The invention relates to a system as set forth in the preamble of the appended claim 1 for the identification of a container handling machine and/or for determining the location of a container handling machine. Both alternatives apply the same new and inventive features as subsequently revealed.
The operation of a typical container port shall now be explained to the extent necessary for understanding the invention in terms of its operation. Most of the international transports of goods proceed nowadays by way of containers (1). Containers are standard shape transport units, inside which the goods are packed for the duration of a transport. Containers come typically in three different sizes, either 20 feet, 40 feet or 45 feet in length. Containers arrive in and respectively depart from a container port carried either by a container ship (2), container trucks or container trains. A standard shape transport unit makes the handling of cargo considerably faster at various stages of transportation, especially in the process of loading and unloading a container ship, as well as in a transshipment from marine transport to land transport (loading of a container truck) and vice versa. The presently described invention facilitates automation in the handling of containers, particularly in the process of loading and unloading a container ship, the focus of this description hence being on waterfront operations.
The container ship (2) is loaded and unloaded by using a special quay crane (4,
Alignment of the Container Handling Machine (12) and the Quay Crane (4)
First discussed is the unloading of containers from a ship. After mooring the container ship (2) to its berth at a quay (3), the quay crane (4) is driven to a position above the container ship for placing a boom (5) of the quay crane precisely on top of on-board constructed container silos (6) or container bays. The below-decks container silo (6) holds several containers stacked on top of each other, and the containers are stabilized in lateral direction by means of special guide bars. In addition, the topmost containers are stacked on the deck of a ship and interlocked by means of special clamps. The quay crane is moved in the direction of a quay by means of special tracks (7). However, moving a quay crane along the tracks is a slow process, which is why it is desirable to unload all side-by-side container silos (8) or container stacks (one full bay) successively from a ship for speedier operation. Thus, in accordance with
The container can be lowered directly onto the ground on the quay (3) as long as the containers are to be shifted within a seaport area for example by means of special straddle carriers or the like container handling machines (12) capable of independently picking up containers from the ground and respectively also of lowering containers independently onto the ground. (The straddle carrier is also capable of stacking containers on top of each other, but this capability is not relevant to the invention.) When a seaport is operated for example by using straddle carriers, the quay crane (4) can use the quay (3) as a sort of buffer storage for containers, with several containers (1A, 1B) below the quay crane in various lanes (11) waiting either to be loaded onto a ship or, in the event of a ship being unloaded, for a transport of the containers (1A, 1B) to a container storage field.
In the process of loading a container ship, the operation proceeds in a reverse order. In this case, the quay crane's (4) operator picks up the container (1) to be loaded aboard either from the ground or from top of a container trailer. In the process of picking up from the ground for example a container left there by a straddle carrier, it is particularly important that the container (1A, 1B) has been left on the quay in a location (13) correct with respect to the quay direction in order to avoid unnecessary back and forth movement of the quay crane (4) along the tracks (7). It should be noted that a container ship is not always moored in a location exactly the same as before, whereby the correct spot (13) for leaving a container on a quay cannot be designated for example by painting symbols on the quay. Accordingly, one of the benefits of this invention relates explicitly to guiding the container handling machine (12), for example by means of traffic lights (21,
The system according to the invention can also be used in the event that containers are carried around within a seaport by means of container trailers and special prime movers towing the container trailers. Next follows a brief description of differences as this type of system is compared to an operation taking place for example by means of straddle carriers.
In the process of unloading the container ship (2), when the container (1) being unloaded from a ship is landed on top of a container trailer by the quay crane (4), or, alternatively, in the process of loading the container ship (2), when the container (1) being loaded aboard is picked up from top of a container trailer by the quay crane (4), it is natural that the container trailer must be located at the correct spot (13) in the quay direction in order to avoid unnecessary driving of the quay crane back and forth along the tracks (7) during ship unloading and loading operations. In case the container trailer is not placed exactly at a correct location in the quay direction, the operator of a prime mover towing the container trailer drives the prime mover/container trailer combination (12) slightly forward or backward, such that the quay crane (4) need not move along the tracks (7). However, the operation of a quay crane can be made faster by having the container trailer pre-parked at a correct spot. Indeed, one of the benefits of this invention relates explicitly to guiding a prime mover/container trailer combination or the like container handling machine (12), for example by means of the traffic lights (21) (
Identification of a Traffic Lane (11)
Another one of the benefits offered by the invention relates to the automation in keeping an inventory of containers. After a container (1) has been unloaded from a ship (2), the container is transported by a container handling machine (12) to an explicit container storage field, where the containers are stacked usually in rows and bays. The location of each container on the storage field is recorded in a special computer-based container terminal control system (TOS, Terminal Operating system), which contains an appropriate database. An objective today is that the tracking of container location be automated at every step of the handling process in order to avoid problems caused by human errors, specifically errors made by operators of the container handling machines (12). In the event that the operator of a container handling machine takes the container (1) on the container storage field to a location other than that presumed by the terminal operating system (TOS), or, alternatively, the operator of a container handling machine reports to the operating system (TOS) an incorrect container location, finding the container later on the container storage field will present a problem. Particularly in the event that a container has to be searched for on the storage field during a ship loading operation, the resulting costs will be especially high, because a particular objective at seaports is the minimization of ship unloading and loading times.
