 and then wrapped in a counter clockwise direction about the projection 68. As the portion 34 of the suture is wrapped around the projection 68, the portion 34 of the suture is again inserted through the passage 54. This results in the formation of a loop 232 around the projection 68. The intermediate portion 38 of the suture 36 extends upward (as viewed in FIG. 13) from the loop 230 and extends downward (as viewed in FIG. 13) from the loop 232.


Once the loops 230 and 232 have been formed in the portions 32 and 34 of the suture 36, the retainer 30 is gripped by the applicator assembly 172 and moved along the suture 36 toward the body tissue in the manner previously discussed. Movement of the retainer along the suture 36 toward the body tissue will, to some extent, be impeded by the loops 230 and 232 in the suture 36. By applying force with a handle 194 of the applicator assembly 172, the retainer 30 can be moved along the suture 36 toward the body tissue after the loops 230 and 232 have been formed in the suture 36. It should be understood that the retainer 30 may be manually moved along the suture 36 or moved along the suture with an applicator assembly having a construction which is different than the construction of the applicator assembly 172.


Although the loops 230 and 232 have been illustrated as being formed around the projections 66 and 68 from the upper section 48 of the retainer 30, it is contemplated that the loops could be formed around a different portion of the retainer 30 if desired. For example, one or both of the loops 230 and 232 could be formed around the center projection 72.


Alternatively, both of the loops 230 and 232 could be formed around both of the projections 66 and 68. When this is to be done, the portion 32 of the suture 36 would be moved downward (as viewed in FIG. 13) through the passage 52 and looped around the outside of the projection 66 across the upper (as viewed in FIG. 13) end portion of the center projection 72 and downward around the left projection 68, across the bottom (as viewed in FIG. 13) of the center projection 72 and again wrapped around the outside of the right projection 66. The portion 32 of the suture 36 would then be moved downward for a second time, through the passage 52. Similarly, the portion 34 of the suture 36 is moved upward (as viewed in FIG. 13) through the passage 54, downward around the left projection 68, across the lower (as viewed in FIG. 13) end of the center projection 72 upward around the outside of the right projection 66. The loop would then be moved across the upper end portion of the center projection 72 and downward (as viewed in FIG. 13) for a second time across the outside of the left projection 68. The portion 34 of the suture 36 would then again be moved upward through the passage 54.


Embodiment of FIGS. 14-16

In the embodiment of the retainer illustrated in FIGS. 1-8, the retainer 30 has a center projection 72 which cooperates with the right and left projections 66 and 68 to form the two elongated passages through which the portions 32 and 34 of the suture are moved in opposite directions. In the embodiment of the invention illustrated in FIGS. 14-16, the center projection on the retainer is omitted. Since the embodiment of the invention illustrated in FIGS. 14-16 is generally similar to the embodiment of the invention illustrated in FIGS. 1-8, similar numerals will be utilized to identify similar components, the suffix “a” being associated with the numerals of FIGS. 14-16 to avoid confusion.


A retainer 30a includes a lower section 46a and an upper section 48a. The lower section 46a has a pair of recesses 58a and 60a. The recesses 58a and 60a have the configuration as the recesses 58 and 60 of FIGS. 1-8. Right and left projections 66a and 68a extend downward (as viewed in FIG. 14) from the upper section 48a into the recesses 58a and 60a in the lower section 60a. There is an interference fit between the projections 66a and 68a and the recesses 58a and 60a to hold the upper section 48a in a desired spatial relationship with the lower section 46a of the retainer 30a. In the embodiment of the invention illustrated in FIG. 15, the portions 32a and 34a of the suture 36a are disposed in a side-by-side relationship in a single passage 240 (FIG. 14) which extends between projections 66a and 68a from the portion 48a of the retainer 30a.


When the retainer 30a is gripped by the applicator assembly 172 with a constant predetermined force, end portions 124a and 126a (FIG. 14) of the projections 66a and 68a are pressed against bottom surfaces of the recesses 58a and 60a in the manner previously described in conjunction with the embodiment of the invention illustrated in FIGS. 1-8. The projections 66a and 68a have the same configuration as the projections 66 and 68 of FIGS. 3-7. Therefore, there is line contact between the tapered end portions 124a and 126a of the projections 66a and 68a and the flat bottom surfaces of the recesses 58a and 60a.


The portions 32a and 34a of the suture 36a are inserted in opposite directions through the passage 240 formed between the lower section 46a and upper section 48a of the retainer 30a. The retainer 30a is slid along the suture 36a to a desired position relative to body tissue while the retainer is gripped with a constant predetermined force by the applicator assembly 172. If desired, the retainer 30a may be manually gripped and slid along the portions 32a and 34a of the suture 36a.


If the retainer 30a is manually positioned relative to body tissue, a suitable source of energy will have to be provided to effect heating of the retainer. This source of energy may have any one of the constructions disclosed in U.S. Pat. Nos. 3,513,848 and 6,368,343. Alternatively, the source of energy may have a known construction and be a source of thermal in light (laser) energy.


Assuming that the applicator assembly 172 is utilized to position the retainer 30, when the foot pedal actuated switch 214 (FIG. 9) is closed, ultrasonic vibratory energy is transmitted from the source 212 through the energy transmission member 174 to the retainer 30a (FIG. 14). The tapered end portions 124a and 126a of the projections 66a and 68a function as energy directors and concentrate the ultrasonic vibratory energy from the source 212. As this occurs, the end portions 124a and 126a of the projections 66a and 68a are softened and deformed under the influence of the constant predetermined force applied against the retainer 30a by the applicator assembly 172 As this occurs, the distance between the lower section 46a and upper section 48a is decreased and the portions 32a and 34a of the suture 36a are gripped between flat gripper surfaces 242 and 244 formed on the upper section 48a and lower section 46a of the retainer 30a.


In FIG. 15, the portions 32a and 34a of the suture 36a extend straight through the passage in opposite directions. In the embodiment illustrated in FIG. 16, the portions 32a and 34a of the suture are looped around the projections 66a and 68a in the same manner as previously described in conjunction with FIG. 13. This results in the formation of loops 230a and 232a around the projections 66a and 68a. By wrapping the portions 32a and 34a of the suture 36a around the projections 66a and 68a, the portions 32a and 34a are positioned in the passage 240 at locations equal distances from the center of the retainer 30a. This minimizes any movement resulting from forces applied to the retainer 30a by the suture 36a and increases the stability of the retainer on the body tissue.


In the embodiment of the invention illustrated in FIGS. 1-8 and 14-16, the lower section 46 is provided with recesses 58 and 60. However, it is contemplated that the recesses 58 and 60 may be omitted if desired. If the recesses 58 and 60 are omitted, the projections 66 and 68 (FIGS. 7 and 8) will engage a flat upper side surface on the base section 46. With this construction, the pointed end portions 124a and 126a (FIG. 14) of the projections 66a and 68a will engage a flat surface 244 on the base section 46a.


When the recesses 58 and 60 are omitted, it may be desired to provide other structure to maintain the lower and upper sections 46 and 48 of the retainer in a desired spatial relationship during insertion of the suture 36 into a passage 24 or passages 52 and 54. For example, the center projection 72 (FIG. 3) may extend into an opening through the upper section 48. An interference fit may be provided between the center projection and the opening in the upper section 48. Alternatively, a guide surface connected with the lower section 46 of the retainer may engage a guide surface on the upper section 48.


Embodiment of FIG. 17

In the embodiments of the invention illustrated in FIGS. 1-8 and 14-16, a plurality of projections from the upper section 48 engage recesses in the lower section 46. In the embodiment of the illustrated in FIG. 17, a single projection from the upper section engages an upper side of the lower section. Since the embodiment of the invention illustrated in FIG. 17 is generally similar to the embodiments of the invention illustrated in FIGS. 1-8 and 14-16, similar numerals will be utilized to identify similar components, the suffix letter “b” being added to the numerals of FIG. 17 to avoid confusion.


A retainer 30b includes a lower or base section 46b and an upper or cover section 48b. A right passage 250 and a left passage 252 are formed in the lower section 46b. Similarly, a right passage 256 and a left passage 258 are formed in the upper section 48b. A suture 36b extends through the passages 250, 252, 256 and 258 in the lower and upper sections 46b and 48b of the retainer 30b. The suture 36b includes end portions 32b and 34b which are interconnected by an intermediate portion 38b. The intermediate portion 38b of the suture 36b extends around body tissue in much the same manner as is illustrated schematically in FIG. 1 for the suture 36.


A single projection 262 extends from the upper section 48b of the retainer 30b. The projection 262 is offset to one side of the suture 36b. The projection 262 has a pointed end portion 264 which is engagable with a flat upper side surface 266 on the lower portion 46b of the retainer 30b. The pointed end portion 264 of the projection 262 has the same general configuration as the pointed end portions 124 and 126 of the projections 66 and 68 in FIG. 7. However, the pointed end portion 264 of the projection 262 may have a conical configuration if desired.


If desired, a pair of projections, corresponding to the projections 66 and 68, may be provided. If this is done, one of the projections would be offset from the suture 36b in a direction into the page on which FIG. 17 is disposed and the other projection would be offset from the suture 36b in a direction out of the page on which FIG. 17 is disposed. This would result in a passage being formed between the two projections so that the portions 32b and 34b of the suture 36b would both extend through a passage between the projections.


When the suture 36b and retainer 30b are to be connected with body tissue, the suture may be positioned relative to the body tissue in the manner previously described in conjunction with in the embodiment of the invention illustrated in FIGS. 1-8. As was previously mentioned, this may be done using minimally invasive surgical techniques. The suture 36b may be moved into a patient's body through a cannula and positioned relative to tissue in the patient's body. The end portions 32b and 34b of the suture may extend through the cannula and be accessible to a surgeon.


The portion 32b of the suture 36b is inserted through the nonlinear passage 250 in the lower section 46b and through the nonlinear passage 258 in the upper section 48b of the retainer 30b. The portion 34b of the suture is inserted through the nonlinear passage 252 in the lower portion 46b and through the nonlinear passage 256 in the upper portion 48b, in the manner indicated schematically in FIG. 17. The lower section 46b and upper section 48b are then gripped by an applicator assembly which may have the same construction as the applicator assembly 172 of FIGS. 9-12.


While the retainer 30b is gripped with a constant predetermined force by the applicator assembly 172, the surgeon grips the applicator assembly with one hand and the portions 32b and 34b of the suture 36b with the other hand. The retainer 30b is then slid along the suture 36b toward the body tissue around which the intermediate portion 38b of the suture extends. As this occurs, the end portion (FIG. 12) of the applicator assembly 172 moves through the cannula and slides the retainer 30b along the suture 36b to a position that is engagement with the body tissue, that is, to a position similar to that in FIG. 1 for the retainer 30. While the retainer 30b is being slid along the suture 36b, the applicator assembly grips the retainer with a constant predetermined force.


If desired, the retainer 30b may be positioned relative to the suture 36b and body tissue in a way other than use of the applicator assembly 172. For example, the retainer 30b may be gripped by one hand of a surgeon and the portions 32b and 34b of the suture gripped and tensioned with the other hand. The manual application of force to the retainer 30b would slide the retainer along the suture 36b.


Once the retainer 30b has been positioned relative to the body tissue and the suture 36b is tensioned with a desired force, energy is conducted from a source of energy, similar to the energy source 212 of FIG. 9, to the energy transmission member 174 and the retainer 30b. It is contemplated that many different types of energy could be transmitted to the retainer 30b. For example, radio frequency, ultrasonic, heat, or light energy may be transmitted to the retainer 30b through an energy transmission member. In the embodiment of the applicator assembly 172 illustrated in FIGS. 9-12, ultrasonic vibratory energy is conducted to the retainer 30b through the energy transmission member 174 while the applicator assembly 172 grips the retainer 30b with a constant predetermined force.


The projection 262 functions as an energy director which concentrates energy applied to the upper section 48 of the retainer 30b by the end surface 206 of the energy transmission member 174 (FIG. 9). The concentrated ultrasonic vibratory energy transmitted from the energy transmission member 174 heats the material of the projection 262 (FIG. 17) and the material of the base section 46b engaged by the projection into its transition temperature range. As this occurs, there is a softening and deforming of the material of the projection 262.


A flat lower side surface 270 on the upper portion 48b of the retainer 30b and the flat upper side surface 266 of the lower portion 46b of the retainer move into engagement with each other. Material of the retainer 30b tends to flow into the passages 250, 252, 256 and 258 formed in the lower and upper sections 46b and 48b of the retainer 30b. The portions 32b and 34b of the suture 36b are firmly clamped between the side surfaces 266 and 270 on the lower section 46b and upper section 48b of the retainer 30b.


As the material of the retainer 30b cools and the applicator assembly 172 is disengaged from the retainer, there may be a limited amount of bonding of the material of the retainer 30b to the portions 32b and 34b of the suture 36b. Although the suture 36b is, to some extent, deformed by force transmitted between the side surfaces 266 and 270 on the lower section 46b and upper section 48 of the retainer 30b, in the manner illustrated schematically in FIG. 8 for the suture 36, the deformation of the suture does not weaken the suture.


It is contemplated that the sections 46b and 48b of the retainer 30b may be made of many different polymeric materials. The sections 46b and 48b of the retainer 30b may be formed of polymers or copolymers. It is contemplated that the retainer 30b may be formed of biodegradable or nonbiodegradable materials. In one specific instance, the retainer was made from Poly-L-lactic acid (PLLA) which is a resorbable polymer.


The suture 36b may be formed by a single filament or a plurality of filaments. The suture 36b may be formed of biodegradable or nonbiodegradable material. It is contemplated that it may be desired to form the suture 36b of the same material as the retainer 30b. However, the retainer 30b and suture 36b may be formed of different materials.


