The present disclosure is related generally to a device and/or system for the localized measurement of radiotracers in fluids or tissue. More specifically, the present disclosure relates to (1) various embodiments of devices configured for, among other things, the in-vivo measurement of radioactive material (RAM) in the tubing used to administer radiopharmaceuticals for diagnosis or radiotherapy; RAM in blood within various types of blood vessels; the in-vivo measurement of RAM in various tissues accessed through angiography, such as the liver, heart and brain; and the ex-vivo measurement of RAM in other biological compartments; and (2) analogous measurements of RAM in non-biological fluids flowing through fabricated industrial conduits.
The present disclosure offers certain improvements in a variety of different contexts. For example, many physiological studies, including those in which the outcome measure is analogous to a rate of metabolism of a biological substance, or the concentration of a target protein on cell surfaces, or the activity of enzymes in tissues, and the like, use compartmental modeling to solve the rate equations which requires measuring the change in the concentration of a radiotracer available in the blood supply over time. To obtain this “arterial input function” (AIF), multiple samples of the fluid of interest, such as, for example, blood, are aspirated from the conduit, for example a blood vessel (including arteries), and analyzed in vitro. Repeatedly drawing blood from a cannulated artery is currently accepted as the most rigorous way to characterize the AIF in medical research. While many investigators have shown that it is feasible to perform serial arterial punctures within some subjects, tolerance for such research procedures can vary in populations that have various types of complicating medical issues.
Furthermore, repeated punctures may slow subject accrual or contribute to subject dropout rates in longitudinal studies. Risks may also increase in aging populations who require medications for co-morbid conditions that have an effect on the blood clotting cascade. Even when the procedure goes relatively well from the perspective of the patient, many sources of variance enter the system and adversely affect the precision of measurement. Confounds may include challenges in aspirating standard amounts of blood that have not been diluted with the saline solutions that keep catheters from clotting shut, estimating the mean time of aspiration for a process that takes time to complete, problems synchronizing clocks between the various measurement devices, and many others.
In other contexts, Angiography and the selective intra-arterial administration of RAM for the treatment of cancer is a growing field. Evidence continues to mount that loco-regional radiotherapy reduces morbidity and prolongs survival in patients with a variety of cancers. At this time, delivery of the RAM from the injection vial to the intended site must be inferred. While it is possible to measure decreases in radioactivity in the injection vial with an external measuring device based on, for example, gas ionization chamber technology, and it is possible to administer radiopaque contrast to follow the flow of fluids through the catheters and selected arteries, it is not possible to measure RAM in the selected arterial system in real time while the procedure is in progress. Additionally, reliance on radiopaque contrast material to detect backflow to tissues that should not be treated increases the risks of radiation-induced injuries to bystander tissues.
Accordingly, there remains a need to overcome the challenges associated with measuring the levels or concentrations of radiotracer available in a vessel or other area in the body over a certain period of time.
A novel solution to certain of the challenges outlined above may include insertion of a device having a radiotracer detector into fluid carrying vessel (e.g., a blood vessel, pipe, etc.). In so doing, AIF measurements could be obtained in vivo (or in situ). Such a detector may be advantageously integrated with an intravenous, intra-arterial, or any other intra-luminal catheter (or other intra-vessel device) which may be used to inject the radiotracer, thereby reducing the number of points at which access to the blood supply (or other fluid) are needed. Such in vivo (or in situ) measurements allow the procedures to be performed more consistently than existing techniques because, for example, aspirating fluid from the same catheter that was used for injection can cause backflow of stagnant radioactivity pooling in the circulation.
Backflow of stagnant RAM can artifactually elevate the estimate of the average concentration of radioactivity in the blood. Conversely, the backflow of normal saline that may be steadily dripped at a rate to keep the vein open can dilute the aspirated blood (or other fluid) and lead to artifactually decreased concentrations of radioactivity. By using devices such as those described herein, aspirating fluid is substantially prevented from reversing the direction of flow. This obviates the need to insert separate catheters for injection and aspiration, thereby improving the experience for both subject and practitioner.
In certain other embodiments, such as for example, industrial settings, retrofitting aging or constructing new conduits with in-situ embodiments of this present invention would allow for remote continuous monitoring for RAM. Advantages can include, among other things, reductions in the human and economic costs of manual interventions.
According to some embodiments of the present disclosure, a scintillation device for the localized measurement of radiotracers in the body is presented. The device may include, among other things, a cannula having scintillation material and one or more delivery lumens, wherein the scintillation material emits light when impacted with certain particles that may be emitted from, for example, a radioactive material. In some embodiments, the cannula may be sized to deliver the delivery lumen and the scintillation material to a position inside a blood vessel of interest. In some embodiments, the device may further include an optical connector or optical detector that may receive at least a portion of the light emitted from the scintillation material.