The container location on a container storage field can be monitored by means of prior known technology, by applying for example satellite positioning technology (GPS). In this case, the container handling machine (12) is fitted with a GPS receiver antenna and gear, which enables tracking the location of a container handling machine in real time, typically at the intervals of 1 second. In addition, by monitoring electrically twist-lock actions of the container handling machine (12), it is possible to verify that a container is grabbed and that the container is left on a stack of containers at a specific point in time. Being a natural presumption that the container (1) does not move unless moved by some container handling machine (12), the container location can be reliably tracked for as long as the container handling machine operates in an open area, within the visibility range of GPS positioning satellites.
However, GPS positioning technology does not work reliably underneath the quay cranes (4), which is why this technique is not a reliable way of detecting in which location, or particularly in which lane (11), a container is left by the container handling machine (12), or from which lane (11) a container is picked up by the container handling machine (12), or onto which lane (11) a specific container handling machine (12) (for example a prime mover/container trailer combination) proceeds to stand by for loading or unloading a container.
On the other hand, even the prior known technology enables reliable tracking of the container's (1) location as long as a container is being handled by the quay crane (4). For example, a pulse sensor (encoder) coupled with the lifting trolley (9) of a quay crane is able to reliably measure a location of the lifting trolley (9) on top of the boom (55) of a quay crane. Thus, the quay crane is capable of a reliable determination regarding on which lane (11) underneath the quay crane (4) the container (1A, 1B) being unloaded is landed or from which lane (11) the container (1A, 1B) being loaded on a ship is picked up. Still, for example in the process of unloading a ship, a problem arises from the situation in which the quay crane (4) has lowered more than one container down on the quay (
In practice, as a ship is unloaded and loaded, the operation is overseen on the quay (3) by a person, one of whose responsibilities is to make sure that right containers are picked up by the container handling machine (12) and the quay crane (4). At this stage, however, there is a possibility of human errors, the elimination of which is pursued by automation. Also, a person on the quay (3) is not only an extra cost factor but also a source of hazardous situations as even fatal accidents take place at seaports as a result of this person being overrun by the container handling machine (12).
In the process of moving containers within the boundaries of a seaport by means of the prime mover/container trailer combination (12), similar situations arise as several prime mover/container trailer combinations arrive at the same time underneath the quay crane (4). Without further information there is no way of automatically tracking in which lanes (11) the vehicles become located, and, even though the quay crane (4), while unloading a ship, for example, does know on which lane (11) the unloaded container (1) is landed, there is no way of knowing on which prime mover/container trailer the container is loaded, nor can the subsequent container movements be automatically monitored even if the prime mover were equipped with a GPS gear as described above. Respectively, when there is a situation in the process of loading a ship that several prime mover/container trailer combinations (12) are standing by in adjacent lanes (11) for the pickup of containers lying on the trailers, the quay crane has no way of knowing without further information, even with the knowledge of from which lane (11) the container is picked up, which container is picked up.
In a summary of the foregoing, in order to enable an uninterrupted automation of the tracking sequence, it is particularly essential to identify from which lane (11) underneath the quay crane (4) a container is picked up by the container handling machine (12), on which lane (11) a container is left by the container handling machine (12), or in which lanes (11) the prime mover/container trailer combinations or other container handling machines (12) are located as containers are being picked up and loaded onto the container trailers by the quay crane (4).
The presently described invention is better than prior known technology in resolving the foregoing problems, especially in a situation where more than one container handling machine (12) arrive simultaneously underneath the quay crane (4). The presently described invention is also capable of resolving the foregoing problems without having to separately measure or determine a location of the quay crane (4). The prior art and its shortcomings will be discussed in the following.