Although the foregoing description in the manner in which the retainer 30b and 36b are positioned relative to body tissue have been in conjunction with manual positioning of the applicator assembly 172 by a surgeon, it is contemplated that a robotic mechanism may be utilized to position the retainer 30b and/or suture 36b relative to body tissue. Thus, a robotic mechanism may be utilize in association with the retainer 30b and/or suture 36b in the manner described in the aforementioned U.S. patent application Ser. No. 10/102,413 filed Mar. 20, 2002 by Peter M. Bonutti and entitled Methods of Securing Body Tissue. It is contemplated that imaging apparatus may be utilized in association with the positioning of the retainer 30b and/or suture 36b in the manner disclosed in the aforementioned U.S. patent application Ser. No. 10/102,413 filed Mar. 20, 2002 by Peter M. Bonutti.


Embodiment of FIG. 18

In the embodiment of the invention illustrated in FIG. 18, one of the sections of the retainer has a recess which receives the other section of the retainer. Since the embodiment of the invention illustrated in FIG. 18 is generally similar to the embodiments of the invention illustrated in FIGS. 1-8, and 14-17, similar numerals will be utilized to designate similar components, the suffix letter “c” being associated with the numerals of FIG. 18 to avoid confusion.


A retainer 30c (FIG. 18) includes a lower or base section 46c and an upper or cover section 48c. A suture 36c has portions 32c and 34c which extend through the retainer 30c. An intermediate portion 38c of the suture may extend around body tissue in the manner disclosed in FIG. 1. Of course, the suture 36c may be connected with either hard or soft body tissue in any desired manner.


The lower section 46c of the retainer 30c has a cylindrical recess 274 which is sized so as to receive the circular upper section 48c of the retainer 30c. The lower section 46c of the retainer has passages 278 and 280 through which the portion 32c of the suture 36c extends. In addition, the lower section 46c of the retainer 30c has passages 282 and 284 through which the portion 34c of the suture 36c extends. The recess 274 cooperates with the passages 278,280, 282 and 284 to form a central passage through which both portions 32c and 34c of the suture extend.


A pair of projections 288 and 290 extend from the upper section 48c of the retainer 30c toward the lower section 46c of the retainer. The projections 288 and 290 have pointed end portions 292 and 294 which function as energy directors and concentrate ultrasonic vibratory energy transmitted from the applicator assembly 172 (FIG. 9) to the upper section 48c of the retainer 30c. The projections 288 and 290 are offset from the portions of the suture 36c. One of the projections, for example, the projection 288, may be offset in a direction into the page on which FIG. 18 is disposed and the other projection, that is the projection 290, may be offset in a direction out of the page on which FIG. 18 is disposed.


When the suture 36c and retainer 30c are to be utilized in association with body tissue, the suture 36c is positioned relative to the body tissue. The portion 32c of the suture 36c is then moved through the passages 278 and 280 in the lower section 46c of the retainer 30c. The portion 34c of the suture 36c is moved through the passages 282 and 284 of the lower section 46c of the retainer 30c.


The upper section 48c of the retainer 30c is then positioned in the recess 274 with the projections 288 and 290 disposed in linear engagement with a flat upwardly facing side surface 298 on the lower section 46c of the retainer 30c. The pointed ends of the projections 292 and 294 do not engage the suture 36c The retainer 30c is gripped by the distal end portion (FIG. 12) of the applicator assembly 172. This results in the retainer 30c being gripped with a constant predetermined force transmitted to the retainer 30c from the biasing spring 180 (FIG. 9) through the force transmitting member 176.


While the surgeon grips the handle 194 of the applicator assembly 172 with one hand and grips the portions 32c and 34c of the suture 36c with the other hand, the retainer 30c and leading end portion of the applicator assembly 172 are moved toward the body tissue. As this occurs, the retainer 30c is slid along the portions 32c and 34c of the suture 36c. While the retainer 30c is slid along the suture 36c, the retainer is gripped with a constant predetermined force by the applicator assembly 172.


When the retainer 30c is positioned in a desired location relative to the suture 36c and body tissue, energy is transmitted from the applicator assembly 172 to the retainer 30c to interconnect the lower section 46c and upper section 48c of the retainer 30c. During the transmission of energy to the retainer 30c to interconnect the lower section 46c and upper section 48c of the retainer, the applicator assembly 172 applies a constant predetermined clamping or gripping force to the retainer 30c. Ultrasonic vibratory energy is transmitted from the end surface 206 on the energy transmission member 174 to the upper section 48c of the retainer 30c. The pointed end portions 292 and 294 of the projections 288 and 290 engage the flat side surface 298 on the lower section 46c of the retainer. The pointed end portions 292 and 294 of the projection 288 act as energy directors which concentrate energy at the pointed end portions of the projections and at the portion of the surface 298 and engaged by the projections.


This energy heats the projections 288 and 290 and portions of the lower section 46c into a transition temperature range. As this occurs, the material of the projections 288 and 290 softens and flows relative to the suture 36c and lower and upper sections 46c and 48c of the retainer 30c. The lower and upper sections 46c and 48c of the retainer 30c are clamped together with a constant predetermined force by the applicator assembly 172 as the material of the projections 288 and 290 is heated. The lower and upper sections 46c and 48c of the retainer 30c grip the suture 36c with a clamping action.


Material of the retainer 36c is subsequently allowed to cool and the trigger 198 on the applicator assembly 172 is actuated to release retainer 30c. As the material of the retainer 30c cools, the lower section 46c and upper section 48c of the retainer are bonded together. In addition, there is some bonding of the material of the retainer 30c to the suture 36c. However, the suture 36c is primarily secured against movement relative the retainer 30c by clamping the portions 32c and 34c of the suture 36c between the lower section 46c and the upper section 48c of the retainer 30c. Although the suture 36c is slightly deformed, in the manner illustrated schematically in FIG. 8, there is no significant weakening of the suture 36c.


It is contemplated that the suture 36c and retainer 30c may be positioned relative to body tissue during minimally invasive surgery. The suture 36c and retainer 30c may be positioned relative to the body tissue by being moved through a cannula. If desired, a robotic mechanism may be utilized to position the suture 36c and/or retainer 30c relative to the body tissue.


In the embodiment of the invention illustrated in FIG. 18, the upper section 48c of the retainer 30c is separate from the lower section 46c and is manually moved into the recess 274 after the portions 32c and 34c of the suture 36c have been positioned in the passages 278, 280, 282 and 284. If desired, the upper section 48c of the retainer 30c could be connected with the lower section 46c. For example, the upper section 48c may be positioned in the recess 274. An interference fit may be provided between the lower and upper sections 46c and 48c to hold the upper section in the recess 274. Alternatively, one or more flexible connectors may be used to interconnect the lower and upper sections. The connector may be a flexible strap. If desired, the connector may be weak sections which are easily broken as the upper section 48c moves into the recess 274.


Embodiment of FIG. 19

In the embodiments of the invention illustrated in FIGS. 1-8 and 14-18, the suture 36 extends through passages in the retainer 30 and is clamped in place. In the embodiment of the invention illustrated in FIG. 19, the suture extends through passages in the retainer and is wrapped around a portion of the retainer, in a manner similar to that previously described in conjunction with the embodiment of the invention illustrated in FIG. 13, prior to being clamped in place by interconnecting of the lower and upper sections of the retainer. Since the embodiment of the invention illustrated in FIG. 19 is generally similar to the embodiments of the invention illustrated in FIGS. 1-8 and 14-18, similar numerals will be utilized to indicate similar components, the suffix letter “d” being associated with the numerals of FIG. 19 to avoid confusion.


A retainer 30d is associated with a suture 36d. The retainer 30d has a lower section 46d and an upper section 48d. The suture 36d has a portion 32d and a portion 34d which extend through the retainer 30d. An intermediate portion 38d of the suture 36d extends between the portions 32d and 34d of the suture and may extend around body tissue in the manner illustrated schematically for the suture 36 in FIG. 1.


The lower section 46d of the retainer 30d has a cylindrical central projection or post 310. The portion 32d of the suture 36d extends through a passage 314 in the lower section 46d of the retainer 30d and is looped for a plurality of turns around the central projection 310. The portion 32d of the suture 36d extends from the loops around the central projection 310 through a passage 316 in the upper section 48d of the retainer 30d. Similarly, the portion 34d of the suture 36d extends through a passage 320 in the lower section 46d and is wrapped for a plurality of loops around the central projection 310. The portion 34d of the suture 36d extends from the central projection 310 through a passage 322 in the upper section 48d of the retainer 30d.


Projections 324 and 326 extend downward (as viewed in FIG. 19) from the upper section 48d toward a flat upper side surface 330 on the lower section 46d. The projections 324 and 326 are offset from the central projection 310 and from the openings 314 and 320 in the lower section 46d. Although only two projections 324 and 326 are illustrated in FIG. 19, a greater number of projections may be provided if desired.


The suture 36d is positioned relative to body tissue in the same manner as is illustrated schematically for the suture 36 in FIG. 1. This may be done during arthroscopic or laproscopic surgery. To minimize the size of an incision in a patient's body, the suture may be moved through a cannula into the patient's body and positioned relative to hard and/or soft body tissue. The portions 32d and 34d of the suture may extend from the cannula and be readily accessible to a surgeon.


The portion 32d of the suture is inserted through the passage 314 and wrapped for a plurality of turns around the central projection 310. The portion 34d of the suture is inserted through the passage 320 and is also wrapped for a plurality of turns around the central projection 310. The portion 34d of the suture is inserted through the passage 322 in the upper section 48d of the retainer 30d. The portion 32d of the suture 36d is inserted through the passage 316 in the upper section 48d of the retainer 30d.


The upper section 48d of the retainer 30d is moved along the portions 32d and 34d of the suture until the projections 324 and 326 from the upper section 48d of the retainer 30d engage the flat upper side surface 330 of the lower section 46d of the retainer. As this occurs, the central projection 310 enters a cylindrical opening 334 in the upper section 48d of the retainer 30d. As the central projection 310 is telescopically inserted into the opening 334, the turns of the portions 32d and 34d of the suture 36d are disposed around the central projection move downward (as viewed in FIG. 19) toward the flat surface 330 on the lower section 46d of the retainer 30d.


The projections 324 and 326 are offset from the portions 32d and 34d of the suture 36d. The pointed projections 324 and 326 engage the flat surface 330 on the lower section 46d of the retainer 30d. The projections 324 and 326 are spaced from the suture 36d and prevent the suture from being gripped between the lower section 46d and upper section 48d of the retainer 30d.


The retainer 30d is then gripped by the distal end portion of the applicator assembly 172 (FIG. 12). The applicator assembly 172 grips the retainer 30d with a constant force which is determined by the spring 180 (FIG. 9).


While the retainer 30d is gripped by the applicator assembly 172, the retainer is slid along the portions 32d and 34d (FIG. 19) of the suture 36d toward the body tissue. As this occurs, the distal end portion of the applicator assembly 172 and the retainer 30d may be moved through a cannula or through an open incision. Regardless of whether or not the retainer 30d is moved through a cannula, the retainer is positioned in engagement with body tissue, similar to the body tissue of 40 of FIG. 1, while the retainer is gripped with the predetermined constant force by the applicator assembly 172.


Once the retainer 30d has been positioned relative to the body tissue, the portions 32d and 34d of the suture 36d are tensioned with a predetermined force. While the suture 36d is tensioned with a predetermined force, ultrasonic vibratory energy is transmitted from a source of energy, corresponding to the energy source 212 of FIG. 9, to the retainer 30d. The energy is transmitted to the retainer 30d through the energy transmission member 174. The energy transmitted to the retainer 30d heats the projections 324 and 326 and the material of the lower section 46d of the retainer engaged by the projections.


The projections 324 and 326 have a pointed configuration and function as energy directors which concentrate the energy transmitted from the source 212. This results in heating of the projections 324 and 326 and a portion of the lower section 46d of the retainer 30d engaged by the projections to temperatures in the transition temperature range of the material of the retainer 30d. As this occurs, the lower and upper sections 46d and 48d of the retainer 30d are moved together under the influence of the constant predetermined force applied against the retainer by the applicator assembly 172. This results in the loops of the suture disposed around the central projection 310 being firmly gripped between the flat upper side surface 330 of the lower section 46d of the retainer and a flat lower side surface 338 on the upper section 48d of the retainer.


The trigger 198 on the applicator assembly 172 is then manually actuated to release the retainer 30d. As this occurs, the retainer 30d cools. A secure bond is formed between the lower section 46d and upper section 48d of the retainer at the locations where the projections 324 and 326 from the upper section 48d of the retainer engage the lower section 46d of the retainer. A robotic mechanism may be utilized to position the suture 36d and/or retainer 30d relative to body tissue.


It is contemplated that the retainer 30d and suture 36d may be formed of either biodegradable or nonbiodegradable material. The retainer 30d and suture 36d may be formed of the same materials or of different materials. For example, the suture 36d could be formed of a biodegradable material while the retainer 30d is formed of a nonbiodegradable material. Alternatively, both the suture 36d and retainer 30d may be formed of a biodegradable material.


Embodiment of FIGS. 20 and 21

In the embodiment of the invention illustrated in FIGS. 20 and 21, a suture is clamped between and held by sections of a retainer. Since the embodiment of the invention illustrated in FIGS. 20 and 21 is generally similar to the embodiments of the invention illustrated in FIGS. 1-8 and 13-19, similar numerals will be utilized to designate similar components, the suffix letter “e” being associated with the numerals of FIGS. 20 and 21 to avoid confusion.


A retainer 30e includes lower and upper sections 46e and 48e. A suture 36e (FIG. 20) has portions 32e and 34e which extend through the retainer 30e. The portions 32e and 34e of the suture 36e are interconnected by an intermediate portion 38e of the suture. A loop 230e is formed in the portion 32e of the suture 36e and extends around part of the lower section 46e of the retainer 30e. Similarly, a loop 232e is formed in the portion 34e of the suture 36e and extends around part of the lower section 46e of the retainer 30e.


