The present invention relates to a system for tensioning racket strings and a stringing machine comprising such a tensioning system.
In the field of racket sports, such as tennis, badminton, squash, or any other racket sports requiring the use of a screen of stretched strings, it is known to use stringing machines comprising a system for tensioning the strings. Such a system allows the stringer to place the strings and stretch them via a device for example using an electric motor.
It is known to maintain the strings in a grip comprising two jaws gripped against one another around the string. Once the string is maintained in the jaw, the tensioning system is activated and the grip undergoes a translational movement causing tensioning of the string.
The maintenance of the string in the grip is generally obtained by placing the string between the jaws, then folding it by a certain angle allowing the translation of the jaws along the longitudinal axis, which initiates gripping of the jaws against one another, owing to appropriate guideways.
Such an operation has the drawback of requiring action by the operator upon each tensioning, which involves lost time when the stringer in question has a significant workload. Furthermore, if the gesture by the operator causes excessive gripping of the string, that string may be destroyed, which increases the risk of breakage after the stringing.
The invention more particularly aims to resolve these drawbacks by proposing a new racket string tensioning system, the operation of which allows simpler and faster work by the operator, and optional gripping of the string in the grip.
To that end, the invention relates to a system for tensioning racket strings, comprising:
This tensioning system is characterized in that it comprises means for transmitting movement between the driving system of the traction head and the jaws, this transmission means being able to initiate the translation of the jaws relative to the traction head in the direction gripping the string.
Owing to the invention, the string is automatically gripped in the grip using the translational movement generated by the traction motor. Thus, the stringer no longer needs to keep the string in the grip or subject to an angle to tighten the jaws, which allows him to work more quickly while also reducing the risk of accidental damage to the string during gripping in the grip.
According to advantageous but optional aspects of the invention, such a tensioning system may incorporate one or more of the following features, considered in any technically allowable combination:
The invention also relates to a stringing machine comprising a tensioning system as described above.
The invention will be better understood and other advantages thereof will appear more clearly in light of the following description of a system for tensioning racket strings according to its principle, provided as a non-limiting example in reference to the appended drawings, in which:
The tensioning system S is suitable for stringing rackets for all types of racket sports, such as tennis, badminton, squash, etc.
The system S includes a traction module 1 suitable for exerting the traction force T.
The traction module comprises a grip 3 including two opposite jaws 31 and 32 suitable for gripping the string C during the traction. The grip 3 is mounted on the traction head 5, which in turn is translatably mounted on a rail 7, along a traction axis X-X′. The rail 7 is mounted on a frame 9 of the tensioning system S.
The system S also includes a traction motor 11, fixed on the frame 9, and able to translate, along the axis X-X′, the traction head 5 along the rail 7, via a driving system, including a belt 13 stretched between a drive pulley 131, driven directly or indirectly by the traction motor 11, and a pulley 133 situated close to an opposite end of the frame 9 relative to the drive pulley 131. In an alternative that is not shown, the system S may comprise another type of drive system, for example a chain, rack, etc.
The jaws 31 and 32 are mobile relative to the traction head 5 along a longitudinal axis X3 that is inclined relative to the axis X-X′. The jaws 31 and 32 are mounted in a chute 51 of the traction head 5 and their translation is allowed by rows of beads 53, arranged in the chute 51 such that the translation along the axis X3 of the jaws 31 and 32 causes them to come closer together in a transverse direction Y-Y′ and to be gripped around the string C.
To that end, the inner faces 510a of the longitudinal walls 510 of the chute 51 comprise longitudinal slots 512 in which the beads 53 are housed. The outer faces 314 and 324 of the jaws 31 and 32 comprise longitudinal slots 314a and 324a in which the beads 53 are housed, opposite the slots 512 of the walls 510.
The slots 512, 314a and 324a are beveled such that the alignment of the beads 53, which defines axes A53, forms an angle β relative to the axis X3. The slots 512, 314a and 324a converge toward the axis X3 toward the end 72, such that the translation of the jaws 31 and 32 along the axis X3 toward the end 72 along the arrows F3 in
To initiate the translation along the axis X3 of the jaws 31 and 32 to keep the string C gripped in the grip 3, the tensioning system S comprises means for transmitting movement between the belt 13 and the jaws 31 and 32, those means being able to initiate the translation in the chute 51 of the jaws 31 and 32 relative to the traction head 5 in the gripping direction of the string C, and to transmit a translational movement to the traction head 5 relative to the rail 7 when the jaws 31 and 32 are gripped against one another.