The device may also include, in some embodiments, fiber optic material for transmitting light emitted from the scintillation material to the optical connector or detector. The scintillation material may also be shaped to desirably focus the light emitted by the scintillation material advantageously towards the fiber optic material to facilitate better transmission of light to the optical detector or connector. In some embodiments, a lens may also be incorporated. Upon receipt by the optical connector or optical detector, the light may be converted to electrical signals for processing. The cannula may include, in some embodiments, needle material as used, for example, in hypodermic needles, or may alternatively include any other material, including biocompatible plastics and the like that may be used in catheters, etc.
In some embodiments, in may be advantageous to include one or more wings that may be used for substantially centering the device within the blood vessel of interest. The one or more wings may, in some embodiments, be operatively movable from a first retracted position to a second extended position. Accordingly, in may be possible to deliver the scintillation device to the blood vessel of interest with the one or more wings in the first retracted position (thereby minimizing the overall diameter of the device during insertion), and then extend the one or more wings to the second extended position once inside the blood vessel to, for example, position the device substantially within the center of the blood vessel. The one or more wings may subsequently be retracted to the first retracted position for removal of the device from the blood vessel of interest.
In some embodiments, in may be advantageous to limit the effective measuring volume of the scintillation device to an area that would fall within the blood vessel of interest for a plurality of patients having blood vessels of different diameters (for example, from between about 5 mm to about 10 mm, or from about 1 mm to about 20 mm, or more). In various embodiments, the scintillation device may include one or more layers of particle absorption material configured to effectively block particles below a certain energy threshold (e.g., particles emitted from outside a desired measurement volume). For example, the particle absorption material may include an energy blocking threshold corresponding to its absorption of energy from the particles emitted from the radioactive material, and further wherein the particle absorption material may include a thickness configured to effectively block particles having an energy at the particle absorption material below a desired threshold. The particle absorption material may include one or more of PEEK, gold, or various other materials capable of absorbing certain amounts of energy from the particles.
In some embodiments of the present disclosure, the scintillation device may include a particle absorption material positioned between the delivery lumen and the scintillation material having a first energy blocking threshold, and particle absorption material positioned elsewhere within the device that includes a second energy blocking threshold, or in some embodiments, two or more energy absorption thresholds.
In various other embodiments of the present disclosure, a scintillation device for localized measurement of radiotracers in a blood vessel is presented that includes a delivery lumen and scintillation material, wherein the delivery lumen is coupled to a delivery hub, and the scintillation material is optically coupled to a light detector. The light detector may, in some embodiments, be housed within the device, and may include a signal port for transmitting a signal to an external reader. In some embodiments, the scintillation material axially surrounds the delivery lumen, and the device may also include a first area of particle absorption material between the delivery lumen and the scintillation material having a first energy blocking threshold. The device may further include a second area of particle absorption material axially surrounding the scintillation material having a second energy blocking threshold (that may or may not be substantially equal to the first energy blocking threshold).
Having thus described the presently disclosed subject matter in general terms, reference will now be made to the accompanying Drawings, which are not necessarily drawn to scale, and wherein:
The presently disclosed subject matter now will be described more fully hereinafter with reference to the accompanying Drawings, in which some, but not all embodiments of the presently disclosed subject matter are shown. Like numbers refer to like elements throughout. The presently disclosed subject matter may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Indeed, many modifications and other embodiments of the presently disclosed subject matter set forth herein will come to mind to one skilled in the art to which the presently disclosed subject matter pertains having the benefit of the teachings presented in the foregoing descriptions and the associated Drawings. Therefore, it is to be understood that the presently disclosed subject matter is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims.
In some embodiments, known scintillation materials, such as for example, organic, inorganic, and/or plastic scintillation materials, may be configured to be inserted into a fluid carrying vessel (e.g., a blood vessel) for use in measuring levels of RAM in the fluid carried within the vessel. Such scintillation materials are known to interact with certain RAM and generate light in response. Such light can then be detected using various detectors and used to determine the presence of, and if applicable the level of, RAM in the fluid. Such scintillation materials may also be used to measure the presence of, and if applicable the level of, RAM in tissues in the body, or other materials. Plastic-based scintillation fibers are commercially available in the art. Such plastic-based scintillation fibers typically consist of scintillation material incorporated into a plastic resin which is then extruded into thin fibers. Commonly available sizes include diameters from 0.25 mm to 5 mm. Of course, any suitable scintillation material may be employed depending on the application. Suitable scintillation materials, and systems and methods for externally detecting, measuring, and analyzing signals to determine the levels of RAM present in an area of interest are known by those having skill in the art, such as, for example, the systems and methods taught in U.S. Pat. No. 9,002,438 and/or U.S. patent application Ser. No. 14/678,550, both of which are incorporated herein by reference in their entirety.
