1. Technical Field
This invention relates to acoustics, and more particularly, to a system that enhances the perceptual quality of sound by reducing interfering noise.
2. Related Art
Many hands-free communication devices acquire, assimilate, and transfer a voice signal. Voice signals pass from one system to another through a communication medium. In some systems, including those used in vehicles, the clarity of a voice signal does not depend on the quality of the communication system or the quality of the communication medium. When noise occurs near a source or a receiver, distortion may interfere with the voice signal, destroy information, and in some instances, masks the voice signal so that it cannot be recognized.
Noise may come from many sources. In a vehicle, noise may be created by the engine, the road, the tires, or by the surrounding environment. When rain falls onto a vehicle it produces noise that may be heard across a broad frequency spectrum. Some aspects of this noise are predictable, while others are random.
Some systems attempt to counteract the effects of rain noise by insulating vehicles with a variety of sound-suppressing and dampening materials. While these materials are effective in reducing some noises, the materials also absorb desired signals and do not block the rain noise that may mask a portion of the audio spectrum. Another problem with some speech enhancement systems is that of detecting rain noise. Yet another problem with some speech enhancement systems is that they do not easily adapt to other communication systems.
Therefore there is a need for a system that counteracts the noise associated with water striking a surface across a varying frequency range.
This invention provides a voice enhancement logic that improves the perceptual quality of a processed voice. The system learns, encodes, and then dampens the noise associated with water striking a surface that includes the surface of a vehicle. The system includes a noise detector and a noise attenuator. The noise detector detects noise associated with falling water, such as the noise that may be heard during a rainstorm. The noise attenuator dampens or reduces some of the detected rain noise.
Alternative voice enhancement logic includes time frequency transform logic, a background noise estimator, a rain noise detector, and a rain noise attenuator. The time frequency transform logic converts a time varying input signal into a frequency domain output signal. The background noise estimator measures the continuous noise that may accompany the input signal. The rain noise detector automatically identifies and models some of the noise associated with rain, which is then dampened or reduced by the rain noise attenuator.
Other systems, methods, features and advantages of the invention will be, or will become, apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the following claims.
The invention can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like referenced numerals designate corresponding parts throughout the different views.
A voice enhancement logic improves the perceptual quality of a processed voice. The logic may automatically learn and encode the shape and form of the noise associated with rain in a real or a delayed time. By tracking selected attributes, the logic may substantially eliminate or dampen rain noise using a memory that temporarily stores the selected attributes of the noise. Alternatively, the logic may also dampen a continuous noise and/or the “musical noise,” squeaks, squawks, chirps, clicks, drips, pops, tones, or other sound artifacts that may be generated by some voice enhancement systems.
In
The rain noise detector 102 may separate the noise-like segments from the remaining signal in a real or in a delayed time no matter how complex or how loud an incoming noise segment may be. The separated noise-like segments are analyzed to detect the occurrence of rain noise, and in some instances, the presence of a continuous underlying noise. When rain noise is detected, the spectrum is modeled, and the model is retained in a memory. While the rain noise detector 102 may store an entire model of a rain noise signal, it also may store selected attributes in a memory. Some selected attributes may model the noise created by rain striking a surface, the peripheral noise (e.g. in vehicle noise) that may be heard in a rainstorm, or a combination thereof.
To overcome the effects of rain noise, and in some instances, the underlying continuous noise that may include ambient noise, the noise attenuator 104 substantially removes or dampens the rain noise and/or the continuous noise from the unvoiced and mixed voice signals. The voice enhancement logic 100 encompasses any system that substantially removes, dampens, or reduces rain noise across a desired frequency spectrum. Examples of systems that may dampen or remove rain noise include systems that use a signal and a noise estimate such as (1) systems which use a neural network mapping of a noisy signal and an estimate of the noise to a noise-reduced signal, (2) systems that subtract the noise estimate from a noisy-signal, (3) systems that use the noisy signal and the noise estimate to select a noise-reduced signal from a code-book, (4) systems that in any other way use the noisy signal and the noise estimate to create a noise-reduced signal based on a reconstruction of the masked signal. These systems may attenuate rain noise, and in some instances, attenuate the continuous noise that may be part of the short-term spectra. The noise attenuator 104 may also interface or include an optional residual attenuator 106 that removes or dampens artifacts that may be introduced into the processed signal. The residual attenuator 106 may remove the “musical noise,” squeaks, squawks, chirps, clicks, drips, pops, tones, or other sound artifacts.
