This patent application claims priority to Australian Patent Application No. 2017904132, filed on Oct. 12, 2017, which has been incorporated herein in its entirety for all purposes.
The present invention relates to a system for supporting non-structural building components.
Non-structural building components are used in the functioning of many buildings to distribute building services, such as electrical power and data, water, gas, and ventilation and refrigeration. It is common for non-structural building components to be suspended beneath a soffit of the building. However, it will be appreciated that in some instances non-structural building components may additionally or alternatively need to be supported adjacent a vertical wall of the building.
It is known to support non-structural building components in an elevated position beneath a soffit using suspension hangers, each of which is a rigid threaded rod. The upper end of the suspension hanger is embedded in (or otherwise secured to) a soffit. The building service components are then secured to the lower end of the suspension hanger using internally threaded nuts, and other fastening components.
In some instances, it is important that buildings and the components are properly protected and will continue to operate after an event in which the building is subject to substantial shock and/or vibration. Such events include earthquakes and other seismic events, and commercial blasts. In these instances, the non-structural components need to be braced and/or isolated so as to receive minimal damage. In order to withstand such events, it is known to provide bracing to the non-structural building components, however the bracing puts compressive and bending loads on the suspension hanger. To prevent the suspension hangers collapsing, the threaded rods are then reinforced, which adds weight and complexity to the system. Further, installation of the system is more complicated and time consuming.
There is a need to address the above, and/or at least provide a useful alternative.
There is provided a system for supporting a non-structural building component beneath a soffit of a building, the system having a plurality of suspension assemblies that each comprise:
a first elongate non-rigid member that is secured at an upper end to a structural portion of the building at a first location, and at a lower end to one of: the non-structural building component, or a support member to which the non-structural building component is secured; and
at least one second elongate non-rigid member that is secured at a lower end to one of: the non-structural building component, or the support member to which the non-structural building component is secured, and at an upper end to a structural portion of the building at a second location,
wherein:
the first elongate non-rigid member is oriented substantially vertically,
the second location is horizontally spaced from the first location, such that the second elongate non-rigid member is inclined to vertical, and
when the building is in a stable condition, the tensile force in the first elongate non-rigid member is greater than the vertical component of the tensile force in the second elongate non-rigid member.
Preferably, when the building is in a stable condition, substantially all of the vertical load of the non-structural building component is supported by the first elongate non-rigid members.
In some embodiments, each suspension assembly has two second elongate non-rigid members, and the upper ends of the two second elongate non-rigid members are secured to structural portion of the building at spaced apart second locations.
Preferably, each of the second elongate non-rigid members is provided with an adjuster that facilitates adjustment of the length of the respective second elongate non-rigid member between upper and lower ends. In some embodiments, the second elongate non-rigid members are flexible. In such embodiments, the adjuster can comprise a cleat.
Preferably, the system has pairs of the suspension assemblies that are arranged so that, within each pair, one of the second elongate non-rigid members of a first suspension assembly lies in vertical plane that is parallel to a vertical plane in which one of the second elongate non-rigid members of a second suspension assembly lies.
In embodiments in which each suspension assembly has a single second elongate non-rigid member, the pairs of suspension assemblies are preferably arranged so that tensile forces in the first elongate members, and the vertical components of the tensile forces in the second elongate non-rigid members are substantially coplanar.
In certain embodiments, each of the assemblies includes one or more dampers that are each configured to inhibit transmission of vibration to the building.
In some embodiments, the system can further comprise one or more support members to which the non-structural building component is secured, and wherein the lower ends of the first and second elongate non-rigid members in the suspension assemblies are secured to the support members. In one form, each support member can include a strut that extends transversely across each the non-structural building component, and opposing ends of the strut are each supported by a pair of the suspension assemblies. The struts can be positioned beneath the non-structural building component.
Each support member can include a strap member having two ends that are attached to the respective strut, and extends about the non-structural building component so as to secure the non-structural building component to the strut. Each support can further include one or more dampers that are each configured to inhibit transmission of vibration to the building.
In at least some alternative embodiments, the system includes tether members that are secured to the non-structural building component, and the lower ends of at least one of the first and second elongate non-rigid members in a respective one of the suspension assemblies is secured to each tether member. In some further alternative embodiments, the non-structural building component has integrally formed tether members, and the lower ends of at least one of the first and second elongate non-rigid members in a respective one of the suspension assemblies is secured to each tether member.