As pointed out earlier, the container handling machines (12) can be located by means of satellite positioning (GPS). However, satellite positioning is a highly unreliable method underneath a quay crane or in some other satellite blind spot. In addition, this would also require a separate determination regarding a location of the quay crane (4) moving along tracks in order to enable determining a relative position of the container handling machine (12) and the quay crane (4).
The blind spot problem of GPS technology has been addressed e.g. by means of so-called dead reckoning and inertial navigation, for example with the use of gyroscope sensors. However, a problem in these techniques is a cumulative position error gathered by gyroscopes and odometers, which is why a reasonably priced system would only enable tracking the container handling machine (12) over short distances. However, the GPS satellite blind zone can be very large whenever several quay cranes (4) have been driven to side-by-side positions for unloading a single container ship (2).
Alternative container handling machine (12) positioning systems have been proposed, using for example a rotating laser beam mounted on the container handling machine and optical reflectors installed in the container field, for example on light poles, by the application of triangulation technique. A drawback in the system is nevertheless the difficulty in terms of installation and calibration (especially optical reflectors), a short range of the laser beam for example in fog, a necessity of cleaning the reflectors, false reflections from other shining objects, a high price of the equipment, as well as a necessity of positioning the quay crane separately. In addition, container handling machines set close to each other would block each other's operation and propagation of the laser beam.
Another alternative prior known container handling machine (12) positioning system is based on radio transmitters installed in a container storage field, for example on light poles, and on a radio receiver mounted on the container handling machine, which would involve measuring the radio signal propagation time and locating the container handling machine (12) by triangulation technique. A drawback in the system is nevertheless insufficient accuracy, difficulty in terms of installation and calibration (especially radio transmitters), a high price of the equipment, as well as a necessity of positioning the quay crane separately.
Still another prior known container handling machine (12) positioning method is based on ground-installed, so-called transponder sensors, as well as on a transponder reader (reading distance typically 10 . . . 20 cm) to be mounted on the container handling machine (12). A drawback in the system is nevertheless the difficulty of installation and calibration (especially ground-installed transponders), a considerably large number of necessary transponders, a high price of the equipment, maintenance required by the equipment (transponders), as well as a necessity of positioning the quay crane separately.
Yet another prior known technology for detecting and identifying the container handling machine (12) at close range is based on comparatively inexpensive RFID tags and RFID antennas. The positioning accuracy of RFID technique is nevertheless inadequate for working out the foregoing problems, especially when it would be necessary to read RFID tags from a long range (for example, such that the RFID tags would have been attached to the container handling machines (12) and the RFID antennas would have been attached to the quay cranes (4)). In the event that RFID tags were installed on the ground, such tags could naturally be read from a close range with an RFID antenna mounted on the container handling machine (12), but that would make the system similar to what was described above as a transponder-based system and would involve the same above-described major problems as those found in the transponder system.
Still one further prior known technology is based on the use of camera technique, wherein cameras mounted on the quay crane (4) are used for imaging, for example obliquely from above, container handling machines or passive optical reflectors or self-illuminating beacons mounted thereon. Drawbacks in camera technique nevertheless include reliability in various weather and lighting conditions, possible visual misinterpretations of other structures of the container handling machines (12) in image processing, as well as a necessity of cleaning the beacons as well as optics. In addition, the equipment carries a high price, particularly when using self-illuminating or otherwise active beacons mounted on container handling machines. It should be noted that there are typically a large number of the container handling machines (12) as compared to the number of the quay cranes (4). Therefore, it would be economically sensible to minimize the price of equipment mounted on the container handling machine (12). In addition, some container handling machines (for example the prime mover for a container trailer) are relatively reasonably priced, thus prohibiting the installation of expensive electronics on every machine.
In addition, there are various partial solutions proposed in the prior art for working out the foregoing problems. A certain type of apparatus, for example, would enable the identification of a correct lane (11) under a quay crane (4), but would not instruct the operator of a container handling machine (12) for stopping at a correct spot. Another apparatus may instruct the operator in terms of stopping, but is not capable of identifying the lane (11). This would make it necessary to provide a seaport with several overlapping sets of equipment functioning on various technologies, which of course would not be beneficial. Neither do many of the disclosed solution proposals enable the concurrent working of several container handling machines (12) underneath the quay crane (4), one of the reasons for this being, for example, that a laterally directed laser beam or radio beam, for example, is blocked by one container handling machine (12) from being detected by another container handling machine (12′).