In the frequency spectral domain shown in
Rain drop detection may occur by monitoring segments of frequency forward and/or backward in time. Filter banks or Fast Fourier Transforms (“FFT”) may transform sound into the log frequency domain. Through a comparison, the rain noise detector 102 identifies the frames that have substantially more energy than their adjacent frequency bands or frames. If a frequency band in a frame has higher energy than in an adjacent frame, the rain noise detector 102 looks for other frequency bands that also have more energy than in their neighboring frames. When the energy within these frequency bands can fit to a model such as straight line as shown in
Once the relative magnitudes and durations of the rain drop transients are learned, their removal may be accomplished by many methods. In one method, the noise attenuator 104 replaces the rain drop transient with an estimated value based on the values of adjacent frames. The interpolation method may occur with one or more frames positioned backward and/or forward in time and may impose predetermined restrictions and/or prior constraints. In an alternative method, the noise attenuator 104 adds the learned positions and frequencies to a known or measured constant noise estimate. The noise attenuator 104 then subtracts the noise estimate that includes the modeled rain noise from the noisy signal.
To detect a rain event, a line may be fitted to a selected portion of the frequency spectrum. Through a regression, a best-fit line may measure the severity of the rain noise within a given block of data. A high correlation between the best-fit line and the selected frequency spectrum may identify a rain noise event. Whether or not a high correlation exists, may depend on variations in frequency and amplitude of the rain noise and the presence of voice or other noises.
To limit a masking of voice, the fitting of the line to a suspected rain noise signal may be constrained by rules. Exemplary rules may prevent a calculated parametric description such as an offset, a slope, a curvature or a coordinate point in a rain noise model from exceeding an average value. Another rule may adjust or modulate the rain noise correction to prevent the noise attenuator 104 from applying a calculated rain noise correction when a vowel or another harmonic structure is detected. A harmonic may be identified by its narrow width and its sharp peak, or in conjunction with a voice or a pitch detector. If a vowel or another harmonic structure is detected, the rain noise detector 102 may limit the rain noise correction to values less than or equal to predetermined or average values. An additional rule may allow the average rain noise model or its attributes to be updated only during unvoiced segments. If a voiced or a mixed voice segment is detected, the average rain noise model or its attributes are not updated under this rule. If no voice is detected, the rain noise model or each attribute may be updated through any means, such as through a weighted average or a leaky integrator. Many other rules may also be applied to the model. The rules may provide a substantially good linear fit to a suspected rain noise event without masking a voice segment.
To overcome the effects of rain noise, a rain noise attenuator 104 may substantially remove or dampen the rain noise from the noisy spectrum by any method. One method may add the rain noise model to a recorded or modeled continuous noise 904. In the power spectrum, the modeled noise may then be subtracted from the unmodified spectrum. If an underlying peak 902 or valley is masked by rain noise as shown in
To minimize the “music noise,” squeaks, squawks, chirps, clicks, drips, pops, tones, or other sound artifacts that may be generated in a selected frequency range by some rain noise attenuators, an optional residual attenuator 106 (shown in
Further improvements to voice quality may be achieved by pre-conditioning the input signal before the rain noise detector 102 processes it. One pre-processing system may exploit the lag time that a signal may arrive at different detectors that are positioned apart as shown in
Alternatively, multiple rain noise detectors 102 may be used to analyze the input of each of the microphones 602 as shown in
B(f,i)>B(f)Ave+c (Equation 1)
To detect a rain event, a rain noise detector 708 may fit a line to a selected portion of the spectrum. Through a regression, a best-fit line may model the severity of the rain noise 202. To limit any masking of voice, the fitting of the line to a suspected range of rain noise may be constrained by the rules described above. A rain event may be identified when a high correlation between a fitted line and the noise associated with rain is detected. Whether or not a high correlation exists, may depend on a desired clarity of a processed voice and the variations in frequency and amplitude of the rain noise.