The lower section 46e of the retainer 30e includes a circular bottom wall 344 (FIG. 21) having a flat upwardly facing side surface 346. A cylindrical side wall 350 extends upward from the bottom wall 344. The side wall 350 cooperates with the bottom wall 344 to form a cylindrical recess 274e (FIG. 21). The upper section 48e has a circular body 64e which has a diameter which is only slightly greater than an inside diameter cylindrical side wall 350e. This results in an interference fit between the upper section 48e and lower section 46e of the retainer 30e when the upper section 64e is inserted into the cylindrical recess 274e.


While the upper section 48e is held in the cylindrical recess 274e in the lower section 46e of the retainer 30e, the portions 32e and 34e of the suture 36e are inserted through the retainer 30e in opposite directions. Thus, the suture 32e is inserted through a passage 354 (FIG. 20) in the side wall 350 of the lower section 46e of the retainer 30e. The portion 32e of the suture is inserted through the recess 274e (FIG. 21) to a second passage 356 formed in the side wall 350 of the lower section 46e of the retainer.


The suture is wrapped around the outside of the side wall 350 and inserted through the passage 354 for a second time. The end portion 32e of the suture 36e is then moved through the passage 356e in the side wall for a second time. This forms the loop 230e around a portion of the side wall 350 in the manner illustrated schematically in FIG. 20.


Similarly, the portion 34e of the suture 36e is inserted through a passage 360 formed in the side wall 350 (FIGS. 20 and 21) into the cylindrical recess 274e. The portion 34e of the suture is inserted through the cylindrical recess 274e and through another passage 362 formed in the side wall 350 of the lower section 46e of the retainer 30e. The portion 34e of the suture 36e is wrapped around the outside of the side wall 350 (FIG. 20) and inserted for a second time through the passage 360. The portion 34e of the suture is inserted through the recess 274e and the opening 362e to form the loop 232e around the portion of the lower section 46e of the retainer 30e.


The upper section 48e of the retainer 30e has a plurality of pointed projections 366 and 368 (FIG. 20). When the upper section 48e of the retainer 30e is disposed in the recess 274e, the projections 366 and 368 are enclosed by the loops 230e and 232e. The projections 366 and 368 have pointed end portions with a configuration similar to the configuration of the pointed end portions 124 and 126 on the projections 66 and 68 of FIGS. 3-7. The end portions of the projections 366 and 368 engage the side surface 346 on the bottom wall 344 when the upper section 48e is disposed in the cylindrical recess 274e. There is line contact between the end portions of the projections 366 and 368 and the surface 346 on the bottom wall 344. The pointed end portions of the projections 366 and 368 are spaced from the suture 36e.


The upper section 48e of the retainer 30e has a second plurality of projections 374 and 376 (FIGS. 20 and 21). The projections 374 and 376 have the same configurations as the projections 366 and 368. The projections 374 and 376 have pointed end portions 378 and 380 (FIG. 21). The pointed end portions 378 and 380 on the projections 374 and 376 engage the flat side surface 346 on the bottom wall 344 when the upper section 48e of the retainer 30e is disposed in the cylindrical recess 274e. The projections 374 and 376 are disposed within the loop 332e formed in the portion 34e of the suture 36e. The pointed end portions of the projections 374 and 376 are spaced from the suture 36e.


When the retainer 30e and suture 36e are to be used to secure body tissue during a surgical procedure, the intermediate portion 38e of the suture is positioned relative to the body tissue. At this time, the upper section 48e of the retainer 30e is disposed in the cylindrical recess 274e in the lower section 46e and the projections 366, 368, 374 and 376 are disposed in engagement with the side surface 246 of the bottom wall 344 of the retainer. The upper section 48e of the retainer 30e is held in the recess 274e by an interference fit between a cylindrical inner side surface of the side wall 350 and an outer side surface of the body 64e of the upper section.


After the intermediate portion 38e of the suture 36e has been positioned relative to body tissue, the portion 32e of the suture is moved downward (as viewed in FIG. 20) through the passage 354 and along the projections 366 and 368. The portion 32e of the suture 36e is then moved through the passage 356 and wrapped around the outside of the retainer 30e. The portion 32e of the suture is again moved downward (as viewed in FIG. 20) through the passages 354 and 356 to form the loop 230e.


The portion 34e of the suture 36e is inserted upward (as viewed in FIG. 20) through the passage 360 and along the projections 374 and 376. The portion 34e of the suture is then moved through the passage 362 and wrapped around the outside of the bottom section 46e of the retainer 30e. The portion 34e of the suture is again upward (as viewed in FIG. 20) through the passages 360 and 362 to form the loop 232e. When this has been done, the portions 32e and 34e of the suture extend in opposite directions from the retainer 30e and the intermediate portion 38e of the suture extends in opposite directions from the retainer.


The retainer is then gripped with the distal end portion (FIG. 12) of the applicator assembly 172. The applicator assembly 172 grips the retainer 30e with a constant predetermined force.


While the retainer 30e is gripped with a constant predetermined force by the applicator assembly 172, a surgeon manually holds the handle 194 of the applicator assembly 172 (FIGS. 9 and 10) with one hand and tensions the portions 32e and 34e of the suture 36e with the other hand. While tensioning the suture 36e, the surgeon slides the retainer 30e along the suture toward the body tissue. As it was previously mentioned, this may involve moving of the retainer 30e and the distal end portion of the applicator assembly 172 through a cannula to position the retainer relative to the body tissue. A robotic mechanism may be utilized to position the suture 36e and/or retainer 30e relative to body tissue.


When the retainer has been positioned at a desired location relative to the body tissue in the manner similar to the schematic illustration of FIG. 1, energy is transmitted from the energy source 212 through the energy transmission member 174 to the retainer 30e. Although the energy is ultrasonic vibratory energy, it is contemplated that it could be a different type of energy if desired. For example, radio frequency, light, or thermal energy could be transmitted to the retainer 30e.


The ultrasonic vibratory energy transmitted to the retainer 30e is concentrated by the projections 366, 368, 374 and 376 which function as energy directors. The concentrated energy heats the projections 366, 368, 374 and 376 and the portion of the bottom wall 344 of the lower section 46e of the retainer 30e engaged by the projections, to a temperature in a transition temperature range for the material of the retainer. The retainer may be formed of a polymeric material which is a polymer or copolymer. The material of the retainer 30e may be biodegradable or nonbiodegradable.


As the projections 374 and 376 are heated and softened, the upper section 48e of the retainer is pressed toward the bottom wall 344 of the lower section 46e of the retainer 30e by the applicator assembly 172. The force applied against the retainer 30e is effective to cause the softened material of the projections 366, 368, 374 and 376 to flow in the recess 274e. As this occurs, the upper section 48e of the retainer 30e moves toward the bottom wall 344 of the lower section 46e of the retainer. This results in the portions 32e and 34e of the suture 36e being securely clamped between the lower section 46e and upper section 48e of the retainer 30e.


When the material of the projections 374 and 376 has cooled, the lower section 46e and upper section 48e of the retainer are securely bonded together to maintain a secure grip on the suture 36e. Although there may be some bonding of the material of the projections 366, 368, 374 and 376 to the suture 36e, there is no significant weakening of the suture.


Embodiment of FIG. 22

The retainer of the embodiment of the invention illustrated in FIG. 22 is generally similar to the retainers of FIGS. 1-8 and 13-21. Numerals similar to the numerals utilized in conjunction with FIGS. 1-8 and 13-21 will be utilized to designate similar components, the suffix letter “f” being associated with the numerals of FIG. 22 to avoid confusion.


A retainer 30f has a lower section 46f and an upper section 48f. A suture 36f has portions 32f and 34f which extend through the retainer 30f. An intermediate portion 38f of the suture 36f extends between the portions 32f and 34f and may extend around body tissue in the manner illustrated schematically in FIG. 1 for the suture 36.


The portion 32f of the suture 36f extends through a passage 384 in the lower section 46f of the retainer 30f. The portion 32f of the suture extends through a passage 386 formed in the upper section 48f of the retainer 30f. The portion 32f of the suture is wrapped around a portion 390 of the upper section 48f of the retainer 30f. The portion 32f of the suture is again inserted through the passage 386 to form a loop 230f around the portion 390 of the upper section 48f of the retainer 30f.


Similarly, the portion 34f of the suture 36f extends through a passage 394 in the lower section 46f of the retainer 30f. The portion 34f of the suture 36f extends through a passage 396 in the upper portion 48f of the retainer 30f. The portion 34f of the suture 36f is wrapped around a portion 398 of the upper section 48f of the retainer 30f to form a loop 232f.


Projection 400 extends from the upper section 48f of the retainer 30f. The projection 400 is engagable with a flat upper side surface 402 of the lower section 46f of the retainer 30f. The projection 400 has a pointed end portion which functions as an energy director which concentrates energy.


When the retainer 30f and suture 36f are utilized to secure body tissue, in a manner similar to that manner illustrated schematically in FIG. 1, the suture 36f is positioned relative to the body tissue with the intermediate portion 38f of the suture in engagement with the body tissue. The portion 32f of the suture is inserted through the passages 384 and 386 in the lower and upper sections 46f and 48f of the retainer 30f. The portion 32f of the suture is then wrapped around the portion 390 of the upper section 48f of the retainer 30f and again inserted through the passage 386.


The portion 34f of the suture 36f is inserted through the passage 394 in the lower section 46f of the retainer 30f and through the passage 396 in the upper section 48f of the retainer. The portion 34f of the suture 36f is wrapped around the portion 398 of the upper section 48f of the retainer 30f and again inserted through the passage 396.


The retainer 40f is then gripped by the distal end portion (FIG. 12) of the applicator assembly 172 (FIGS. 9 and 10). This results in the projection 400 being pressed against the upper side surface 402 of the lower section 46f of the retainer 30f with a predetermined constant force. While the retainer 30f is gripped by the distal end portion of the applicator assembly 172, a surgeon grips the portions 32f and 34f of the suture 36f with one hand and grips the handle 194 of the applicator assembly 172 with the other hand. While tensioning the portions 32f and 34f, the surgeon slides the retainer 30f along the suture 36f toward the body tissue. As it was previously mentioned, this may involve moving both the retainer 30f and the distal end portion of the applicator assembly 172 through a cannula.


A robotic mechanism may be utilized to position the suture 36f and/or retainer 30f relative to body tissue. Alternatively, the suture 36f and/or retainer 30f may be manually positioned relative to the body tissue.


Once the retainer 30f has been positioned relative to body tissue, energy is transmitted from a source 212 (FIG. 9) through the energy transmission member 174 to the retainer 30f The pointed projection 400 functions as energy director and is effective to concentrate the ultrasonic vibratory energy in the projection 400 and in the portion of the lower section 48f of the retainer 30f engaged by the projection 400. The energy transmitted to the retainer 30f is effective to heat the projection 400 and the portion of the lower section 46f of the retainer engaged by the projection, into the transition temperature range for the material of the retainer 30f.


Once the material of the retainer 30f has been heat softened, the material can flow under the influence of the constant predetermined force with which the applicator assembly 172 grips the retainer 30f. This results in deformation of the projection 400 and movement of the lower and upper sections 46f and 48f of the retainer 30f together to clamp the portions 32f and 34f of the suture 36f between the flat upper side surface of the lower section 46f and flat lower side surface 404 of the upper section 48f of the retainer.


When the material of the retainer 30f has cooled, the trigger 198 on the applicator assembly 172 is actuated and the retainer is released. The lower and upper sections 46f and 48f of the retainer 30f are bonded together and maintain the clamping action against the portions 32f and 34f of the suture 36f to prevent relative movement between the retainer 30f and the suture 36.


Although only a single projection 400 has been illustrated schematically in FIG. 22, it should be understood that a plurality of projections may be provided. This would result in bonds being formed between the lower and upper section 46f and 48f of the retainer 30f at each of a plurality of projections.


Embodiment of FIG. 23

The embodiment of the invention illustrated in FIG. 23 is generally similar to the embodiments of FIGS. 1-8 and 13-22. Therefore, similar numerals will be utilized to designate similar components, the suffix letter “g” being associated with the numerals of FIG. 23 to avoid confusion.


A retainer 30g includes a lower section 46g and an upper section 48g. The retainer 30g may be formed of a polymeric material which is either a polymer or copolymer. The retainer 30g may be biodegradable or nonbiodegradable.


A suture 36g has a portion 32g which extends through the retainer 30g and a portion 34g which also extends through the retainer. The suture 36g may be formed of a plurality of filaments or a single filament. The suture 36g is formed of a polymeric material which is either a polymer or a copolymer. The suture 36g may be formed of a material which biodegradable or of a material which is nonbiodegradable. The retainer 30g and suture 36g may be formed of the same material or of different materials.


When the retainer 30g and suture 36g are to be used to secure body tissue, in a manner similar to the manner illustrated schematically in FIG. 1, an intermediate portion 38g of the suture is positioned around body tissue. The portions 32g and 34g of the suture 36g are then positioned relative to the lower and upper sections 46g and 48g of the retainer 30g.


When this is to be done, a portion 32g of the suture 36g is inserted through a passage 410 in the lower section 46g of the retainer 30g. The portion 32g of the suture 36g is wrapped around a portion 412 of the lower section 46g of the retainer 30g. The portion 32g of the suture is then inserted through the passage 410 for a second time forms a loop 230g around the portion 412 of the lower section 46g of the retainer 30g. The portion 32g of the suture 36g is then inserted through a passage 414 in the upper section 48g of the retainer 30g.