Referring now to
For example, various embodiments of the present disclosure could make use of opaque light shielding materials 180 that are known in the art including, among others, metals, plastics, coatings, sealants, etc. Additionally, a light-proof coating on the outer surface of a scintillation material (e.g., scintillation material 110) or fiber optic transmission material (e.g., fiber optic material 160) can act as a reflector to maintain light within the material(s).
Various embodiments of the present disclosure could make use of fiber optic light transmission materials (e.g., fiber optic material 160) that are known in the art including, for example, glass, plastic, silicone, etc. Various fiber optic materials are commercially available from several suppliers and such materials may be optimized for various wavelengths of light, bend radii, cladding, etc. The optical light transmission materials can also include a bundle of several optical transmission fibers to increase the effective diameter of transmission fiber while maintaining flexibility, strength, and other features, as desired.
Various embodiments of the present disclosure could also include integrated features for automatically centering or positioning the presently disclosed device within the fluid-carrying vessel as needed. Such features can include fins, prongs, protrusions, whiskers, etc. Additionally, holes placed near the tip of the catheter delivery lumen could act during injection as stabilization jets to center the catheter assembly. Various exemplary embodiments of such features are discussed further hereinbelow.
Referring now to
Referring now to
Referring now to
In some embodiments of the present disclosure, it may be advantageous to limit the effective sensing range of the various scintillator probes taught herein. For example, it is often advantageous to determine the concentration of RAM in a given patient's blood stream (or other area of the body) without having to calibrate the device to the specific vessel size or area of interest in each patient. (i.e., it may be advantageous to use scintillator probes having the same specifications on a multitude of patients having, for example, blood vessels of varying sizes to take the same measurement—concentration of RAM). A difficulty, however, lies in at least the fact that a patient having a larger blood vessel will have more RAM flowing by the sensor at a given period of time relative to a patient with a smaller blood vessel, simply by virtue of the fact that there may be more RAM within the sensing range of the scintillation sensor on one patient relative to another. If, however, the effective sensing range could be limited to a volume falling at or within the vessel volume available in a patient having the smallest blood vessel (i.e. RAM in portions of a larger vessel in a larger patient that is outside the area that the smallest vessel would occupy is not included), then a normalized sensing volume could be utilized across the spectrum of patients, and a more accurate and comparable concentration measurement could be made.
For example, in embodiments where it may be advantageous to measure the concentration of RAM in a blood vessel, it may be desirable to use a probe 100 or cannula 400 designed to have an effective measuring volume approximately equal to the diameter of the smallest blood vessel in which the measurement may be taken (e.g., approx. 5 mm, though other diameters could be used). Accordingly, it may be possible to measure the same volume of space containing RAM (e.g., blood flowing in a blood vessel) in a patient having a smaller blood vessel diameter (e.g., approximately 5 mm) and a patient having a larger blood vessel (e.g., approximately 10 mm). By eliminating, for example, the volume of blood in the larger vessel that lies outside of the exemplary 5 mm effective measurement volume, a more standardized concentration measurement may be taken across a sampling of differently sized patients. Note that other effective volumes may be utilized, including for example vessels approximately 1 mm in diameter to larger vessels that are as much as 20 mm or more in diameter.
Advantageously for purposes of the present disclosure, and as known by those having skill in the art, the distance from which a particle can be detected by scintillation material (e.g., scintillation material 110) is related to: (1) the energy or velocity of the particle when it is expelled from the RAM (for which, the maximum is known in the art for a given RAM); and (2) the rate at which such a particle gives up kinetic energy and decreases in velocity through collisions with other materials in the region (which is also known for a given RAM). Such collision materials may include, for example, water molecules, other materials in the blood travelling through the vessel, and importantly, any other particle absorption materials between the scintillator material 110 and the exterior of the scintillator probe (e.g., light shielding 180 (which may, in some embodiments, extend beyond the areas pictured in the Figures) or other particle absorption materials (discussed further hereinbelow)). Thus, a measurement of the kinetic energy of the particle when interacting with the scintillation material 110 may describe the distance it has traveled since first expelled from RAM. Examples of different types of RAM (i.e., isotopes) that may be used in the body, and their associated energy and known range in water, may include, but are not limited to, the following:
Accordingly, and referring again to
Additionally, in some embodiments, it may be advantageous to incorporate particle absorption material 175′ having a second energy blocking threshold that may be positioned, for example, substantially between the delivery lumen 410 and the scintillation material 110 to, for example, block unwanted particles emitted from residual RAM remaining in delivery lumen 410 following an injection of RAM into the body. Particle absorption material 175′ may be the same as particle absorption material 175 (and/or have a second energy blocking threshold substantially equal to the first energy blocking threshold), or particle absorption material 175′ may be distinguishable from particle absorption material 175, and have a second energy blocking threshold distinguishable from the first energy blocking threshold of particle absorption material 175.