Alternatively, a rain event may be identified by the analysis of time varying spectral characteristics of the input signal that may be graphically displayed on a spectrogram. A spectrogram is a two dimensional pattern as shown in
A signal discriminator 810 may mark the voice and noise of the spectrum in real or delayed time. Any method may be used to distinguish voice from noise. In
To overcome the effects of rain noise, a rain noise attenuator 812 may dampen or substantially remove the rain noise from the noisy spectrum by any method. One method may add the periodic rain noise pulses to a recorded or modeled continuous noise. In the power spectrum, the modeled noise may then be removed from the unmodified spectrum by the means described above. If an underlying peak or valley 902 is masked by rain noise 202 as shown in
To minimize the “musical noise,” squeaks, squawks, chirps, clicks, drips, pops, tones, or other sound artifacts that may be generated in a selected frequency range by some rain noise attenuators, an optional residual attenuator 814 may also be used. The residual attenuator 814 may track the power spectrum within a frequency range. When a large increase in signal power is detected an improvement may be obtained by limiting the transmitted power in the frequency range to a predetermined or calculated threshold. A calculated threshold may be equal to or based on the average spectral power of that same frequency range at a period earlier or later in time.
At act 1106, a continuous or ambient noise is measured. The background noise estimate may comprise an average of the acoustic power in each frequency bin. To prevent biased noise estimations at transients, the noise estimation process may be disabled during abnormal or unpredictable increases in power at act 1108. The transient detection act 1108 disables the background noise estimate when an instantaneous background noise exceeds an average background noise by more than a predetermined decibel level.
At act 1110, a rain event may be detected when a high correlation exits between a best-fit line and a selected portion of the frequency spectrum. Alternatively, a rain event may be identified by the analysis of time varying spectral characteristics of the input signal. When a line fitting detection method is used, the fitting of the line to the suspected rain signal may be constrained by some optional acts. Exemplary optional acts may prevent a calculated offset, slope, or coordinate point in a rain noise model from exceeding an average value. Another optional act may prevent the rain noise detection method from applying a calculated rain noise correction when a vowel or another harmonic structure is detected. If a vowel or another harmonic structure is detected, the rain noise detection method may limit the rain noise correction to values less than or equal to predetermined or average values. An additional optional act may allow the average rain noise model or attributes to be updated only during unvoiced segments. If a voiced or mixed voice segment is detected, the average rain noise model or attributes are not updated under this act. If no voice is detected, the rain noise model or each attribute may be updated through many means, such as through a weighted average or a leaky integrator. Many other optional acts may also be applied to the model.
At act 1112, a signal analysis may discriminate or mark the voice signal from the noise-like segments. Voiced signals may be identified by any means including, for example, (1) the narrow widths of their bands or peaks; (2) the resonant structure that may be harmonically related; (3) their harmonics that correspond to formant frequencies; (4) characteristics that change relatively slowly with time; (5) their durations; and when multiple detectors or microphones are used, (6) the correlation of the output signals of the detectors or microphones.
To overcome the effects of rain noise, a rain noise is substantially removed or dampened from the noisy spectrum by any act. One exemplary act 1114 adds the substantially periodic rain pulses to a recorded or modeled continuous noise. In the power spectrum, the modeled noise may then be substantially removed from the unmodified spectrum by the methods and systems described above. If an underlying peak or valley 902 is masked by a rain event 202 as shown in
To minimize the “musical noise,” squeaks, squawks, chirps, clicks, drips, pops, frequency tones, or other sound artifacts that may be generated in the selected frequency range by some rain noise removal processes, a residual attenuation method may also be performed before the signal is converted back to the time domain. An optional residual attenuation method 1118 may track the power spectrum within a frequency range. When a large increase in signal power is detected an improvement may be obtained by limiting the transmitted power in that frequency range to a predetermined or calculated threshold. A calculated threshold may be equal to or based on the average spectral power of that same frequency range at a period earlier or later in time.