Similarly, the portion 34g of the suture 36g is inserted through a passage 420 in the lower section 46g of the retainer 30g. The portion 34g of the suture 36g is then wrapped around the portion 422 of the lower section 46g to form a loop 232g. The portion 34g of the suture 36g is then inserted through the passage 420 for a second time. The portion 34g of the suture 36g is then inserted through a passage 426 in the upper section 48g of the retainer 30g.


The sections 46g and 48g of the retainer 30g are then moved together. As this occurs, a projection 400g from the upper section 48g moves into engagement with a flat upper side surface 402g on the lower section 46g of the retainer 30g. The retainer 30g is then gripped with the distal end portion (FIG. 12) of the applicator assembly 172. The applicator assembly 172 grips the retainer 30g with a constant predetermined force.


When the retainer 30g and suture 36g are to be utilized to secure body tissue, in the manner similar to that illustrated schematically in FIG. 1, the suture 36g is positioned with the intermediate portion 38g of the suture extending around the body tissue. The portions 32g and 34g of the suture 36g are positioned relative to the upper and lower sections 46g and 48g in the manner previously described and illustrated schematically in FIG. 23.


While the surgeon grips the handle 194 of the applicator assembly 172 with one hand and grips the portions 32g and 34g of the suture 36g with the other hand, the retainer 30g is slid along the suture toward the body tissue. As the retainer 30g is slid along the suture 36g toward the body tissue, the retainer is gripped with a constant predetermined force by the applicator assembly 172. When the retainer 30g has been moved to a desired position relative to the body tissue, energy is transmitted from the source 212 to the energy transmission member 174. Although many different types of energy may be utilized, the energy transmitted to the retainer 30g from the energy transmission member 174 is ultrasonic vibratory energy.


The projection 40g has a pointed configuration and functions as an energy director which concentrates the ultrasonic vibratory energy transmitted from the energy transmission member 174 to the retainer 30g. The projection 400g and the material of the lower section 46g engaged by the projection are heated into their transition temperature ranges. Heating of the materials of the projection 400g into its transition temperature range enables the material to flow under the influence of the constant predetermined force applied against the retainer 30g by the applicator assembly 172. This results in the suture 36g being firmly clamped between the flat upper side surface 402g of the lower section 46g and a flat lower side surface 404g of the upper section 48g of the retainer 30g. The material of the projection 400g bonds to the material of the lower section 46g of the retainer 30g. This results in the clamping force applied against the suture 36g by the lower and upper sections 46g and 48g of the retainer 30g being maintained.


Although only a single projection 400g has been illustrated schematically in FIG. 23, it is contemplated that a plurality of projections may be provided. Each of the projections from the upper section 48g of the retainer 30g would engage the upper side surface 402g of the lower section 46g of the retainer. This would result in a plurality of bonds being formed between the lower section 46g and upper section 48g of the retainer.


Embodiment of FIG. 24

It is contemplated that the applicator assembly 172 (FIGS. 9-12) may be utilized to position any one of the retainers of FIGS. 1-8 and 13-23 relative to body tissue 40. The applicator assembly 172 is operable to bond upper and lower sections of any one of the retainers disclosed herein together to maintain a secure grip on portions 32 and 34 of the sutures 36. It should be understood that the applicator assembly 172 may be used with retainers other than the retainers disclosed herein.


In the embodiment of FIG. 24, the applicator assembly 172, retainer 30 and suture 36 have been illustrated in associated with a cannula 450. It should be understood that the applicator assembly 172, suture 36 and any one of the retainers 30 disclosed herein may be utilized without the cannula 450. However, by using the cannula 450, it is believed that minimally invasive surgery will be facilitated. Of course, the suture 36, retainer 30, and applicator assembly 172 may be utilized during surgical procedures which are not minimally invasive surgical procedures.


When the cannula 450 is to be utilized during a surgical procedure, the cannula is moved through body tissue 452 to a position in which a distal end portion 454 of the cannula 450 is adjacent to the body tissue 40 to be engaged by the suture 36. The proximal end portion 456 of the cannula 450 extends from the body tissue 452 in the manner illustrated schematically in FIG. 24. Once the cannula 450 has been positioned relative to the body tissue 40, the suture 36 is moved through the cannula and positioned relative to the body tissue. The portions 32 and/or 34 of the suture may be moved through the cannula 450 to position the suture relative to the body tissue. The portions 32 and/or 34 of the suture are then pulled from the cannula 450 with the intermediate portion 38 of the suture engaging the body tissue 40.


The portions 32 and 34 of the suture 36 are then inserted through one or more passages in the retainer 30. Once the portions 32 and 34 of the suture have been inserted through the retainer 30, the retainer is gripped by the applicator assembly 172 in the manner illustrated schematically in FIG. 24. When the retainer 30 is gripped by the applicator assembly 172, a constant predetermined force is applied against the retainer 30 by the applicator assembly 172.


A surgeon may then manually grasp the portions 32 and 34 of the suture and tension the suture. At the same time, the surgeon manually grasps the handle 194 (FIG. 10) on the applicator assembly 172 and moves the applicator assembly downward (as viewed in FIG. 24) toward the cannula 450. As this occurs, the retainer 30 slides along the portions 32 and 34 of the suture and approaches the proximal end portion 456 of the cannula 450.


Continued movement of the applicator assembly 172 toward the body tissue 40 slides the retainer 30 along the portions 32 and 34 of the suture 36 as the leading end portion of the applicator assembly and retainer enter the cannula. The downward (as viewed in FIG. 24) movement of the applicator assembly 172 and retainer 30 is continued while tension is maintained in the portions 32 and 34 of the suture 36. This results in the retainer 30 sliding along the portions 32 and 34 of the suture 36 as the retainer 30 is moved through the cannula 450 by the applicator assembly 172.


The retainer 30 and leading end portion of the applicator assembly 172 may be moved through the distal end portion 454 of the cannula 450 and positioned in engagement with the body tissue 40. Alternatively, the distal end portion 454 of the cannula may be placed in engagement with the body tissue and the retainer moved into engagement with a surface area of the body tissue 40 which is surrounded by the distal end portion 454 of the cannula 450. Once the retainer 30 has been positioned at a desired location relative to the body tissue 40, the portions 32 and 34 of the suture 36 are tensioned with a desired force. The manner in which the portions 32 and 34 of the suture 36 are tensioned with a predetermined force may be the same as is disclosed in U.S. Pat. No. 6,159,234 or in U.S. patent application Ser. No. 09/556,458 filed May 3, 2000 by Peter M. Bonutti and entitled Method And Apparatus For Securing Tissue. Of course, a predetermined tension may be established in the portions 32 and 34 of the suture 36 in a different manner if desired.


While the predetermined tension is maintained in the portions 32 and 34 of the suture, the switch 214 (FIG. 9) is closed and ultrasonic vibratory energy is conducted through the energy transmission member 174 to the retainer 30. The ultrasonic vibratory energy is effective to heat pointed end portions of one or more projections on the retainer 30. This results in a bonding between upper and lower sections of the retainer in the manner previously described in conjunction with the retainers of FIGS. 1-8 and 13-23.


The switch 214 is then released and the flow of ultrasonic vibratory energy to the retainer 30 is interrupted. When this occurs, the retainer cools and an ultrasonic weld is formed between the sections of the retainer. The trigger 198 on the applicator assembly 172 is then actuated to move the force transmitting member 176 axially downward (as viewed in FIG. 24) to release the retainer 30. When the applicator assembly 172 has been disengaged from the retainer 30, it is removed from the cannula 450. The end portions 32 and 34 of the suture 36 may then be cut to a desired length or connected with other body tissue.


Although in the specific embodiment of the invention illustrated in FIG. 24 the suture 36 and retainer 30 are utilized in association with soft body tissue, it is contemplated that the suture 36 and retainer 30 may be used in association with hard body tissue or with both hard and soft body tissue. It is contemplated that the suture 36 may be connected with body tissue in known ways other than the specific way illustrated schematically in FIG. 24. The looping of the suture 36 around the body tissue 40 in FIG. 24 is merely a representation of any one of the many known ways of connecting a suture with body tissue.


Rather than being manually actuated, the applicator assembly 172 may form a portion a robotic mechanism. The robotic mechanism may be operated to tension the suture 36 with a desired tension, slide the retainer 30 along the suture, and transmit energy to the retainer in the manner previously described in conjunction with the applicator assembly 172. The robotic mechanism may be constructed and used in association with imaging devices in the same manner disclosed in U.S. patent application Ser. No. 10/102,413 filed Mar. 20, 2002 by Peter M. Bonutti and entitled Methods of Securing Body Tissue. It is contemplated that the cannula 450 may have any one of many different known constructions, including the constructions disclosed in U.S. Pat. Nos. 6,338,730 and 6,358,266.


Embodiment of FIG. 25

In the embodiment of the invention illustrated in FIG. 12, the applicator assembly 172 is provided with a flange 204 which engages a groove 142 in a retainer 30. In addition, the distal end portion of the applicator assembly 172 of FIGS. 9-12 is exposed so that a retainer gripped between the flange 204 and the end surface 206 on the transmission member 174 is exposed to body fluids. In the embodiment of the invention illustrated in FIG. 25, the distal end portion of the applicator assembly is provided with an end plate rather than a flange and a shield cooperates with the end plate to enclose the retainer. Since the embodiment of the invention illustrated in FIG. 25 is generally similar to the embodiment of the invention illustrated in FIGS. 9-12, similar numerals will be utilized to designate similar components, the suffix letter “h” being associated with the numerals of FIG. 25 to avoid confusion.


An applicator assembly 172h (FIG. 25) includes a tubular force transmitting member 176h. The tubular force transmitting member 176h extends around and is coaxial with an energy transmission member 174h. The energy transmission member 174h has a circular end surface 206h which is engagable with a retainer 30 in a manner similar to that illustrated in FIG. 24.


The metal end plate 464 is connected with the force transmitting member 176h. The metal end plate 464 replaces the flange 204 of the embodiment of the applicator assembly 172 illustrated in FIGS. 9-12 and is effective to apply force against the lower section of a retainer 30 in the manner previously described in conjunction with the retainers of FIGS. 1-8 and 13-23. The end plate 464 eliminates the necessity for the groove 142 in the lower section 46 of the retainer 30 (FIGS. 3-7). In addition, the end plate 464 provides for a relatively even distribution of force against the retainer 30 as it is clamped between the force transmitting member 176 and energy transmission member 174 with a constant predetermined force in the manner illustrated schematically in FIG. 24. The applicator assembly 172h has the same general construction and mode of operation as the applicator assembly 172 of FIGS. 9-12.


In accordance with a feature of the embodiment of the invention illustrated in FIG. 25, a flexible shield 468 is connected with tubular force transmitting member 176. The shield 468 cooperates with the end plate 464 to enclose a retainer 30 gripped between the energy transmission member 174 and the end plate. The proximal end portion 470 of the shield 468 is fixedly connected to the tubular force transmitting member 176. The distal end portion 472 of the shield 468 is free to move relative to the end plate 464 and force transmitting member 176. This provides access to the space between the end plate 464 and the end surface 206 on the energy transmission member 174h to position the retainer 30 between the end plate 464 and the end surface 206h on the energy transmission member 174h.


The shield cooperates with the force transmitting member 176h to enclose the retainer 30. This minimizes exposure of the retainer 30 to body tissue and/or body fluids. However, the flexible material of the shield 468 enables the portions 32 and 34 of the suture 36 to extend from the distal end portion of the applicator assembly 172.


CONCLUSION

In view of the foregoing description, it is apparent that the present invention relates to a new and improved apparatus and method for use in securing a suture 36. The suture 36 is positioned relative to sections 46 and 48 of an improved retainer 30. The sections 46 and 48 of the retainer 30 are interconnected when the retainer has been positioned relative to a patient's body tissue 40. The sections 46 and 48 of the retainer 30 may be bonded together by the application of energy to the retainer by an improved applicator assembly 172.


The improved retainer 30 may have one or more projections 66 and 68 which engage one or more recesses 58 and 60 to position the sections 46 and 48 of the retainer relative to each other. An interference fit may be provided between one or more projections 66 and 68 and one or more recesses 58 and 60 to hold the sections 46 and 48 of the retainer 30 in a desired spatial relationship. The projections 66 and 68 may have surfaces 88 and 90 which at least partially define one or more passages 52 and 54 and guide movement of one or more portions 32 and 34 of the suture 36 relative 30 to the retainer. In addition, surfaces on the projections may function to position the suture relative to the retainer.


The improved applicator assembly 172 may be used to apply energy to the retainer 30. Energy applied to the retainer 30 may effect bonding of end portions 124 and 126 of the projections 66 and 68 to bottom portions 118 and 120 of recesses 68 and 60 in the retainer 30. The end portions 124 and 126 of the projections 58 and 60 may function as energy directors which concentrate energy. If desired, one or more loops 230 and 232 may be formed in the suture 36 around one or more of the projections 66 and 68.


The applicator assembly may grip the retainer 30 with a predetermined force. While the applicator assembly 172 grips the retainer 30, the applicator assembly may be utilized to slide the retainer along the suture 36 to position the retainer relative to body tissue. While the applicator assembly 172 is gripping the retainer 30, the applicator assembly may apply energy to the retainer to effect bonding of sections 46 and 48 of the retainer together. The applicator assembly 172 may be used to move the retainer 30 into a cannula 450 to engage tissue in a patient's body.


The present invention includes a plurality of different features which may be utilized in combination with each other or separately. The various features of the invention may be used in combination with features of the prior art. For example, the improved retainer 30 may be used with the improved applicator assembly 172 or with a prior art applicator assembly. As another example, the improved applicator assembly 172 may be used with the improved retainer 30 or a prior art retainer. As still another example, the retainer 30 may be moved through a cannula 450 to a desired position relative to body tissue or may be positioned relative to the body tissue without being moved through a cannula.