Thus, the gripping of the jaws 31 and 32 is obtained using the traction motor 11, without requiring any particular manipulation of the string C by the operator. This allows a faster work pace and more uniform gripping of the strings in the grip 3, which reduces the risks of damage to the strings.
The movement transmitting means comprise a lever 15 mounted pivoting on the traction head 5 around an axis Y15 perpendicular to the axis X-X′ and parallel to the direction Y-Y′. A part 151 of the lever 15 is mechanically connected to the jaws 31 and 32, while one end 153 of the lever 15, opposite the jaws 31 and 32, is connected to the belt 13 such that the translation of the belt 13 along the axis X-X′ drives the rotation of the lever 15 relative to the traction head 5 around the axis Y15. The belt 13 is provided, to that end, with a plate 135 having an opening 136 in which the end 153 of the lever 15 is inserted.
The part 151 of the lever 15 is simultaneously connected to each of the jaws 31 and 32 by a rod 155 provided with an elastic element, such as a spiral spring 156, which makes it possible to reduce the resistance exerted by the jaws 31 and 32 against the rotation of the lever 15 around the axis Y15. In an alternative that is not shown, the rod 155 may comprise another type of elastic element.
The tensioning system S then operates according to the following principle: in the initial configuration of the system S, the string C is placed between the jaws 31 and 32. In order to grip the string C in the grip 3, the operator, for example using a button or pedal, activates the traction motor 11, which translates the belt 13 along the axis X-X′, in the direction of arrow F1. Owing to the cooperation between the opening 136 and the end 153, the lever 15 is rotated around the axis Y15 in the direction of arrow F2. Since the part 151 of the lever 15 is connected to the jaws 31 and 32 by the rod 155 provided with the spring 156, the resistance to the translation of the traction module 1 provided by the jaws 31 and 32 is lower than the resistance to translation of the traction module 1 supplied by the frictional forces between the traction head 5 and the rail 7. The jaws 31 and 32 therefore undergo a translational movement along arrow F3 toward their gripped configuration shown in
The end of the rod 155 forms a rectilinear part 157 parallel to the direction Y-Y′ that is inserted in slots, only one of which is visible with reference 320, of the jaws 31 and 32, such that the part 157 slides in the jaws 31 and 32 and the rotation of the rod 155 around the axis Y15 drives the translation of the jaws 31 and 32 along the axis X3.
When the jaws 31 and 32 are gripped, the resistance to rotation of the lever 15 relative to the traction head 5 increases and becomes greater than the resistance of the friction forces that exist between the rail 7 and the traction head 5. The rotation of the lever 15 is then locked by the resistance of the jaws 31 and 32 in a substantially vertical position relative to the axis X-X′, shown in
When the traction module 1 finishes its travel along the rail 7, against a stop 90 of the frame 9, near the end 74, the string C is stretched. The operator, in a known manner, locks the stretched string on the screen of the racket, using a clip holder, not shown, and can then release the string C from the grip 3 and initiate the return of the traction module 1 toward its initial position.
The release of the string C from the grip 3 is also done under the action of the motor 11. To that end, the operator commands the motor 11 in the opposite direction, such that the belt 13 is driven along the axis X-X′ in the direction of arrow F5 in
The end 153 comes into contact with an edge 136b of the opening 136 opposite the surface 136a, which results in rotating the lever 15 relative to the traction head 5, in the direction of arrow F6 toward its position of
When the lever 15 has returned to its initial position, relative to the traction head 5, of
Number | Date | Country | Kind |
---|---|---|---|
14 60515 | Oct 2014 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
3441275 | Held | Apr 1969 | A |
3988022 | Halbrook | Oct 1976 | A |
4366958 | Bosworth | Jan 1983 | A |
4417729 | Morrone | Nov 1983 | A |
4620705 | Tsuchida | Nov 1986 | A |
4706955 | Ngadi et al. | Nov 1987 | A |
8206249 | Wise | Jun 2012 | B1 |
9067111 | Zdrazila | Jun 2015 | B2 |
Entry |
---|
French Search Report, dated Jun. 19, 2015, from corresponding French Application. |
Number | Date | Country | |
---|---|---|---|
20160121176 A1 | May 2016 | US |