The present invention relates to a system for supplying at least one electrical load or energy storage device with direct current by means of a plurality of electric generators located at rollers—in particular, track rollers or support rollers—of a cableway system.
In cableway systems it is known to design a track roller of a cableway vehicle or a support roller for a haulage cable or for a traction cable with an electric generator. In this respect, reference is made to EP 1 992 539 B1, EP 2 623 389 A1 and WO 2008/12019 A1.
By this means, by virtue of the motion of a cableway vehicle along a supporting cable of the cableway system by means of this track roller the electrical energy required in the vehicle—by which a heating system, for example, is operated—can be generated. To the extent that support rollers or hold-down rollers located on supports of cableway systems are concerned, the electrical energy required for electrical or electronic appliances located on the supports can be generated by this means. As a result of this, there is no requirement to run electrical leads to the supports.
As a rule, the electrical energy generated by a generator of such a type is fed into a battery from which electrical or electronic appliances are supplied with the requisite current. For the feeding of the battery, the alternating current generated by the generator is converted into direct current by means of a rectifier. Subsequently the voltage of this direct current is brought by means of a voltage converter to a predetermined constant voltage with which the battery is fed.
The supply of the electrical or electronic appliances with current can also be undertaken directly from the voltage converter.
The track rollers of running-gear assemblies of cableway vehicles, or the support rollers and hold-down rollers located on supports, via which haulage cables or traction cables of cableway systems are routed, have varying diameters—for production-engineering reasons or by reason of abrasive-wear phenomena—and varying rotational speeds by reason of varying running characteristics, by virtue of which varying electrical values as regards frequency and voltage arise at the outputs of electric generators provided therein or coupled therewith for entrainment. To the extent that the electrical energy generated by these generators is output to an electrical load assigned to said generators or to a battery, there is therefore a requirement to provide a control circuit for this, by which it is ensured that the electrical load or the battery is supplied from the generators with current that has a predetermined voltage.
In accordance with the invention, this control circuit consists in the output of each of the generators being routed to a respective AC/DC converter, all the AC/DC converters being controlled or regulated by means of a control unit to the effect that at least approximately equal constant voltages arise at their outputs, and the outputs of all the AC/DC converters being coupled with one another and connected to at least one load or to an energy storage device.
Each of the AC/DC converters preferably contains a rectifier, the output of which is connected to a DC/DC voltage converter. Furthermore, an output of each of the AC/DC converters is preferably connected to the control unit via a common bidirectional control line. In addition, an output of the control unit may be connected to the AC/DC converters via a measuring line or output line.
The control unit has preferably been designed with an input/output line. Furthermore, a frequency-measuring element may be connected to the output of the generators. In addition, a current-measuring element and a voltage-measuring element may be connected to the output of the DC/DC voltage converters in each instance. Furthermore, a temperature sensor may be linked to the generators in each instance. The outputs of the voltage-and-frequency-measuring elements, of the current-measuring elements, of the voltage-measuring elements and of the temperature sensors are preferably connected to a control circuit, and an output of the control circuit is preferably connected to the voltage converter.
The subject matter of the invention is elucidated in more detail below on the basis of an exemplary embodiment represented in the drawing, in which:
Some or all of the track rollers 33 have been designed with electric generators by which electric current is generated by the motion of the running gear 31 along the supporting cable 1. The voltage and the frequency of the electric current generated by the individual generators by this means depend on the design of the generators and on the rotational speeds of the track rollers 33. The outside diameters of the track rollers 33 may be of varying size by reason of manufacturing tolerances and by reason of varying abrasive-wear phenomena.
By reason of varying outside diameters, by virtue of which varying rotational speeds arise, and by reason of varying running characteristics of the track rollers 33, current having varying voltages and varying frequencies is consequently generated by the electric generators.
Lines 36 which are routed along the supporting rod 34 to a distributor box 37 are linked to the generators located in the track rollers 33. The outputs of the distributor box 37 are connected to an AC/DC converter circuit 4 located in the cableway cabin 35, in which the current generated by the individual generators is rectified and converted to a predetermined voltage. The output of the AC/DC converter circuit 4 is connected up to a distributor circuit 5 by which the supply of the electrical loads located in the cableway cabin 35—such as a lighting system, a sound system, display screens, heating appliances and appliances for telecommunication—or of a battery with electrical energy is controlled. The cableway cabin 35 has furthermore been designed with a transmitting/receiving antenna 38.
As elucidated below on the basis of
The design of the AC/DC converters 41, 42, 43 . . . 4n is elucidated below on the basis of
The three phases of the current generated by one of the generators G are applied via a line 51 to a rectifier 52 by which the alternating current that is output by the generator G is converted into an undulatory direct current. The direct current that is output by the rectifier 52 is output via a line 52a to a DC/DC voltage converter 53 in which the voltage of this direct current is converted to a constant predetermined value. The direct current that is output by the DC/DC voltage converter 53 is supplied to the loads via output line 53a.
A voltage-and-frequency-measuring element 54 by which the voltage and the frequency of the current that is output by the generator G are ascertained is linked to the output line 51 of the generator G. A current-measuring element 55 and a voltage-measuring element 56 are linked to output line 53a. Furthermore, a temperature sensor 57 is assigned to the stator winding of the generator G.
In addition, a control circuit 58 is provided, to which the outputs of the voltage-and-frequency-measuring element 54, of the current-measuring element 55, of the voltage-measuring element 56 and of the temperature sensor 57 are connected. The DC/DC voltage converter 53, linked via a control line 58a, is monitored or controlled by this control circuit 58 to the effect that the current that is output via output line 53a has the predetermined constant voltage. Output lines 53a are linked to output line 49 which is evident from
As represented in
The modular unit 6 has furthermore been designed with contact ridges 7 which are assigned to the modules 61, 62, 63 . . . 6n. In addition, the modular unit 6 is provided with LEDs 8. Furthermore, the modular unit 6 has been designed with the transmitting/receiving antenna 38.
Number | Date | Country | Kind |
---|---|---|---|
A 158/2015 | Mar 2015 | AT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/AT2016/000002 | 1/14/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/145463 | 9/22/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5768117 | Takahashi et al. | Jun 1998 | A |
8844446 | Bavaresco et al. | Sep 2014 | B2 |
8853871 | Luger et al. | Oct 2014 | B2 |
20080276826 | Erhart | Nov 2008 | A1 |
20110006600 | Fontana | Jan 2011 | A1 |
20110198847 | Hopewell | Aug 2011 | A1 |
20110254284 | Catucci et al. | Oct 2011 | A1 |
20110285130 | Thisted | Nov 2011 | A1 |
20140103653 | Ubben | Apr 2014 | A1 |
20140306526 | Fontana | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
510677 | May 2012 | AT |
102011014536 | Sep 2012 | DE |
1992539 | Nov 2008 | EP |
2385602 | Nov 2011 | EP |
2623389 | Aug 2013 | EP |
H06169598 | Jun 1994 | JP |
07194118 | Jul 1995 | JP |
H07194118 | Jul 1995 | JP |
2004080980 | Mar 2004 | JP |
2005297635 | Oct 2005 | JP |
2008131736 | Jun 2008 | JP |
2009131086 | Jun 2009 | JP |
2009131086 | Jun 2009 | JP |
2009281196 | Dec 2009 | JP |
2012516666 | Apr 2012 | JP |
2014023286 | Feb 2014 | JP |
2008118121 | Nov 2009 | RU |
2008129019 | Oct 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20180048156 A1 | Feb 2018 | US |