Claims
  • 1. A system for securing a portion of a body, comprising: a first implant having a body and two first implant projections extending from the body;a second implant having a body, two recesses configured to receive the two first implant projections, and a second implant projection positioned between the two recesses configured to be positioned against the first implant; andat least one suture configured to be positioned between the body of the first implant and the body of the second implant,wherein application of a force and ultrasonic energy to the first or second implant joins and deforms the first and second implants, such that the second implant projection of the second implant directly joins to the body of the first implant when the at least one suture is positioned between the body of the first implant and the body of the second implant.
  • 2. The system of claim 1 wherein the second implant projection and at least one of the first implant projections are configured to concentrate the ultrasonic energy.
  • 3. The system of claim 1 wherein the application of the ultrasonic energy softens at least a portion of the second implant projection and at least one of the first implant projections.
  • 4. The system of claim 1 wherein the application of the force is initiated during the application of the ultrasonic energy.
  • 5. The system of claim 1 wherein the application of the force is continued after the application of the ultrasonic energy.
  • 6. The system of claim 1 wherein at least one of the first and second implants are configured to be positioned by a robotic mechanism.
  • 7. The system of claim 1 wherein at least one of the first and second implants are comprised of at least one of a biodegradable and nonbiodegradable material.
  • 8. A system for securing a portion of a body, comprising: a first implant having a body including a top side and a bottom side configured to be positioned on a portion of tissue, the top side having two recesses formed within the top side and a projection positioned between the two recesses on the surface of the top side;a second implant having a body and two projections configured to be positioned within the two recesses of the first implant; andat least one suture configured to be positioned between the surface of the top side of the first implant and the body of the second implant,wherein application of a force and ultrasonic energy to the first or second implant joins and deforms the first and second implants, such that the projection on the surface of the top side of the first implant directly joins to the body of the second implant when the at least one suture is positioned between the surface of the top side of the first implant and the body of the second implant.
  • 9. The system of claim 8 wherein at least one projection is configured to concentrate the ultrasonic energy.
  • 10. The system of claim 8 wherein the application of ultrasonic energy softens at least a portion of at least one projection.
  • 11. The system of claim 8 wherein the application of the force is initiated during the application of the ultrasonic energy.
  • 12. The system of claim 8 wherein the application of the force is continued after the application of the ultrasonic energy.
  • 13. The system of claim 8 wherein at least one of the first and second implants are configured to be positioned by a robotic mechanism.
  • 14. The system of claim 8 wherein at least one of the first and second implants are comprised of at least one of a biodegradable and nonbiodegradable material.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 11/932,602 filed Oct. 31, 2007 (now U.S. Pat. No. 8,162,977), which in turn is a continuation of U.S. patent application Ser. No. 11/465,199 filed on Aug. 17, 2006 (now U.S. Pat. No. 7,854,750), which in turn is a continuation of U.S. patent application Ser. No. 10/228,855 filed on Aug. 27, 2002 (now U.S. Pat. No. 7,094,251). Priority to U.S. patent application Ser. Nos. 11/932,602; 11/465,199 and 10/228,855 is claimed under 35 U.S.C. §120.