The present invention also provides a method for installing a system for supporting a non-structural building component beneath a soffit of a building, the method involving:
providing a plurality of suspension assemblies as previously described;
securing the upper end of a first elongate non-rigid building component to a structural portion of the building at a first location, the first location being selected such that, in the installed system, the first elongate non-rigid building component is oriented substantially vertically;
securing the upper end of at least one second elongate non-rigid building component to a structural portion of the building at a second location that is spaced horizontally spaced from first location;
securing the lower end of first elongate non-rigid building component to one of: the non-structural building component, or a support member to which the non-structural building component is secured;
securing the lower end of second elongate non-rigid building component to one of: the non-structural building component, or a support member to which the non-structural building component is secured, whereby in the installed system, the second elongate non-rigid member is inclined to vertical; and
setting the tension in the second elongate non-rigid member such that the tensile force in the first elongate non-rigid member is greater than the vertical component of the tensile force in the second elongate non-rigid member.
In order that the invention may be more easily understood, an embodiment will now be described, by way of example only, with reference to the accompanying drawings, in which:
It will be appreciated that the invention is not limited to the forms of non-structural building component that are illustrated in the drawings. The system 10 can be used for any non-structural building component (or components) that are to be suspended within a building. By way of example only, the non-structural building components that system 10 can be used to support include ductwork, data and/or electrical cable tray, variable air volume (VAV) boxes, sprinkler pipe, junction boxes, lighting, plumbing, fan coil units, and pump units.
The system 10 has a plurality of suspension assemblies 12; in the example illustrated in
For simplicity of the following description the cable of the first elongate non-rigid member is hereinafter referred to as “first cable 14”. Similarly, the cable of the second elongate non-rigid member is hereinafter referred to as “second cable 16”.
The upper ends of the first and second cables 14, 16 are secured to structural portions of the building. As shown in
In the embodiment illustrated in
The first cables 14 are secured to the struts 26 by clamps 28. To this end, each of the first cables 14 passes through a hole in the strut 26, and one of the clamps 28 binds onto the cable 14 underneath the strut 26.
Each of the support members also includes a strap member with two ends that are attached to the respective strut 26. In this particular embodiment, each strap member is a flexible tie 30. The tie 30 extends around the duct D so as to restrain the duct D to the strut 26. In one example, the tie 30 can be a cable. As shown particularly in
In this particular embodiment, each of the clamps 28 includes a damper, so as to absorb shock loads in the respective first cable 14. Similarly, each of the clamps 32 includes a damper that absorbs shock loads in the respective tie 30. The inclusion of dampers aids in minimizing transfer of in-service vibration from the duct D to the structural components of the building.
Two eyelets 34 are attached to the ends of each strut 26. A cleat 36 is installed on each second cable 16 between the masonry bolt 20 and the respective eyelet 34. The free end of the second cable 16 extends through the eyelets 34, and then back through the cleat 36. In this way, the length of the portion of second cable 16 that is between the masonry bolt 20 and the respective eyelet 34 is adjustable.
As will be particularly evident from
For the purposes of this specification, it is to be understood that the expression “the building is in a stable condition” means that the building is substantially static and is not being subjected to vibration or shock loads. When an earthquake, seismic event, or similar event occurs, energy is transferred to the building through ground movement or pressure waves. This energy causes discernible movement and/or distortion (in other words, movement/distortion that can normally be felt by a person) of the structural part of the building can place the building in an “unstable” condition.
It will be appreciated that in some alternative embodiments, the strap member may be a substantially rigid component. In some further alternative embodiments, the entire support member may be made of a flexible material.
In a similar manner to the system 10, the system 110 has the suspension assemblies 112 are arranged in pairs. As is evident from
The system 110 differs from system 10 in that each suspension assembly 112 has two second cables 116. Within each suspension assembly 112, the upper ends of the second cables 116 are secured to structural portion of the building at spaced apart second locations. Further, in this embodiment, the lower ends of the two second cables 116 are secured to one another by a common fastener such as bolt 138. To this end, the system 110 has four eyelets 134 attached to the ends of each strut 126, with one of the second cables 116 passing through a respective eyelet 134. Thus, there are two eyelets 134 at secured to each end of the strut 126.