The presently proposed invention resolves the foregoing problems without the described prior art drawbacks
A solution of the invention for the identification of a container handling machine and/or for determining the correct location of a container handling machine is presented in the appended claim 1.
The invention will now be described in more detail with reference to the accompanying drawings, in which
The system according to the invention is based on scanning laser distance sensors (17) (
In a first step, the laser distance sensor emits a short and narrow pulse (18) of laser light, typically in the order of about 1 meter in length and typically 20 centimeters in terms of its beamwidth (18, 19), measured at the distance of 20 meters. The emitted laser light can be visible or invisible (IR laser). In a second step, the emitted light pulse reflects from an object possibly found within the beam (18, 19) and some of the laser light returns to the laser distance sensor's light receiver. The laser distance sensor has a capability of detecting a reflection of the laser light pulse (18) for example from a distance as long as 30 meters, even if the reflecting object (for example a reflector (20)) were matt black in color and should only reflect back 10 percent of the light falling thereon. In case the object is lighter in color and reflects most (for example 90 percent) of the light falling thereon, objects can be detected from a lot further away, even from the distance of a hundred meters. In a third step, the laser distance sensor determines a time of flight between the emission and reception of a light pulse. This is typically implemented in such a way that the amount of received light is summed (integrated) in the light receiver, and as a sufficient amount of light (time×brightness) has been received, it is considered that a reflection of the light pulse (18) has arrived. Hence, the laser light beam (19) need not fall on an object in its entirety, but with light-colored objects, even a partial fall of the beam (19) on an object present closest in the light beam triggers the termination of a time-of-flight measurement. In a fourth step, the light propagation time of flight is used as a basis for calculating a range R between the reflective object and the laser sensor, and the reading is output for a user of the sensor. In addition to the range information R, another typically output item is an intensity I of the measured echo, which is proportional to the distance and color of a reflective object.
The operation of a scanning laser distance sensor (17), especially useful in the invention, is such that the above-mentioned laser distance sensor is attached to a rotor rotating at a high rate of speed (for example 50 revolutions per second) about its axis (22) (
The scanning laser distance sensor (17) is inherently capable of measuring an emission angle (rotation angle) a for the laser beam (18) in real time by means of an internal set of sensors. Indeed, the sensor (17) typically outputs the following data for each individual laser range measurement: measuring angle (a), measured range (R), and reflection intensity (I).
The commercially available scanning laser distance sensors (17) are relatively reasonably priced and thereby quite suitable for automation according to the invention, yet do not inherently offer a solution to the foregoing technical problems. The most common application of scanning laser distance sensors involves safety features, such as the detection of an obstacle in the vicinity of a mobile work machine. For a sensor to cover, for example in order to detect an obstacle, a continuous area in its vicinity, the beam (18) must be quite large in terms of its width (19) (typically 20 centimeters at a range of 20 meters), and a step between two beams (19, 19′) n and n+1 is also large (typically about 10 centimeters at a range of 20 meters). As a result of this, the scanning laser distance sensor (17) has inherently quite a poor lateral resolution, and the sensor as such is neither able to distinguish small details nor capable of providing accuracy in the order of centimeters in lateral direction. In addition, the container handling machines (12) are quite irregular in shape and thereby inherently ungrateful targets for precise positioning. Furthermore, the described type of sensor is not able, without special arrangements, to distinguish for example the container handling machines (12) from one another, particularly since the container handling machines (12) are basically identical to each other in terms of shape. Therefore, it has not been discovered earlier that the foregoing problems could be resolved with the described type of scanning laser distance sensor (17).
The following proposal relates to one implementation of the invention, which is particularly appropriate for an operation carried out by straddle carriers. In this case, one or more scanning laser distance sensors (17) are mounted, as shown in
In case the port operation were based on the use of prime mover/container trailer type equipment, whereby, in practice, the reflectors (20) would have to be installed on prime movers, this would entail the use of separate laser distance sensors (17) for discrete driving directions. In addition, the scanning lines (19), (19′), (19″) . . . would be focused according to the prime mover (not according to the center line of a carried container (1)).
Unless the reflectors (20) mounted on the container handling machine (12) were able to fit in their entirety in a lateral direction within the field of vision of one scanning laser distance sensor (17), the measurement readings of one or more sensors (17) could be integrated with each other, by aligning the separate sensors (17) with each other and by connecting the devices appropriately to a common data processing unit.