The method shown in
A “computer-readable medium,” “machine-readable medium,” “propagated-signal” medium, and/or “signal-bearing medium” may comprise any means that contains, stores, communicates, propagates, or transports software for use by or in connection with an instruction executable system, apparatus, or device. The machine-readable medium may selectively be, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium. A non-exhaustive list of examples of a machine-readable medium would include: an electrical connection “electronic” having one or more wires, a portable magnetic or optical disk, a volatile memory such as a Random Access Memory “RAM” (electronic), a Read-Only Memory “ROM” (electronic), an Erasable Programmable Read-Only Memory (EPROM or Flash memory) (electronic), or an optical fiber (optical). A machine-readable medium may also include a tangible medium upon which software is printed, as the software may be electronically stored as an image or in another format (e.g., through an optical scan), then compiled, and/or interpreted or otherwise processed. The processed medium may then be stored in a computer and/or machine memory.
From the foregoing descriptions it should be apparent that the above-described systems may also condition signals received from only one microphone or detector. It should also be apparent, that many combinations of systems may be used to identify and track rain events. Besides the fitting of a line to a suspected rain event, a system may (1) detect periodic peaks in the spectra having a SNR greater than a predetermined threshold; (2) identify the peaks having a width greater than a predetermined threshold; (3) identify peaks that lack a harmonic relationships; (4) compare peaks with previous voiced spectra; and (5) compare signals detected from different microphones before differentiating the rain noise segments, other noise like segments, and regular harmonic structures. One or more of the systems described above may also be used in alternative voice enhancement logic.
Other alternative voice enhancement systems include combinations of the structure and functions described above. These voice enhancement systems are formed from any combination of structure and function described above or illustrated within the attached figures. The logic may be implemented in software or hardware. The term “logic” is intended to broadly encompass a hardware device or circuit, software, or a combination. The hardware may include a processor or a controller having volatile and/or non-volatile memory and may also include interfaces between devices through wireless and/or hardwire mediums. The wireless interfaces may utilize Zigbee, Wi-Fi, WiMax, Mobile-Fi, Ultrawideband, Bluetooth, cellular and any other wireless technologies or combination.
The voice enhancement logic is easily adaptable to any technology or devices. Some voice enhancement systems or components interface or couple devices or structures for transporting people or things such as the vehicle shown in
The voice enhancement logic improves the perceptual quality of a processed voice. The logic may automatically learn and encode the shape and form of the noise associated with the movement of water and/or the noise associated with water striking a surface in a real or a delayed time. By tracking substantially all or some of the selected attributes, the logic may eliminate, dampen, or reduce the water related noise using a memory that temporarily or permanently stores the attributes of that noise. The voice enhancement logic may also dampen a continuous noise and/or the squeaks, squawks, chirps, clicks, drips, pops, tones, or other sound artifacts that may be generated within some voice enhancement systems and may reconstruct voice when needed.
Another alternate method of rain drop detection uses a two-dimensional model of rain drop intensity in both time and frequency. An example of a possible time-frequency model for rain drop detection is shown in
Detection may involve fitting a predefined rain model to the spectrum and determining the quality of the match, as well as possibly identifying which frequency ranges are involved in the rain drop event. The included frequency ranges may be continuous or discontinuous; in addition, all or part of the spectrum may be identified as being only partially involved in the raindrop event.
Some or all of the parameters used to model the rain drop noise may be constrained to be within predetermined and/or adaptive limits, which may be a function of frequency, presence of voice, characteristics of recently detected raindrops, average time between raindrops, or any other internal or external data which can be made available to the rain detector. In particular, these parameters may include rain drop duration, peak intensity, rise and fall rates, allowable intensity variation between different frequency ranges.