US Referenced Citations (820)
Number Name Date Kind
319296 Molesworth Jun 1885 A
668878 Jensen Feb 1901 A
668879 Miller Feb 1901 A
702789 Gibson Jun 1902 A
862712 Collins Aug 1907 A
2121193 Hanicke Dec 1932 A
2187852 Friddle Aug 1936 A
2178840 Lorenian Nov 1936 A
2199025 Conn Apr 1940 A
2235419 Callahan Mar 1941 A
2248054 Becker Jul 1941 A
2270188 Longfellow Jan 1942 A
2518276 Braward Aug 1950 A
2557669 Lloyd Jun 1951 A
2566499 Richter Sep 1951 A
2621653 Briggs Dec 1952 A
2725053 Bambara Nov 1955 A
2830587 Everett Apr 1958 A
3367809 Soloff May 1964 A
3204635 Voss et al. Sep 1965 A
3347234 Voss Oct 1967 A
3391690 Armao Jul 1968 A
3462803 Horton Aug 1969 A
3477429 Sampson Nov 1969 A
3513848 Winston et al. May 1970 A
3518993 Blake Jul 1970 A
3577991 Wilkinson May 1971 A
3596292 Erb et al. Aug 1971 A
3608539 Miller Sep 1971 A
3625220 Engelsher Dec 1971 A
3648705 Lary Mar 1972 A
3653388 Tenckhoff Apr 1972 A
3656476 Swinney Apr 1972 A
3657056 Winston et al. Apr 1972 A
3678980 Gutshall Jul 1972 A
3709218 Halloran Jan 1973 A
3711347 Wagner et al. Jan 1973 A
3760808 Bleuer Sep 1973 A
3788318 Kim et al. Jan 1974 A
3789852 Kim et al. Feb 1974 A
3802438 Wolvek Apr 1974 A
3807394 Attenborough Apr 1974 A
3809075 Matles May 1974 A
3811449 Gravlee et al. May 1974 A
3825010 McDonald Jul 1974 A
3833003 Taricco Sep 1974 A
3835849 McGuire Sep 1974 A
3842824 Neufeld Oct 1974 A
3857396 Hardwick Dec 1974 A
3867932 Huene Feb 1975 A
3875652 Arnold Apr 1975 A
3898992 Balamuth Aug 1975 A
3918442 Nikolaev et al. Nov 1975 A
3968800 Vilasi Jul 1976 A
4023559 Gaskell May 1977 A
4064566 Fletcher et al. Dec 1977 A
4089071 Kainberz et al. May 1978 A
4156574 Boden May 1979 A
4164794 Spector et al. Aug 1979 A
4171544 Hench et al. Oct 1979 A
4183102 Guiset Jan 1980 A
4199864 Ashman Apr 1980 A
4200939 Oser May 1980 A
4210148 Stivala Jul 1980 A
4213816 Morris Jul 1980 A
4235233 Mouwen Nov 1980 A
4235238 Ogiu et al. Nov 1980 A
4257411 Cho Mar 1981 A
4265231 Scheller, Jr. et al. May 1981 A
4281649 Derweduwen Aug 1981 A
4291698 Fuchs Sep 1981 A
4309488 Heide et al. Jan 1982 A
4320762 Bentov Mar 1982 A
4351069 Ballintyn et al. Sep 1982 A
4364381 Sher et al. Dec 1982 A
4365356 Broemer et al. Dec 1982 A
4388921 Sutter et al. Jun 1983 A
4395798 McVey Aug 1983 A
4409974 Freedland Oct 1983 A
4414166 Charlson et al. Nov 1983 A
4437191 Van der Zat et al. Mar 1984 A
4437362 Hurst Mar 1984 A
4444180 Schneider et al. Apr 1984 A
4448194 DiGiovanni et al. May 1984 A
4456005 Lichty Jun 1984 A
4461281 Carson Jul 1984 A
4493317 Klaue Jan 1985 A
4495664 Blanquaert Jan 1985 A
4501031 McDaniel et al. Feb 1985 A
4504268 Herlitze Mar 1985 A
4506681 Mundell Mar 1985 A
4514125 Stol Apr 1985 A
4526173 Sheehan Jul 1985 A
4532926 O'Holla Aug 1985 A
4535772 Sheehan Aug 1985 A
4547327 Bruins et al. Oct 1985 A
4556350 Bernhardt et al. Dec 1985 A
4566138 Lewis et al. Jan 1986 A
4589868 Dretler May 1986 A
4590928 Hunt et al. May 1986 A
4597379 Kihn et al. Jul 1986 A
4599085 Riess et al. Jul 1986 A
4601893 Cardinal Jul 1986 A
4606335 Wedeen Aug 1986 A
4621640 Mulhollan et al. Nov 1986 A
4630609 Chin Dec 1986 A
4632101 Freedland Dec 1986 A
4645503 Lin et al. Feb 1987 A
4657460 Bien Apr 1987 A
4659268 Del Mundo et al. Apr 1987 A
4662063 Collins et al. May 1987 A
4662068 Polonsky May 1987 A
4662887 Turner et al. May 1987 A
4669473 Richards et al. Jun 1987 A
4685458 Leckrone Aug 1987 A
4691741 Affa et al. Sep 1987 A
4705040 Mueller et al. Nov 1987 A
4706670 Andersen et al. Nov 1987 A
4708139 Dunbar, IV Nov 1987 A
4713077 Small Dec 1987 A
4716901 Jackson et al. Jan 1988 A
4718909 Brown Jan 1988 A
4722331 Fox Feb 1988 A
4722948 Sanderson Feb 1988 A
4724584 Kasai Feb 1988 A
4738255 Goble et al. Apr 1988 A
4739751 Sapega et al. Apr 1988 A
4741330 Hayhurst May 1988 A
4749585 Greco et al. Jun 1988 A
4750492 Jacobs Jun 1988 A
4768507 Fischell Sep 1988 A
4772286 Goble et al. Sep 1988 A
4776328 Frey et al. Oct 1988 A
4776738 Winston Oct 1988 A
4776851 Bruchman et al. Oct 1988 A
4781182 Purnell et al. Nov 1988 A
4790303 Steffee Dec 1988 A
4792336 Hiavacek et al. Dec 1988 A
4817591 Klause Apr 1989 A
4822224 Carl et al. Apr 1989 A
4823794 Pierce Apr 1989 A
4832025 Coates May 1989 A
4832026 Jones May 1989 A
4834752 Van Kampen May 1989 A
4841960 Garner Jun 1989 A
4843112 Gerhart Jun 1989 A
4846812 Walker et al. Jul 1989 A
4862882 Venturi et al. Sep 1989 A
4869242 Galluzzo Sep 1989 A
4870957 Goble et al. Oct 1989 A
4883048 Purnell et al. Nov 1989 A
4890612 Kensey Jan 1990 A
4895148 Bays et al. Jan 1990 A
4898156 Gatturna et al. Feb 1990 A
4899729 Gill et al. Feb 1990 A
4899744 Fujitsuka et al. Feb 1990 A
4901721 Hakki Feb 1990 A
4921479 Grayzel May 1990 A
4922897 Sapega et al. May 1990 A
4924866 Yoon May 1990 A
4932960 Green et al. Jun 1990 A
4935026 McFadden Jun 1990 A
4935028 Drews Jun 1990 A
4945625 Winston Aug 1990 A
4946468 Li Aug 1990 A
4954126 Wallsten Sep 1990 A
4955910 Bolesky Sep 1990 A
4957498 Caspari et al. Sep 1990 A
4961741 Hayhurst Oct 1990 A
4963151 Ducheyne et al. Oct 1990 A
4966583 Debbas Oct 1990 A
4968315 Gatturna Nov 1990 A
4969888 Scholten et al. Nov 1990 A
4969892 Burton et al. Nov 1990 A
4990161 Kampner Feb 1991 A
4994071 MacGregor Feb 1991 A
4997445 Hodorek Mar 1991 A
4998539 Delsanti Mar 1991 A
5002550 Li Mar 1991 A
5002563 Pyka et al. Mar 1991 A
5009652 Morgan et al. Apr 1991 A
5009663 Broome Apr 1991 A
5009664 Sievers Apr 1991 A
5013316 Goble et al. May 1991 A
5019090 Pinchuk May 1991 A
5021059 Kensey et al. Jun 1991 A
5035713 Friis Jul 1991 A
5037404 Gold et al. Aug 1991 A
5037422 Hayhurst et al. Aug 1991 A
5041093 Chu Aug 1991 A
5041114 Chapman et al. Aug 1991 A
5041129 Hayhurst et al. Aug 1991 A
5046513 Gatturna et al. Sep 1991 A
5047055 Bao et al. Sep 1991 A
5051049 Wills Sep 1991 A
5053046 Janese Oct 1991 A
5053047 Yoon Oct 1991 A
5059193 Kuslich Oct 1991 A
5059206 Winters Oct 1991 A
5061274 Kensey Oct 1991 A
5061286 Lyle Oct 1991 A
5069674 Fearnot et al. Dec 1991 A
5078731 Hayhurst Jan 1992 A
5078744 Chvapil Jan 1992 A
5078745 Rhenter et al. Jan 1992 A
5084050 Draenert Jan 1992 A
5084051 Tormala et al. Jan 1992 A
5085660 Lin Feb 1992 A
5085661 Moss Feb 1992 A
5098433 Freedland Mar 1992 A
5098434 Serbousek Mar 1992 A
5098436 Ferrante et al. Mar 1992 A
5100405 McLaren Mar 1992 A
5100417 Cerier et al. Mar 1992 A
5102417 Palmaz Apr 1992 A
5102421 Anspach, Jr. Apr 1992 A
5108399 Eitenmuller et al. Apr 1992 A
5120175 Arbegast et al. Jun 1992 A
5123520 Schmid et al. Jun 1992 A
5123914 Cope Jun 1992 A
5123941 Lauren et al. Jun 1992 A
5133732 Wiktor Jul 1992 A
RE34021 Mueller Aug 1992 E
5141520 Goble et al. Aug 1992 A
5147362 Goble Sep 1992 A
5154720 Trott et al. Oct 1992 A
5156613 Sawyer Oct 1992 A
5156616 Meadows et al. Oct 1992 A
5158566 Pianetti Oct 1992 A
5158934 Ammann et al. Oct 1992 A
5163960 Bonutti Nov 1992 A
5171251 Bregen et al. Dec 1992 A
5176682 Chow Jan 1993 A
5179964 Cook Jan 1993 A
5180388 DiCarlo Jan 1993 A
5183464 Dubrul et al. Feb 1993 A
5192287 Fournier et al. Mar 1993 A
5192326 Bao et al. Mar 1993 A
5197166 Meier et al. Mar 1993 A
5197971 Bonutti Mar 1993 A
5203784 Ross et al. Apr 1993 A
5203787 Noblitt Apr 1993 A
5208950 Merritt May 1993 A
5209776 Bass et al. May 1993 A
5217493 Raad et al. Jun 1993 A
5219359 McQuilkin et al. Jun 1993 A
5226899 Lee et al. Jul 1993 A
5234006 Eaton et al. Aug 1993 A
5234425 Fogarty et al. Aug 1993 A
5236438 Wilk Aug 1993 A
5236445 Hayhurst Aug 1993 A
5242902 Murphy et al. Sep 1993 A
5254113 Wilk Oct 1993 A
5258007 Spetzler et al. Nov 1993 A
5258015 Li et al. Nov 1993 A
5258016 DiPoto et al. Nov 1993 A
5266325 Kuzma et al. Nov 1993 A
5269783 Sander Dec 1993 A
5269785 Bonutti Dec 1993 A
5269809 Hayhurst et al. Dec 1993 A
5281235 Haber et al. Jan 1994 A
5282832 Toso et al. Feb 1994 A
5290281 Tschakaloff Mar 1994 A
5304119 Balaban et al. Apr 1994 A
5306280 Bregen et al. Apr 1994 A
5306301 Graf et al. Apr 1994 A
5315741 Dubberke May 1994 A
5318570 Hood Jun 1994 A
5318588 Horzewski et al. Jun 1994 A
5320611 Bonutti Jun 1994 A
5324308 Pierce Jun 1994 A
5328480 Melker et al. Jul 1994 A
5329846 Bonutti Jul 1994 A
5329924 Bonutti Jul 1994 A
5330468 Burkhart Jul 1994 A
5330476 Hiot et al. Jul 1994 A
5330486 Wilk Jul 1994 A
5336231 Adair Aug 1994 A
5336240 Metzler et al. Aug 1994 A
5339799 Kami et al. Aug 1994 A
5349956 Bonutti Sep 1994 A
5352229 Goble et al. Oct 1994 A
5354298 Lee et al. Oct 1994 A
5354302 Ko Oct 1994 A
5366480 Corriveau et al. Nov 1994 A
5370646 Reese et al. Dec 1994 A
5370660 Weinstein et al. Dec 1994 A
5372146 Branch Dec 1994 A
5374235 Ahrens Dec 1994 A
5376126 Lin Dec 1994 A
5382254 McGarry et al. Jan 1995 A
5383883 Wilk et al. Jan 1995 A
5383905 Golds et al. Jan 1995 A
5391173 Wilk Feb 1995 A
5395308 Fox et al. Mar 1995 A
5397311 Walker et al. Mar 1995 A
5400805 Warren Mar 1995 A
5403312 Yates et al. Apr 1995 A
5403348 Bonutti Apr 1995 A
5405359 Pierce Apr 1995 A
5411523 Goble May 1995 A
5413585 Pagedas May 1995 A
5417691 Hayhurst May 1995 A
5417701 Holmes May 1995 A
5417712 Whittaker et al. May 1995 A
5423796 Shikhman et al. Jun 1995 A
5431670 Holmes Jul 1995 A
5439470 Li Aug 1995 A
5441538 Bonutti Aug 1995 A
5443512 Parr et al. Aug 1995 A
5447503 Miller Sep 1995 A
5449372 Schmaltz et al. Sep 1995 A
5449382 Dayton Sep 1995 A
5451235 Lock Sep 1995 A
5453090 Martinez et al. Sep 1995 A
5456722 McLeod et al. Oct 1995 A
5458653 Davison Oct 1995 A
5462561 Voda Oct 1995 A
5464424 O'Don Nov 1995 A
5464426 Bonutti Nov 1995 A
5464427 Curtis et al. Nov 1995 A
5470337 Moss Nov 1995 A
5472444 Huebner et al. Dec 1995 A
5474554 Ku Dec 1995 A
5478351 Meade et al. Dec 1995 A
5478353 Yoon Dec 1995 A
5480403 Lee et al. Jan 1996 A
5486197 Le et al. Jan 1996 A
5487844 Fujita Jan 1996 A
5488958 Topel et al. Feb 1996 A
5496292 Burnham Mar 1996 A
5496335 Thomason et al. Mar 1996 A
5496348 Bonutti Mar 1996 A
5500000 Feagin et al. Mar 1996 A
5501700 Hirata Mar 1996 A
5504977 Weppner Apr 1996 A
5505735 Li Apr 1996 A
5507754 Green et al. Apr 1996 A
5522844 Johnson Jun 1996 A
5522845 Wenstrom, Jr. Jun 1996 A
5522846 Bonutti Jun 1996 A
5527341 Gogolewski et al. Jun 1996 A
5527342 Pietrzak et al. Jun 1996 A
5527343 Bonutti Jun 1996 A
5529075 Clark Jun 1996 A
5531759 Kensey et al. Jul 1996 A
5534012 Bonutti Jul 1996 A
5534028 Bao et al. Jul 1996 A
5540718 Bartlett Jul 1996 A
5542423 Bonutti Aug 1996 A
5545178 Kensey et al. Aug 1996 A
5545180 Le et al. Aug 1996 A
5545206 Carson Aug 1996 A
5549630 Bonutti Aug 1996 A
5549631 Bonutti Aug 1996 A
5556402 Xu Sep 1996 A
5569252 Justin et al. Oct 1996 A
5569305 Bonutti Oct 1996 A
5569306 Thal Oct 1996 A
5573517 Bonutti et al. Nov 1996 A
5573538 Laboureau Nov 1996 A
5573542 Stevens Nov 1996 A
5575801 Habermeyer Nov 1996 A
5580344 Hasson Dec 1996 A
5584835 Greenfield Dec 1996 A
5584860 Goble et al. Dec 1996 A
5584862 Bonutti Dec 1996 A
5591206 Moufarrege Jan 1997 A
5593422 Muijs Van De Moer et al. Jan 1997 A
5593425 Bonutti et al. Jan 1997 A
5593625 Riebel et al. Jan 1997 A
5601557 Hayhurst Feb 1997 A
5601558 Torrie et al. Feb 1997 A
5601595 Smith Feb 1997 A
5607427 Tschakaloff Mar 1997 A
5609595 Pennig Mar 1997 A
5618314 Harwin et al. Apr 1997 A
5620461 Muijs Van De Moer et al. Apr 1997 A
5626612 Bartlett May 1997 A
5626614 Hart May 1997 A
5626718 Philippe et al. May 1997 A
5628751 Sander et al. May 1997 A
5630824 Hart May 1997 A
5634926 Jobe Jun 1997 A
5635784 Seale Jun 1997 A
5643274 Sander et al. Jul 1997 A
5643293 Kogasaka et al. Jul 1997 A
5643295 Yoon Jul 1997 A
5643321 McDevitt Jul 1997 A
5645553 Kolesa et al. Jul 1997 A
5645597 Krapiva Jul 1997 A
5645599 Samani Jul 1997 A
5649955 Hashimoto et al. Jul 1997 A
5649963 McDevitt Jul 1997 A
5651377 O'Donnell, Jr. Jul 1997 A
5658313 Thal Aug 1997 A
5660225 Saffran Aug 1997 A
5662658 Wenstrom, Jr. Sep 1997 A
5665089 Dall et al. Sep 1997 A
5665109 Yoon Sep 1997 A
5667513 Torrie et al. Sep 1997 A
5669917 Sauer et al. Sep 1997 A
5674240 Bonutti Oct 1997 A
5681310 Yuan et al. Oct 1997 A
5681333 Burkhart et al. Oct 1997 A
5681351 Jamiolkowski et al. Oct 1997 A
5681352 Clancy, III et al. Oct 1997 A