A length dimension for the reflectors (20) is selected in such a way that, when the container handling machine (12) is within an approach area (15) in the vicinity of what is the center line (13) in
In the process of studying measurement readings of the scanning laser distance sensors (17), a first step comprises converting, by the application of trigonometry, range-angle readings (R, a) representing a location of the measured reflections of a laser light beam (18) into position readings (x, H) representing a rectangular coordinate system, wherein H is a vertical coordinate and x is a horizontal coordinate representing the reflection in the direction perpendicular to a quay (3). Thus, (x, H) is perceived as the intersection of a laser light beam's center axis (18) and a reflecting surface (
As appreciated by a skilled artisan, reflections can be received from a specific (x, H) window also when for example the railing of a straddle carrier, or some other frame member thereof at a sufficient height, passes through the window. In order to ensure a reliable identification, the system according to the invention indeed makes additional use of a prior known shape of the reflector (20). Moreover, in order to benefit from a type of system described above in the context of automating the container handling process, the situation, in which several container handling machines (12) are working at the same time underneath a quay crane (4), requires not only the detection that a certain lane (11) has a container handling machine present but also the recognition of the identity of this particular container handling machine, in other words, the capability of distinguishing container handling machines from one another.
One Configuration for a Reflector (20)
In the system according to one embodiment of the invention, the container handling machines (12) are distinguished from each other in such a way that the reflectors (20) mounted on container handling machines, or a combination of several reflectors (20), (20′) mounted on a single container handling machine (12), are different from those of other container handling machines. One way according to the invention of designing mutually distinguishable reflectors (20) is to provide the reflector with a height profile Hp (or more generally a range profile) which varies in a stepwise manner as shown in
In a reflector as shown in
When using a reflector (20) as shown in
If the reflector (20) were now moved slowly towards a positive direction of the x axis, the reflections would change, when interpreted as relative height levels, in accordance with the following iterative Pattern (1):
As appreciated by a skilled artisan, the measurements-processing computer program of a scanning laser distance sensor (17) is readily capable of processing these various options, for example such that patterns (as above) for acceptable reflections, representing each different reflector (20) are tabulated in the computer memory.
The type of configuration shown in
In the event that a single container handling machine (12) is fitted with more than one reflector (20), for example two reflectors, various combinations of these two reflectors (20), (20′) can be used for unambiguously identifying an N×N strong fleet of the container handling machines (12).
Although the above-described configuration for the reflector (20) mainly enables a construction of various types of reflectors (20) and thereby a distinction of the container handling machines (12) from each other, the above-described configuration brings also necessary extra security for a reliable identification of the reflector (20) and a distinction thereof from other structures of the container handling machine (12).
When various reflector options (20), and possible height patterns (as Pattern (1)) produced thereby, are known beforehand, the measurements can be stripped of results which do not match any of the previously known options, but which are false reflections for example from the railings of a straddle carrier or from the ceiling of an operator's cabin. Particularly in a situation, in which the container handling machine (12) is fitted with two reflectors (20) which should be visible simultaneously in (a, H) windows (23) of
Control for the Precise Stopping of a Container Handling Machine (12)
The above discussion has been about an identification process according to the invention for the container handling machine (12) underneath the crane (4) and about a location determination of the container handling machine in the alternative lanes (11). Another major benefit provided by the invention is achieved in such a way that one or several of the reflectors (20) are provided with a special portion (24), which is rising or falling in a traveling direction y of the container handling machine (12) or otherwise varying in its height, and on the basis of which a location of the container handling machine can be more accurately defined in the vehicle traveling direction y. One such solution is depicted in
dy=K1 dH−K2, (1)
wherein K1 and K2 are constants. Since the accuracy of a relative height measurement dH is typically in the order of +/−5 millimeters, the deviation dy (16) can be determined at a high accuracy, even at the accuracy of centimeters, depending on the inclination (K1) of the level (24). As soon as the deviation dy (16) in the driving direction has been determined, an operator of the container handling machine (12) can be instructed, according to one implementation of the invention, to drive either forward or backward to a correct location for the container (1) to be loaded, unloaded or for the container (1) to be left there or for picking up the container. This instruction of the operator can be carried out for example with traffic lights (21) (
In case of making use of this aspect of the invention, the algorithm of
wherein x can be any level for example between 1 . . . 3. Then, as the relevant reflector (20), including the inclined level (24), has been accepted by using for example the algorithm of
Number | Date | Country | Kind |
---|---|---|---|
20095411 | Apr 2009 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI10/50301 | 4/14/2010 | WO | 00 | 12/20/2011 |