Because of the high intensity and short duration of a typical rain drop event, it may be desirable to attenuate or remove the raindrop before the entire event has been observed; furthermore, in a real-time setting there may be limited or no future information available. A further refinement of this rain detection method is a method for estimating the likelihood of a rapid rise being part of a raindrop and estimating the raindrop model parameters without complete future information. In this case, the rate of energy increase, and the range of frequencies involved in the increase, may be used as a primary detection method. The expected duration and rate of decay in the estimated model may be used at a nearby future time to verify that the detected raindrop continues to fit the estimated model. In order to minimize the unwanted attenuation of the speech signal, the rain noise attenuator may discontinue or reduce attenuation if the raindrop does not behave as predicted. Alternatively, when a noise estimate removal method is being used, the rain drop model may simply decay as predicted and allow the signal to pass through unattenuated once the model drops below the level of the rain noise estimate.
A further refinement uses additional observed properties of raindrop spectra to assist the detector in distinguishing between rain and non-rain signals. One distinguishing feature of the rain drop noise may be the continuity of the magnitude and/or phase of its spectrum across many adjacent frequency bins. In
Certain types of rain drop noise may have a significantly flatter and/or smoother magnitude than a spectrum containing voice or other speech sounds. One or more mathematical measures of a spectrum's flatness or smoothness may be used, on part or all of the spectrum, to improve the distinction between rain and voice spectra. This measure, which may be computed for the entire spectrum for predefined bands, or continuously using a sliding window across the entire spectrum, may be used to help decide whether a raindrop noise is present and how involved each frequency is in the raindrop.
An example of a smoothness measure is the sum of absolute differences algorithm, which computes the absolute value of the difference in magnitude or logarithmic magnitude between adjacent frequency bins, and summing this over a number of bins to produce a value that is generally small for smooth spectra and greater for spectra with large variations between the intensity of adjacent frequency bins. An example of a flatness measure is the Spectral Flatness Measure (SFM) which may be found by computing the ratio of the geometric mean of the magnitude spectrum to its arithmetic mean.
Phase continuity may also be used to distinguish rain drop noises from other sounds. The rain drop noise may be represented by a short high-energy burst in the time domain, and this may cause the unwrapped phases of the FFT result to be locally linear as illustrated in the phase plot in the portion of the spectrum dominated by rain noise 1602.
One method for determining the local linearity of phases is to take the absolute value of the second derivative of the unwrapped phase, then smoothing this in frequency. This measure may produce values close to zero for regions of the spectrum dominated by impulse-like noise and values significantly greater than zero in regions dominated by other types of sound, such as tonal sound or longer-duration noise. This measure may be used to assist with distinguishing transients such as rain drop noise from tonal or speech sounds.
In addition, the value of the slope in the linear part of the phase plot may be directly relatable to the position of the transient within the time-series signal, allowing a time-based detection or removal method to more precisely detect and/or remove the disturbance in the time domain.
The rain detection module may communicate with other devices in the vehicle to adjust the behavior of the rain detector and remover depending on the status of other systems in the vehicle (e.g. the windshield wiper controller). It may, for example, be desirable to enable the rain detection logic 102 only when the windshield wipers are switched on and/or to adjust the parameters of the rain drop model depending on the speed of the wipers. Conversely, the rain detector may transmit information about the intensity and average time between raindrop-like noises to the wiper controller, which may enhance its ability to intelligently control the wipers without driver intervention.
While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible within the scope of the invention. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents.