5685820 Riek et al. Nov 1997 A
5688283 Knapp Nov 1997 A
5690654 Ovil Nov 1997 A
5690655 Hart et al. Nov 1997 A
5690676 DiPoto et al. Nov 1997 A
5693055 Zahiri et al. Dec 1997 A
5697950 Fucci et al. Dec 1997 A
5702397 Goble et al. Dec 1997 A
5702462 Oberlander Dec 1997 A
5707395 Li Jan 1998 A
5713903 Sander et al. Feb 1998 A
5713921 Bonutti Feb 1998 A
5718717 Bonutti Feb 1998 A
5720747 Burke Feb 1998 A
5720753 Sander et al. Feb 1998 A
5725541 Anspach, III et al. Mar 1998 A
5725556 Moser et al. Mar 1998 A
5725582 Bevan Mar 1998 A
5730747 Ek et al. Mar 1998 A
5733306 Bonutti Mar 1998 A
5735875 Bonutti et al. Apr 1998 A
5735877 Pagedas Apr 1998 A
5735899 Schwartz et al. Apr 1998 A
5741282 Anspach, III et al. Apr 1998 A
5752952 Adamson May 1998 A
5752974 Rhee et al. May 1998 A
5755809 Cohen et al. May 1998 A
5762458 Wang et al. Jun 1998 A
5766221 Benderev et al. Jun 1998 A
5769894 Ferragamo Jun 1998 A
5772672 Toy et al. Jun 1998 A
5776151 Chan Jul 1998 A
5779706 Tschakaloff Jul 1998 A
5782862 Bonutti Jul 1998 A
5785713 Jobe Jul 1998 A
5792096 Rentmeester et al. Aug 1998 A
5797931 Bito Aug 1998 A
5800537 Bell Sep 1998 A
5807376 Viola Sep 1998 A
5807403 Beyar et al. Sep 1998 A
5810849 Kontos Sep 1998 A
5810853 Yoon Sep 1998 A
5810884 Kim Sep 1998 A
5814072 Bonutti Sep 1998 A
5814073 Bonutti Sep 1998 A
5817107 Schaller Oct 1998 A
5823994 Sharkey et al. Oct 1998 A
5824009 Fukuda et al. Oct 1998 A
5830125 Scribner et al. Nov 1998 A
5836897 Sakural et al. Nov 1998 A
5839899 Robinson Nov 1998 A
5843178 Vanney et al. Dec 1998 A
5845645 Bonutti Dec 1998 A
5851185 Berns Dec 1998 A
5865834 McGuire Feb 1999 A
5866634 Tokushige Feb 1999 A
5868749 Reed Feb 1999 A
5874235 Chan Feb 1999 A
5879372 Bartlett Mar 1999 A
5891166 Schervinsky Apr 1999 A
5891168 Thal Apr 1999 A
5893880 Egan et al. Apr 1999 A
5897574 Bonutti Apr 1999 A
5899911 Carter May 1999 A
5899921 Caspari et al. May 1999 A
5906579 Vander Salm et al. May 1999 A
5906625 Bito et al. May 1999 A
5908429 Yoon Jun 1999 A
5911721 Nicholson et al. Jun 1999 A
5918604 Whelan Jul 1999 A
5919193 Slavitt Jul 1999 A
5919194 Anderson Jul 1999 A
5919208 Valenti Jul 1999 A
5919215 Wiklund et al. Jul 1999 A
5921986 Bonutti Jul 1999 A
5925064 Meyers et al. Jul 1999 A
5928244 Tovey et al. Jul 1999 A
5928267 Bonutti et al. Jul 1999 A
5931838 Vito Aug 1999 A
5931869 Boucher et al. Aug 1999 A
5940942 Fong Aug 1999 A
5941900 Bonutti Aug 1999 A
5941901 Egan Aug 1999 A
5947982 Duran Sep 1999 A
5948000 Larsen et al. Sep 1999 A
5948001 Larsen Sep 1999 A
5948002 Bonutti Sep 1999 A
5951590 Goldfarb Sep 1999 A
5957953 DiPoto et al. Sep 1999 A
5961499 Bonutti Oct 1999 A
5961521 Roger Oct 1999 A
5961554 Janson et al. Oct 1999 A
5964765 Fenton, Jr. et al. Oct 1999 A
5964769 Wagner et al. Oct 1999 A
5968046 Castleman Oct 1999 A
5968047 Reed Oct 1999 A
5980520 Vancaillie Nov 1999 A
5980559 Bonutti Nov 1999 A
5984929 Bashiri et al. Nov 1999 A
5989282 Bonutti Nov 1999 A
5993458 Vaitekunas et al. Nov 1999 A
5993477 Vaitekunas et al. Nov 1999 A
6007567 Bonutti Dec 1999 A
6007580 Lehto et al. Dec 1999 A
6010525 Bonutti Jan 2000 A
6010526 Sandstrom et al. Jan 2000 A
6017321 Boone Jan 2000 A
6033429 Magovern Mar 2000 A
6033430 Bonutti Mar 2000 A
6036701 Rosenman Mar 2000 A
6045551 Bonutti Apr 2000 A
6050998 Fletcher et al. Apr 2000 A
6056751 Fenton, Jr. May 2000 A
6056772 Bonutti May 2000 A
6056773 Bonutti May 2000 A
6059797 Mears May 2000 A
6059817 Bonutti et al. May 2000 A
6059827 Fenton May 2000 A
6063095 Wang et al. May 2000 A
6066151 Miyawaki et al. May 2000 A
6066160 Colvin et al. May 2000 A
6066166 Bischoff et al. May 2000 A
6068637 Popov et al. May 2000 A
6077277 Mollenauer et al. Jun 2000 A
6077292 Bonutti Jun 2000 A
6080161 Eaves, III et al. Jun 2000 A
6083522 Chu et al. Jul 2000 A
6086593 Bonutti Jul 2000 A
6086608 Ek et al. Jul 2000 A
6090072 Kratoska et al. Jul 2000 A
6099531 Bonutti Aug 2000 A
6099537 Sugai et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6099552 Adams Aug 2000 A
6102850 Wang et al. Aug 2000 A
6106545 Egan Aug 2000 A
6117160 Bonutti Sep 2000 A
6120536 Ding et al. Sep 2000 A
6125574 Ganaja et al. Oct 2000 A
6126677 Ganaja et al. Oct 2000 A
6139320 Hahn Oct 2000 A
RE36974 Bonutti Nov 2000 E
6149669 Li Nov 2000 A
6152949 Bonutti Nov 2000 A
6155756 Mericle et al. Dec 2000 A
6159224 Yoon Dec 2000 A
6159234 Bonutti et al. Dec 2000 A
6171307 Orlich Jan 2001 B1
6174324 Egan et al. Jan 2001 B1
6179840 Bowman Jan 2001 B1
6179850 Goradia Jan 2001 B1
6187008 Hamman Feb 2001 B1
6190400 Van De Moer et al. Feb 2001 B1
6190401 Green Feb 2001 B1
6200322 Branch et al. Mar 2001 B1
6217591 Egan et al. Apr 2001 B1
6224593 Ryan May 2001 B1
6224630 Bao et al. May 2001 B1
6228086 Wahl et al. May 2001 B1
6231592 Bonutti et al. May 2001 B1
6238395 Bonutti May 2001 B1
6238396 Lombardo May 2001 B1
6258091 Sevrain et al. Jul 2001 B1
6264675 Brotz Jul 2001 B1
6267761 Ryan Jul 2001 B1
6273717 Hahn et al. Aug 2001 B1
6280474 Cassidy et al. Aug 2001 B1
6286746 Egan et al. Sep 2001 B1
6287325 Bonutti Sep 2001 B1
6293961 Schwartz et al. Sep 2001 B2
6306159 Schwartz et al. Oct 2001 B1
6309405 Bonutti Oct 2001 B1
6312448 Bonutti Nov 2001 B1
6338730 Bonutti Jan 2002 B1
6340365 Dittrich et al. Jan 2002 B2
6348056 Bates et al. Feb 2002 B1
6358271 Egan et al. Mar 2002 B1
6364897 Bonutti Apr 2002 B1
6368325 McKinley et al. Apr 2002 B1
6368343 Bonutti Apr 2002 B1
6371957 Amrein et al. Apr 2002 B1
6409742 Fulton, III Jun 2002 B1
6409743 Fenton, Jr. Jun 2002 B1
6419704 Ferree Jul 2002 B1
6423088 Fenton Jul 2002 B1
6425919 Lambrecht Jul 2002 B1
6428562 Bonutti Aug 2002 B2
6432115 Mollenauer et al. Aug 2002 B1
6447516 Bonutti Sep 2002 B1
6450985 Schoelling et al. Sep 2002 B1
6461360 Adams Oct 2002 B1
6468293 Bonutti Oct 2002 B2
6475230 Bonutti Nov 2002 B1
6488196 Fenton Dec 2002 B1
6500195 Bonutti Dec 2002 B2
6503259 Huxel et al. Jan 2003 B2
6527774 Lieberman Mar 2003 B2
6530933 Yeung et al. Mar 2003 B1
6535764 Imran et al. Mar 2003 B2
6544267 Cole et al. Apr 2003 B1
6545390 Hahn et al. Apr 2003 B1
6547792 Tsuji et al. Apr 2003 B1
6551304 Whalen et al. Apr 2003 B1
6554852 Oberlander Apr 2003 B1
6557426 Reinemann et al. May 2003 B2
6558390 Cragg May 2003 B2
6568313 Fukui et al. May 2003 B2
6569187 Bonutti May 2003 B1
6572635 Bonutti Jun 2003 B1
6582443 Cabak Jun 2003 B2
D477776 Pontaoe Jul 2003 S
6585750 Bonutti Jul 2003 B2
6585764 Wright et al. Jul 2003 B2
6592609 Bonutti Jul 2003 B1
6594517 Nevo Jul 2003 B1
6605090 Trieu Aug 2003 B1
6610080 Morgan Aug 2003 B2
6618910 Pontaoe Sep 2003 B1
6623486 Weaver Sep 2003 B1
6623487 Goshert Sep 2003 B1
6626944 Taylor Sep 2003 B1
6632245 Kim Oct 2003 B2
6635073 Bonutti Oct 2003 B2
6638279 Bonutti Oct 2003 B2
6641592 Sauer et al. Nov 2003 B1
6645227 Fallin et al. Nov 2003 B2
6666877 Morgan et al. Dec 2003 B2
6669705 Westhaver et al. Dec 2003 B2
6679888 Green et al. Jan 2004 B2
6685750 Plos et al. Feb 2004 B1
6699240 Francischelli Mar 2004 B2
6702821 Bonutti Mar 2004 B2
6705179 Mohtasham Mar 2004 B1
6709457 Otte Mar 2004 B1
6719765 Bonutti Apr 2004 B2
6719797 Ferree Apr 2004 B1
6722552 Fenton Apr 2004 B2
6733531 Trieu May 2004 B1
6764514 Li et al. Jul 2004 B1
6770078 Bonutti Aug 2004 B2
6780198 Gregoire et al. Aug 2004 B1
6786989 Torriani et al. Sep 2004 B2
6796003 Marvel Sep 2004 B1
6818010 Eichhorn et al. Nov 2004 B2
6823871 Schmieding Nov 2004 B2
6860885 Bonutti Mar 2005 B2
6878167 Ferree Apr 2005 B2
6890334 Brace et al. May 2005 B2
6893434 Fenton et al. May 2005 B2
6899722 Bonutti May 2005 B2
6913666 Aeschlimann et al. Jul 2005 B1
6916321 TenHuisen Jul 2005 B2
6921264 Mayer et al. Jul 2005 B2
6923824 Morgan et al. Aug 2005 B2
6932835 Bonutti Aug 2005 B2
6942684 Bonutti Sep 2005 B2
6944111 Nakamura et al. Sep 2005 B2
6955540 Mayer et al. Oct 2005 B2
6955683 Bonutti Oct 2005 B2
6958077 Suddaby Oct 2005 B2
6981983 Rosenblatt et al. Jan 2006 B1
6997940 Bonutti Feb 2006 B2
7001411 Dean Feb 2006 B1
7004959 Bonutti Feb 2006 B2
7008226 Mayer et al. Mar 2006 B2
7018380 Cole Mar 2006 B2
7033379 Peterson Apr 2006 B2
7048755 Bonutti May 2006 B2
7066960 Dickman Jun 2006 B1
7087073 Bonutti Aug 2006 B2
7090111 Egan et al. Aug 2006 B2
7094251 Bonutti Aug 2006 B2
7104996 Bonutti Sep 2006 B2
7128763 Blatt Oct 2006 B1
7147652 Bonutti et al. Dec 2006 B2
7160405 Aeschlimann et al. Jan 2007 B2
7179259 Gibbs Feb 2007 B1
7192448 Ferree Mar 2007 B2
7217279 Reese May 2007 B2
7217290 Bonutti May 2007 B2
7241297 Shaolian et al. Jul 2007 B2
7250051 Francischelli Jul 2007 B2
7252685 Bindseil et al. Aug 2007 B2
7273497 Ferree Sep 2007 B2
7329263 Bonutti Feb 2008 B2
7335205 Aeschliamann Feb 2008 B2
7429266 Bonutti Sep 2008 B2
7445634 Trieu Nov 2008 B2
7481825 Bonutti Jan 2009 B2
7481831 Bonutti Jan 2009 B2
7510895 Raterman Mar 2009 B2
7854750 Bonutti Dec 2010 B2
7879072 Bonutti Feb 2011 B2
7891691 Bearey Feb 2011 B2
7967820 Bonutti Jun 2011 B2
8128669 Bonutti Mar 2012 B2
8140982 Hamilton, II et al. Mar 2012 B2
8147514 Bonutti Apr 2012 B2
8162977 Bonutti et al. Apr 2012 B2
20010002440 Bonutti May 2001 A1
20010009250 Herman et al. Jul 2001 A1
20010041916 Bonutti Nov 2001 A1
20020016593 Hearn et al. Feb 2002 A1
20020016633 Lin et al. Feb 2002 A1
20020019649 Sikora Feb 2002 A1
20020026244 Trieu Feb 2002 A1
20020029083 Zucherman et al. Mar 2002 A1
20020029084 Paul et al. Mar 2002 A1
20020045902 Bonutti Apr 2002 A1
20020062153 Paul et al. May 2002 A1
20020103495 Cole Aug 2002 A1
20020123750 Eisermann et al. Sep 2002 A1
20020183762 Anderson et al. Dec 2002 A1
20020188301 Dallara et al. Dec 2002 A1
20030039196 Nakamura et al. Feb 2003 A1
20030040758 Wang et al. Feb 2003 A1
20030065361 Dreyfuss Apr 2003 A1
20030105474 Bonutti Jun 2003 A1
20030118518 Hahn et al. Jun 2003 A1
20030158582 Bonutti et al. Aug 2003 A1
20030167072 Oberlander Sep 2003 A1
20030181800 Bonutti Sep 2003 A1
20030195530 Thill Oct 2003 A1
20030195565 Bonutti Oct 2003 A1
20030204204 Bonutti Oct 2003 A1
20030216742 Wetzler et al. Nov 2003 A1
20030225438 Bonutti et al. Dec 2003 A1
20030229361 Jackson Dec 2003 A1
20040010287 Bonutti Jan 2004 A1
20040030341 Aeschlimann et al. Feb 2004 A1
20040034357 Beane et al. Feb 2004 A1
20040097939 Bonutti May 2004 A1
20040098050 Foerster et al. May 2004 A1
20040138703 Alleyne Jul 2004 A1
20040143334 Ferree Jul 2004 A1
20040167548 Bonutti Aug 2004 A1
20040220616 Bonutti Nov 2004 A1
20040225325 Bonutti Nov 2004 A1
20040230223 Bonutti Nov 2004 A1
20040236374 Bonutti et al. Nov 2004 A1
20050033366 Cole Feb 2005 A1
20050038514 Helm et al. Feb 2005 A1
20050043796 Grant et al. Feb 2005 A1
20050071012 Serhan et al. Mar 2005 A1
20050090827 Gedebou Apr 2005 A1
20050096699 Wixey et al. May 2005 A1
20050113928 Cragg et al. May 2005 A1
20050126680 Aeschlimann et al. Jun 2005 A1
20050143826 Zucherman et al. Jun 2005 A1
20050149024 Ferrante et al. Jul 2005 A1
20050149029 Bonutti Jul 2005 A1
20050203521 Bonutti Sep 2005 A1
20050216059 Bonutti Sep 2005 A1
20050216087 Zucherman et al. Sep 2005 A1
20050222620 Bonutti Oct 2005 A1
20050240190 Gall et al. Oct 2005 A1
20050240227 Bonutti Oct 2005 A1
20050246021 Ringeisen et al. Nov 2005 A1
20050261684 Shaolian et al. Nov 2005 A1
20050267481 Carl et al. Dec 2005 A1
20050267534 Bonutti Dec 2005 A1
20060009855 Goble et al. Jan 2006 A1
20060015101 Warburton et al. Jan 2006 A1
20060015108 Bonutti Jan 2006 A1
20060024357 Carpenter et al. Feb 2006 A1
20060026244 Watson Feb 2006 A1
20060064095 Senn et al. Mar 2006 A1
20060089646 Bonutti Apr 2006 A1
20060122600 Cole Jun 2006 A1
20060122704 Vresilovic et al. Jun 2006 A1
20060142799 Bonutti Jun 2006 A1
20060167495 Bonutti Jul 2006 A1
20060200199 Bonutti Sep 2006 A1
20060212073 Bonutti Sep 2006 A1
20060217765 Bonutti Sep 2006 A1
20060229623 Bonutti Oct 2006 A1
20060235470 Bonutti Oct 2006 A1
20060241695 Bonutti Oct 2006 A1
20060264950 Nelson Nov 2006 A1
20060265009 Bonutti Nov 2006 A1
20060265011 Bonutti Nov 2006 A1
20070032825 Bonutti et al. Feb 2007 A1
20070088362 Bonutti et al. Apr 2007 A1
20070118129 Fraser et al. May 2007 A1
20070123878 Shaver May 2007 A1
20070198555 Friedman et al. Aug 2007 A1
20070265561 Yeung Nov 2007 A1