Referring now to
Referring now to
Referring now to
Referring now to
Various embodiments of probe 100 (or cannula 400) may also make use of one or more lenses such as, for example, lens 910 presented in
Light may also be focused to the end of a transmission fiber (e.g., fiber optic material 160) by way of, for example, shaping or grinding the scintillation material. Referring now to
In some embodiments, one or more optical detectors for detecting light emitted from scintillation material can be utilized for converting the light signals into electrical signals that may be processed by, for example, a computer or other device, rather than such a device interpreting the optical signal directly. The placement of such optical detectors can vary, and may include for example placement both inside and outside of the vessel containing the fluid to be measured. The electrical signals generated by such optical detectors may also be transmitted using any other appropriate means.
Referring now to
Alternatively, and referring now to
Referring now to
Referring now to
Referring now to
Referring now to
In some embodiments, it may also be advantageous to ensure that the probe (e.g. probe 100 or cannula 400) is substantially centered within the vessel to ensure that the effective measurement volume is contained within the vessel. In some embodiments, having the probe 100 or cannula 400 substantially centered may mean, for example, that the effective measurement volume of the probe 100 or cannula 400 falls within the blood vessel of interest.
Referring now to
Referring now to
In some embodiments, sheath 2020 may be configured such that sheath 2020 defaults to the first “insertion” position as depicted in
According to some embodiments, the present disclosure also provides for a method of using scintillation probe disclosed hereinabove. In some embodiments, a scintillation probe as taught herein may be inserted to a patient's blood vessel. In some embodiments, a mechanism (e.g., sheath 2020) may be utilized to substantially center the probe in the vessel. The probe may then measure the presence of, and/or the level of, RAM in the blood contained within the vessel in real time. Various means for capturing and displaying the presence or levels of RAM in the blood may be utilized, including those taught in U.S. Pat. No. 9,002,438 and U.S. Patent Publication No. 2015/0276937, both of which are incorporated herein by reference in their entireties.
The present disclosure further contemplates use of various embodiments in industrial settings. For example, variations of the present disclosure could be used to measure RAM in any fluid carried within any fluid carrying vessel. For example, RAM levels could be measured in oil pipelines for use in detecting the presence of leaks or other flow issues. While examples of use in relation to blood vessels is discussed in detail above, the inventors do not intend such disclosure to be limiting and expressly contemplate use of scintillation materials in any type of fluid-carrying vessels for measuring the presence of or level of RAM in a fluid carried therein.
Following long-standing patent law convention, the terms “a,” “an,” and “the” refer to “one or more” when used in this application, including the claims. Thus, for example, reference to “a subject” includes a plurality of subjects, unless the context clearly is to the contrary (e.g., a plurality of subjects), and so forth.
Throughout this specification and the claims, the terms “comprise,” “comprises,” and “comprising” are used in a non-exclusive sense, except where the context requires otherwise. Likewise, the term “include” and its grammatical variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items.
For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing amounts, sizes, dimensions, proportions, shapes, formulations, parameters, percentages, quantities, characteristics, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “about” even though the term “about” may not expressly appear with the value, amount or range. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are not and need not be exact, but may be approximate and/or larger or smaller as desired, reflecting tolerances, conversion factors, rounding off, measurement error and the like, and other factors known to those of skill in the art depending on the desired properties sought to be obtained by the presently disclosed subject matter. For example, the term “about,” when referring to a value can be meant to encompass variations of, in some embodiments, ±100% in some embodiments +50%, in some embodiments ±20%, in some embodiments +10%, in some embodiments ±5%, in some embodiments +1%, in some embodiments ±0.5%, and in some embodiments +0.1% from the specified amount, as such variations are appropriate to perform the disclosed methods or employ the disclosed compositions.
Further, the term “about” when used in connection with one or more numbers or numerical ranges, should be understood to refer to all such numbers, including all numbers in a range and modifies that range by extending the boundaries above and below the numerical values set forth. The recitation of numerical ranges by endpoints includes all numbers, e.g., whole integers, including fractions thereof, subsumed within that range (for example, the recitation of 1 to 5 includes 1, 2, 3, 4, and 5, as well as fractions thereof, e.g., 1.5, 2.25, 3.75, 4.1, and the like) and any range within that range.
Although the foregoing subject matter has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be understood by those skilled in the art that certain changes and modifications can be practiced within the scope of the appended claims.
This patent application claims the priority of U.S. provisional patent application No. 62/426,918 titled System for the Localized Measurement of Radiotracer in the Body, filed on Nov. 28, 2016, the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62426918 | Nov 2016 | US |