This application is a continuation in-part of U.S. application Ser. No. 10/688,802 “System for Suppressing Wind Noise,” filed Oct. 16, 2003, which is a continuation in-part of U.S. application Ser. No. 10/410,736, “Method and Apparatus for Suppressing Wind Noise,” filed Apr. 10, 2003, which claims priority to U.S. application Ser. No. 60/449,511 “Method for Suppressing Wind Noise” filed on Feb. 21, 2003. The disclosures of the above applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4486900 | Cox et al. | Dec 1984 | A |
4531228 | Noso et al. | Jul 1985 | A |
4630304 | Borth et al. | Dec 1986 | A |
4630305 | Borth et al. | Dec 1986 | A |
4811404 | Vilmur et al. | Mar 1989 | A |
4843562 | Kenyon et al. | Jun 1989 | A |
4845466 | Hariton et al. | Jul 1989 | A |
5012519 | Adlersberg et al. | Apr 1991 | A |
5027410 | Williamson et al. | Jun 1991 | A |
5056150 | Yu et al. | Oct 1991 | A |
5146539 | Doddington et al. | Sep 1992 | A |
5251263 | Andrea et al. | Oct 1993 | A |
5313555 | Kamiya | May 1994 | A |
5400409 | Linhard | Mar 1995 | A |
5426703 | Hamabe et al. | Jun 1995 | A |
5426704 | Tamamura et al. | Jun 1995 | A |
5442712 | Kawamura et al. | Aug 1995 | A |
5479517 | Linhard | Dec 1995 | A |
5485522 | Sölve et al. | Jan 1996 | A |
5495415 | Ribbens et al. | Feb 1996 | A |
5502688 | Recchione et al. | Mar 1996 | A |
5526466 | Takizawa | Jun 1996 | A |
5550924 | Helf et al. | Aug 1996 | A |
5568559 | Makino | Oct 1996 | A |
5584295 | Muller et al. | Dec 1996 | A |
5586028 | Sekine et al. | Dec 1996 | A |
5617508 | Reaves | Apr 1997 | A |
5651071 | Lindemann et al. | Jul 1997 | A |
5677987 | Seki et al. | Oct 1997 | A |
5680508 | Liu | Oct 1997 | A |
5692104 | Chow et al. | Nov 1997 | A |
5701344 | Wakui | Dec 1997 | A |
5727072 | Raman | Mar 1998 | A |
5752226 | Chan et al. | May 1998 | A |
5809152 | Nakamura et al. | Sep 1998 | A |
5839101 | Vahatalo et al. | Nov 1998 | A |
5859420 | Borza | Jan 1999 | A |
5878389 | Hermansky et al. | Mar 1999 | A |
5920834 | Sih et al. | Jul 1999 | A |
5933495 | Oh | Aug 1999 | A |
5933801 | Fink et al. | Aug 1999 | A |
5949888 | Gupta et al. | Sep 1999 | A |
5982901 | Kane et al. | Nov 1999 | A |
6011853 | Koski et al. | Jan 2000 | A |
6108610 | Winn | Aug 2000 | A |
6122384 | Mauro | Sep 2000 | A |
6130949 | Aoki et al. | Oct 2000 | A |
6163608 | Romesburg et al. | Dec 2000 | A |
6167375 | Miseki et al. | Dec 2000 | A |
6173074 | Russo | Jan 2001 | B1 |
6175602 | Gustafsson et al. | Jan 2001 | B1 |
6192134 | White et al. | Feb 2001 | B1 |
6199035 | Lakaniemi et al. | Mar 2001 | B1 |
6208268 | Scarzello et al. | Mar 2001 | B1 |
6230123 | Mekuria et al. | May 2001 | B1 |
6252969 | Ando | Jun 2001 | B1 |
6289309 | deVries | Sep 2001 | B1 |
6405168 | Bayya et al. | Jun 2002 | B1 |
6415253 | Johnson | Jul 2002 | B1 |
6434246 | Kates et al. | Aug 2002 | B1 |
6453285 | Anderson et al. | Sep 2002 | B1 |
6507814 | Gao | Jan 2003 | B1 |
6510408 | Hermansen | Jan 2003 | B1 |
6587816 | Chazan et al. | Jul 2003 | B1 |
6615170 | Liu et al. | Sep 2003 | B1 |
6643619 | Linhard et al. | Nov 2003 | B1 |
6647365 | Faller | Nov 2003 | B1 |