20070270833 Bonutti Nov 2007 A1
20080021474 Bonutti Jan 2008 A1
20080039845 Bonutti Feb 2008 A1
20080039873 Bonutti Feb 2008 A1
20080046090 Paul et al. Feb 2008 A1
20080097448 Binder et al. Apr 2008 A1
20080108897 Bonutti et al. May 2008 A1
20080108916 Bonutti May 2008 A1
20080114399 Bonutti May 2008 A1
20080132950 Lange Jun 2008 A1
20080140116 Bonutti Jun 2008 A1
20080140117 Bonutti Jun 2008 A1
20080195145 Bonutti Aug 2008 A1
20080269753 Cannestra Oct 2008 A1
20080269808 Gall et al. Oct 2008 A1
20090024161 Bonutti Jan 2009 A1
20090093684 Schorer Apr 2009 A1
20090138014 Bonutti May 2009 A1
20090194969 Bearey Aug 2009 A1
20100211120 Bonutti Aug 2010 A1
20110060375 Bonutti Mar 2011 A1
20110295253 Bonutti et al. Dec 2011 A1
20120165841 Bonutti Jun 2012 A1
20120191140 Bonutti Jul 2012 A1
20120197316 Mayer Aug 2012 A1
20120215233 Bonutti et al. Aug 2012 A1
Foreign Referenced Citations (42)
Number Date Country
2641580 Aug 2007 CA
2680827 Sep 2008 CA
2698057 Mar 2009 CA
1903016 Oct 1964 DE
1903316 Oct 1964 DE
1903016 Aug 1970 DE
3517204 Nov 1986 DE
3722538 Jan 1989 DE
9002844 Jan 1991 DE
784454 May 1996 EP
773004 May 1997 EP
1614525 Jan 2006 EP
1988837 Aug 2007 EP
2134294 Dec 2009 EP
2717368 Mar 1994 FR
2696338 Apr 1994 FR
2728779 Jan 1995 FR
2736257 Jul 1995 FR
2750031 Jun 1996 FR
2771621 Nov 1997 FR
2785171 Oct 1998 FR
2093701 Sep 1982 GB
2306110 Apr 1997 GB
8140982 Jun 1996 JP
184396 Jul 1966 SU
9112779 Sep 1991 WO
9323094 Nov 1993 WO
WO9408642 Apr 1994 WO
9516398 Jun 1995 WO
WO 9531941 Nov 1995 WO
WO9614802 May 1996 WO
WO9712779 Apr 1997 WO
9749347 Dec 1997 WO
WO 9749347 Dec 1997 WO
WO9811838 Mar 1998 WO
WO9826720 Jun 1998 WO
WO02053011 Jul 2002 WO
2007092869 Aug 2007 WO
2007092869 Aug 2007 WO
2008116203 Sep 2008 WO
2009029908 Mar 2009 WO
WO2010099222 Feb 2010 WO
Non-Patent Literature Citations (91)
Entry
IPR—International Publication WO/2008/116203, published Sep. 22, 2009 for PCT/US08/57948.
ISR—International Search Report WO/2008/116203, published Dec. 24, 2008 for PCT/US08/57948.
IPER—Internation Preliminary Report on Patentability, WO/2008/116203, published Sep. 22, 2009 for PCT/US08/57948.
Written Opinion WO/2008/116203 dated Oct. 23, 2008 for PCT/US08/57948.
IPR—International Publication WO2009/029908, published May 3, 2009 for PCT/US08/74941.
ISR—International Search Report, WO2009/029908, published May 3, 2009 for PCT/US08/74941.
IPER—Internation Preliminary Report on Patentability, WO2009/029908, published Mar. 2, 2010 for PCT/US08/74941.
Written Opinion WO2009/029908 dated Feb. 28, 2010 for PCT/US08/74941.
International Search Report PCT/US2010/025263 completed Apr. 13, 2010.
Written Opinion for PCT/US2010/025263 completed Apr. 13, 2010.
Arthrex, Protect your graft, Am J Sports Med, vol. 22, No. 4, Jul.-Aug. 1994.
Barrett et al, T-Fix endoscopic meniscal repair: technique and approach to different types of tears, Apr. 1995, Arthroscopy vol. 11 No. 2 p. 245-51.
Cope, Suture Anchor for Visceral Drainage, AJR, vol. 148 p. 160-162, Jan. 1986.
Gabriel, Arthroscopic Fixation Devices, Wiley Enc. of Biomed Eng., 2006.
Innovasive, We've got you covered, Am J Sports Med, vol. 26, No. 1, Jan.-Feb. 1998.
510k—TranSet Fracture Fixation System, Feb. 24, 2004, k033717.
510k—Linvatec Biomaterials modification of Duet and impact Suture Anchor, Nov. 19, 2004, k042966.
510k, arthrex pushlock, Jun. 29, 2005, K051219.
510k, mitek micro anchor, Nov. 6, 1996, K962511.
510k, Multitak Suture System, Jan. 10, 1997, K964324.
510k, Modified Mitek 3.5mm Absorbable Suture Anchor System, Jun. 9, 1997, K970896.
510K, Summary for Arthrex Inc.'s Bio-Interference Screw, Jul. 9, 1997, K971358.
510k, Surgicraft Bone Tie, Sep. 25, 1998, K982719.
Karlsson et al, Repair of Bankart lesions with a suture anchor in recurrent dislocation of the shoulder, Scand. j. of Med & Science in Sports, 1995, 5:170-174.
Madjar et al, Minimally Invasive Pervaginam Procedures, for the Treatment of Female Stress Incontinence . . . , Artificial Organs, 22 (10) 879-885, 1998.
Nowak et al, Comparative Study of Fixation Techniques in the Open Bankart Operation Using Either a Cannulated Screw or Suture-Anchors, Acta Orthopcedica Belgica, vol. 64—Feb. 1998.
Packer et al, Repair of Acute Scapho-Lunate Dissociation Facilitated by the “Tag” Suture Anchor, Journal of Hand Surgery (British and European Volume, 1994) 19B: 5: 563-564.
Richmond, Modificatio of the Bankart reconstruction with a suture anchor, Am J Sports Med, vol. 19, No. 4, p. 343-346, 1991.
Shea et al, Technical Note: Arthroscopic Rotator Cuff Repair Using a Transhumeral Approach to Fixation, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 14, No. 1 Jan.-Feb. 1998: pp. 118-122.
Tfix, Acufex just tied the knot . . . , Am. J. Sports Med., vol. 22, No. 3, May-Jun. 1994.
Wong et al, Case Report: Proper Insertion Angle is Essential to Prevent Intra-Articular Protrusion of a Knotless Suture Anchor in Shoulder Rotator Cuff Repair, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 26, No. 2 Feb. 2010: pp. 286-290.
Cobb et al, Late Correction of Malunited Intercondylar Humeral Fractures Intra-Articular Osteotomy and Tricortical Bone Grafting, J BoneJointSurg [Br] 1994; 76-B:622-6.
Fellinger, et al, Radial avulsion of the triangular fibrocartilage complex in acute wrist trauma: a new technique for arthroscopic repair, Jun. 1997, Arthroscopy vol. 13 No. 3 p. 370-4.
Hecker et al , Pull-out strength of suture anchors for rotator cuff and Bankart lesion repairs, Nov.-Dec. 1993, The American Journal of Sports Medicine, vol. 21 No. 6 p. 874-9.
Hernigou et al , Proximal Tibial Osteotomy for Osteoarthritis with Varus Deformity a Ten to Thirteen-Year Follow-Up Study, J Bone Joint Surg, vol. 69-A, No. 3. Mar. 1987, p. 332-354.
Ibarra et al, Glenoid Replacement in Total Shoulder Arthroplasty, The Orthopedic Clinics of Northamerica: Total Shoulder Arthroplasty, vol. 29 No. 3, Jul. 1998 p. 403-413.
Murphycet al , Radial Opening Wedge Osteotomy in Madelung's Deformity, J. Hand Surg, vol. 21 A No. 6 Nov. 1996, p. 1035-44.
Biomet, Stanmore Modular Hip, J. Bone Joint Surg., vol. 76-B : No. Two, Mar. 1994.
Intl Prelim Rep on Patentability and Written Opinion for PCT/US10/25263 dated Aug. 30, 2011.
The Search for the Holy Grail: A Centrury of Anterior Cruciate Ligament Reconstruction, R. John Naranja, American Journal of Orthopedics, Nov. 1997.
Femoral Bone Plug Recession in Endoscope Anterior Cruciate Ligament Reconstruction, David E. Taylor, Arthroscopy: The Journal of Arthroscopic and Related Surgery, Aug. 1996.
Meniscus Replacement with Bone Anchors: A Surgical Technique, Arthroscopy: The Journal of Arthroscopic and Related Surgery, 1994.
Problem Solving Report Question No. 1014984.066, Ultrasonic Welding, (c) 1999.
Guide to Ultrasound Plastic Assembly, Ultrasonic Division Publication, (c) 1995.
Enabling Local Drug Delivery-Implant Device Combination Therapies, Surmodics, Inc., (c) 2003.
Stent Based Delivery of Sirolimus Reduces Neointimal Formation in a Porcine Coronary Model, Takeshi Suzuki, American Heart Association, Inc. (c) 2001.
Why Tie a Knot When You Can Use Y-Knot?, Innovasive Devices Inc., (c) 1998.
Ask Oxford, compact Oxford English dictionary: projection, Mar. 30, 2009.
Ask Oxford, compact Oxford English dictionary: slit, Mar. 30, 2009.
Textured Surface Technology, Branson Technolog, Branson Ultrasonics Copr., (c) 1992.
IPR—International Publication WO/2007/092869, published Aug. 16, 2007 for PCT/US2007/061730.
ISR—International Search Report WO/2007/092869, published Dec. 13, 2007 for PCT/US2007/061730.
Intl Prelim Report on Patentability, WO/2007/092869, published Aug. 12, 2008 for PCT/US2007/061730.
Written Opinion WO/2007/092869 dated Aug. 7, 2008 for PCT/US2007/061730.
European Search Report dated Sep. 10, 2012 for EP08732724.3 (046).
Petition for Inter Partes Review of U.S. Patent No. 5,980,559, IPR 2013-00603, Filing Date Sep. 24, 2013.
Declaration of David Kaplan, Ph.D. Regarding U.S. Pat. No. 5,980,559, IPR 2013-00603, Sep. 24, 2013.
Petition for Inter Partes Review of U.S. Pat. No. 7,087,073, IPR 2013-00604, Filing Date Sep. 24, 2013.
Declaration of Wayne J. Sebastianelli, MD Regarding U.S. Pat. No. 7,087,073, Sep. 24, 2013, IPR 2013-00604.
Petition for Inter Partes Review of U.S. Pat. No. 6,500,195, IPR 2013-00624, Filing Date Oct. 2, 2013.
Declaration of Dr. Philip Hardy in Support of Petition for Inter Partes Review of U.S. Pat. No. 6,500,195, IPR 2013-00624, Sep. 25, 2013.
Petition for Inter Partes Review of U.S. Pat. No. 5,527,343, IPR 2013-00628, Filing Date Sep. 26, 2013, Sep. 25, 2013.
Declaration of Dr. Philip Hardy in Support of Petition for Inter Partes Review of U.S. Pat. No. 5,527,343, IPR 2013-00628, Sep. 25, 2013.
Corrected Petition for Inter Partes Review of U.S. Pat. No. 5,921,986, IPR 2013-00631, Filing Date Sep. 27, 2013.
Expert Declaration of Steve E. Jordan, MD, for Inter Partes Review of U.S. Pat. No. 5,921,986, IPR 2013-00631, Sep. 24, 2013.
Corrected Petition for Inter Partes Review of U.S. Pat. No. 8,147,514, IPR 2013-00632, Filing Date Sep. 27, 2013.
Declaration of Steve Jordan for U.S. Pat. No. 8,147,514, from IPR 2013-00632, dated Sep. 23, 2013 (exhibit 1009).
Corrected Petition for Inter Partes Review of U.S. Pat. No. 8,147,514, IPR 2013-00633, Filing Date Sep. 27, 2013.
Declaration of Steve Jordan for U.S. Pat. No. 8,147,514, from IPR 2013-00633, dated Sep. 23, 2013 (exhibit 1006).
Flory, Principles of Polymer Chemistry, 1953, selected pages (cited in IPR 2013-00603, exhibit 1012).
Grizzi, Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence, Biomaterials, 1995, vol. 16, No. 4, p. 305-11 (cited in IPR 2013-00603, exhibit 1006).
Gopferich, Mechanisms of polymer degradation and erosion, Biomaterials, 1996, vol. 17, No. 2, p. 103-114 (cited in IPR 2013-00603, exhibit 1013).
Gao et el, Swelling of Hydroxypropyl Methylcellulose Matrix Tablets . . . , J. of Pharmaceutical Sciences, vol. 85, No. 7, Jul. 1996, p. 732-740 (cited in IPR 2013-00603, exhibit 1014).
Linvatec, Impact Suture Anchor brochure, 2004 (cited in IPR 2013-00628, exhibit 1010).
Seitz et al, Repair of the Tibiofibular Syndesmosis with a Flexible Implant, J. of Orthopaedic Trauma, vol. 5, No. 1, p. 78-82, 1991 (cited in IPR 2013-00631, exhibit 1007) (cited in 2013-00632).
Translation of FR2696338 with translator's certificate dated Sep. 17, 2013 (cited in IPR 2013-00631, 2013-00632).
Translation of DE9002844.9 with translator's certificate dated Sep. 26, 2013 (cited in IPR 2013-00631, 2013-00632).
Declaration of Steve Jordan for U.S. Pat. No. 5,921,986, from IPR 2013-00632, dated Sep. 24, 2013 (exhibit 1010).
Declaration of Steve Jordan for U.S. Pat. No. 5,921,986, from IPR 2013-00633, dated Sep. 24, 2013 (exhibit 1007).
Declaration of Dr. Steve E. Jordan for U.S. Pat. No. 8,147,514, from IPR 2013-00631, dated Sep. 23, 2013.
010-3 Copending U.S. Appl. No. 11/932,907—RCE Response Sep. 15, 2011.
027 Copending U.S. Appl. No. 11/258,795 Non-Final Office Action mailed Apr. 26, 2011.
046 Copending U.S. Appl. No. 11/689,670, RCE Response Sep. 19, 2011.
003-1 Copending U.S. Appl. No. 10/614,352, Final Office Action Jul. 12, 2010.
007-2 Copending U.S. Appl. No. 11/932,602 Final Response to Office Action Jun. 10, 2011.
039 Copending U.S. Appl. No. 11/671,556 Response filed Aug. 23, 2010.
Co-pending U.S. Appl. No. 11/438,537, Supplemental Final Rejection mailed Sep. 25, 2009.
Non-Final Office Action dated Sep. 28, 2005 relating to U.S. Appl. No. 10/228,855, 8 pgs.
Non-Final Office Action dated Dec. 28, 2009 relating to U.S. Appl. No. 11/465,199, 6pgs.
Final Office Action dated Jun. 10, 2011 relating to U.S. Appl. No. 11/932,602, 7 pgs.
Non-Final Office Action dated Oct. 6, 2010 relating to U.S. Appl. No. 11/932,602, 4 pgs.
Related Publications (1)
Number Date Country
20120215233 A1 Aug 2012 US
Continuations (3)
Number Date Country
Parent 11932602 Oct 2007 US
Child 13455093 US
Parent 11465199 Aug 2006 US
Child 11932602 US
Parent 10228855 Aug 2002 US
Child 11465199 US