In the system 110, the second locations, at which the upper ends (not shown) of the second cables 116 are secured to the structural component of the building, are selected such that the each second cable 116 has a complementary second cable 116 in the other suspension assembly 112 of the pair. Each second cable 116 and its complementary second cable 116 have an equal horizontal angular separation a from the vertical plane P, but extending in the opposite direction. In this way, it is likely that the horizontal components of tensile forces applied through the second cables 116 to the duct D are substantially equal and opposite.
In this particular embodiment, the horizontal angular separation a of each of the four second cables 116 from the vertical plane P is equal. In this embodiment, this angular separation is approximately 45°. This has the benefit of facilitating installing the system 10 such that the tensile loads in the second cables 116 is substantially equal when the building is in a stable condition.
The system 210 differs from system 10 in that it includes two first tether members 240 (shown in
In this particular example, the two first tether members 240 are integral with the cable tray T, and the two second tether members 242 are separate components that are secured by fasteners to the tray T. Also in this particular example, the tether members 240, 242 are eyelets through which the respective first or second cable 214, 216 passes.
In this embodiment, in each suspension assembly 212, the free end of the first cable 214 is secured to the portion of the first cable 214 that extends between the respective anchor 218 and eyelet 240. To this end, a swagable clamp 244 can be used.
The system 310 is similar to the system 110 in that each suspension assembly 312 has two second cables 316.
The system 310 is also similar to the system 210 in that each suspension assembly 312 has two tether members 342 to which the lower ends of the respective two second cables 316 are secured. In each suspension member 312 the point at which the two tether members 342 are attached to the building component D at a common location. In some alternative embodiments, the second cables in each suspension assembly may be secured to a common tether member. However, it will be appreciated that some further alternative embodiments, each suspension assembly may be arranged with tether members that are spaced apart.
In
More particularly, securing each suspension assembly to structural portions of the building can involve:
Step 5 can involve pulling the free end of the second cable 16 shown in
In this particular embodiment, the cleat 36 includes screws that can be tightened to lock the position of the second cable 16 in position within the passages of the cleat 36.
It will be appreciated that the above described steps are to be repeated for all like suspension assemblies. Adjustment and/or modification to these steps will be identifiable for alternative embodiments.
In the embodiments described in reference to the Figures, the upper ends of the first and second elongate non-rigid members are secured to a soffit of a building using anchors or fasteners that are embedded in the material of the soffit. It will be appreciated that other securing methods may be adopted. By way of non-limiting example, in some non-illustrated embodiments, the first and/or second elongate non-rigid members may be cable (or the like) that is looped or otherwise secured to a structural component (such as a joist, beam, or truss) of the building.
It will be appreciated that embodiments of the system may include suspension assemblies of different form that support a common non-structural building component.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising”, will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.
The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.
Number | Date | Country | Kind |
---|---|---|---|
2017904132 | Oct 2017 | AU | national |
Number | Name | Date | Kind |
---|---|---|---|
1244465 | Braly | Oct 1917 | A |
2024961 | Barge | Dec 1935 | A |
2523180 | Harold | Sep 1950 | A |
3403702 | Poole | Oct 1968 | A |
3842561 | Wong | Oct 1974 | A |
4358817 | Bielemeier | Nov 1982 | A |
4498374 | Gibson | Feb 1985 | A |
4787592 | Aoshika | Nov 1988 | A |
5516068 | Rice | May 1996 | A |
7871045 | Moore | Jan 2011 | B2 |
7980523 | O'Neil | Jul 2011 | B2 |
8667756 | Sareyka | Mar 2014 | B1 |
9320370 | Bianchini | Apr 2016 | B1 |
9347587 | Allivato, Sr. | May 2016 | B2 |
20030221296 | Gijsel | Dec 2003 | A1 |
20050189462 | Berlyn | Sep 2005 | A1 |
20080060285 | Lefebvre | Mar 2008 | A1 |
20150345823 | Pinkalla | Dec 2015 | A1 |
20170261129 | Duggan | Sep 2017 | A1 |
20190100914 | Albartus | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
2014152506 | Aug 2014 | JP |
Number | Date | Country | |
---|---|---|---|
20190112816 A1 | Apr 2019 | US |