6687669 | Schrögmeier et al. | Feb 2004 | B1 |
6711536 | Rees | Mar 2004 | B2 |
6741873 | Doran et al. | May 2004 | B1 |
6766292 | Chandran et al. | Jul 2004 | B1 |
6768979 | Menendez-Pidal et al. | Jul 2004 | B1 |
6782363 | Lee et al. | Aug 2004 | B2 |
6822507 | Buchele | Nov 2004 | B2 |
6859420 | Coney et al. | Feb 2005 | B1 |
6882736 | Dickel et al. | Apr 2005 | B2 |
6910011 | Zakarauskas | Jun 2005 | B1 |
6937980 | Krasny et al. | Aug 2005 | B2 |
6959276 | Droppo et al. | Oct 2005 | B2 |
7043030 | Furuta | May 2006 | B1 |
7047047 | Acero et al. | May 2006 | B2 |
7062049 | Inoue et al. | Jun 2006 | B1 |
7072831 | Etter | Jul 2006 | B1 |
7092877 | Ribic | Aug 2006 | B2 |
7117145 | Venkatesh et al. | Oct 2006 | B1 |
7117149 | Zakarauskas | Oct 2006 | B1 |
7158932 | Furuta | Jan 2007 | B1 |
7165027 | Kellner et al. | Jan 2007 | B2 |
7313518 | Scalart et al. | Dec 2007 | B2 |
7373296 | Van De Par et al. | May 2008 | B2 |
7386217 | Zhang | Jun 2008 | B2 |
20010028713 | Walker | Oct 2001 | A1 |
20020037088 | Dickel et al. | Mar 2002 | A1 |
20020071573 | Finn | Jun 2002 | A1 |
20020094100 | Kates et al. | Jul 2002 | A1 |
20020094101 | De Roo et al. | Jul 2002 | A1 |
20020176589 | Buck et al. | Nov 2002 | A1 |
20030040908 | Yang et al. | Feb 2003 | A1 |
20030147538 | Elko | Aug 2003 | A1 |
20030151454 | Buchele | Aug 2003 | A1 |
20030216907 | Thomas | Nov 2003 | A1 |
20040078200 | Alves | Apr 2004 | A1 |
20040093181 | Lee | May 2004 | A1 |
20040138882 | Miyazawa | Jul 2004 | A1 |
20040161120 | Petersen et al. | Aug 2004 | A1 |
20040165736 | Hetherington et al. | Aug 2004 | A1 |
20040167777 | Hetherington et al. | Aug 2004 | A1 |
20050238283 | Faure et al. | Oct 2005 | A1 |
20050240401 | Ebenezer | Oct 2005 | A1 |
20060034447 | Alves et al. | Feb 2006 | A1 |
20060074646 | Alves et al. | Apr 2006 | A1 |
20060100868 | Hetherington et al. | May 2006 | A1 |
20060115095 | Glesbrecht et al. | Jun 2006 | A1 |
20060116873 | Hetherington et al. | Jun 2006 | A1 |
20060136199 | Nongpiur et al. | Jun 2006 | A1 |
20060251268 | Hetherington et al. | Nov 2006 | A1 |
20060287859 | Hetherington et al. | Dec 2006 | A1 |
20070019835 | Ivo De Roo et al. | Jan 2007 | A1 |
20070033031 | Zakarauskas | Feb 2007 | A1 |
Number | Date | Country |
---|---|---|
2158847 | Sep 1994 | CA |
2157496 | Oct 1994 | CA |
2158064 | Oct 1994 | CA |
1325222 | Dec 2001 | CN |
0 076 687 | Apr 1983 | EP |
0 629 996 | Dec 1994 | EP |
0 629 996 | Dec 1994 | EP |
0 750 291 | Dec 1996 | EP |
1 450 353 | Feb 2004 | EP |
1 450 354 | Feb 2004 | EP |
1 669 983 | Jun 2006 | EP |
64-039195 | Feb 1989 | JP |
06269084 | Sep 1994 | JP |
6282297 | Oct 1994 | JP |
06-319193 | Nov 1994 | JP |
06319193 | Nov 1994 | JP |
6349208 | Dec 1994 | JP |
2001215992 | Aug 2001 | JP |
WO 00-41169 | Jul 2000 | WO |
WO 0156255 | Aug 2001 | WO |
WO 01-73761 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20050114128 A1 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
60449511 | Feb 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10688802 | Oct 2003 | US |
Child | 11006935 | US | |
Parent | 10410736 | Apr 2003 | US |
Child | 10688802 | US |