This application is a National Phase Application of PCT International Application No. PCT/IB2018/057609, having an International Filing Date of Oct. 1, 2018, which is hereby incorporated by reference in its entirety.
The present invention relates to a system for the transmission of liquids, e.g. clean water and wastewater, between a stationary core and a rotatable story of a building in which said rotatable story is formed circumferentially around and rotatable with respect to said stationary core. In the remainder of the present document the term “liquid” is to be construed as any liquid or semi-liquid substance requiring said transmission, except in the terms “liquid seal”, “sealing liquid” and “flushing liquid”, whose meanings will be made clear in the description.
The feature of an apartment or hotel suite of providing a desirable view determines its salability and economic value. In addition, the ability to change external appearance and shape can significantly increase the appeal of a residential and/or commercial (e.g. hotel or conference) building for potential clients and/or investors. Moreover, the ability to reposition individual stories of a multistory building in order to purposely change their exposure (e.g. to sunlight or shadow), or their access to external infrastructure can be required for the purpose of energy saving or for meeting specific requirements in civil, industrial or military applications.
Known examples of rotatable buildings are observation towers and restaurants that are frequently single story, or top-floor only, rotatable installations which provide users with changeable views. Examples of such structures are shown e.g. in U.S. Pat. Nos. 3,905,166, 6,742,308, and 841468.
Further examples of rotatable buildings are multistory apartment buildings or hotels with a selective 360° viewing capability and an individual or independent rotation of single stories. Examples of such buildings have been described e.g. in US2009/205264A1 and US2006/0248808A1.
The known multistory rotatable buildings have in common certain drawbacks and critical aspects contributing to high erection and operation costs, and precluding a fully reliable operation and acceptance thereof by investors. One of these critical aspects is to ensure the distribution and transmission of services (electricity, data, clean water, wastewater, etc.) between the stationary support structure and the rotatable stories. Another critical aspect is to ensure the structural reliability and maintenance of the rotatable support and rotating capability of the stories over decades of service life of the building.
While there are known ways to ensure a reliable transmission of electricity and other signals between elements in motion relative to each other (essentially via the technologies present in trains, telescopes, steering wheels, etc.), and while a co-pending patent application by the author describes an efficient way to ensure the aforementioned structural reliability, the present invention describes a reliable and efficient way to ensure the distribution and transmission of clean water and wastewater between elements in motion relative to each other.
Previous descriptions of such systems for transmitting liquids mention sealing elements at the interface between the fixed and rotatable portions, without however actually disclosing the structure and configuration of the sealing elements, or by defining the sealing elements as being fluid tight and fluid pressure resistant gaskets. Generally, the author of the present invention believes that the failure to provide specific details about the nature of the sealing element is a major shortcoming because an appropriate sealing element is decisive for the correct functioning of liquid transmission in the case of this very particular application. Specifically, gaskets are not adapted for the sealing of liquid transmission systems in the case of multiple stories independently cantilevered off a core of e.g. 20 meters in diameter, for a number of reasons. Firstly, given the significant length of the interface (more than 60 metres at the perimeter of the core), fluid tight gaskets would generate excessive friction resulting in unacceptably high energy consumption for imparting the rotation of the story with respect to the core. Secondly, very long gaskets may generate stick-slip phenomena upon initial floor motion, resulting in the building's occupants uncomfortably feeling the change of speed. Thirdly, fluid tight gaskets would be very complicated to maintain because they could not be replaced as a whole due to the stories' profile. They would need to be stretched out to approximately twice their diameter, rolled vertically at the exterior of the building and fitted into place at the right height, none of which is a feasible option. In the event of failure, damaged gasket sections would hence need to be removed and new gasket sections would need to be welded onto the residual gasket, thus making the latter of unequal quality throughout its circumference, ultimately curtailing its sealing ability in the long run. Moreover, such gasket repairs would result in unacceptably long downtimes, during which the building's occupants would not benefit from continued liquid transmission.
WO2007/148192 describes a toroidal pipe fixed to the stationary core and having a partial opening all the way around. This precludes the possibility of having a much more efficient vertically oriented stationary tube inserted in and cooperating with a self-sealing brush of the type that will be described in connection with an embodiment of a clean water transmission system of the present invention.
WO2007/148192 also describes a pipe fixed to the rotatable floor and sealingly connected to the opening in the toroidal stationary pipe. This precludes the possibility of arranging the seal or interface region distant from the point where liquids are exchanged between the stationary part and the rotatable part of the building. The closeness and direct contact of the sealing gasket and the transmitted liquid can corrode the gasket and jeopardize the gasket's water-tightness.
As will be apparent from the following description of the present invention, it is much more efficient for the seal or interface to be distant from the point of exchange of the liquids and from the exchanged liquid, preferably at a higher vertical position than the liquid level, thus significantly reducing the risk of leakage—which is a key feature of the present invention. WO2007/148192 indicates in the figures, e.g. FIG. 13, that the sealing element is a gasket, with all the aforementioned drawbacks of a gasket.
WO2007/148192 also describes fixed and moving pipes sliding into one another, which may prove a very fragile setup, especially under extreme conditions such as earthquakes. As will be apparent from the following description of the present invention, the elements in relative motion with respect to each other do not need to be configured in such a way that one of them is inside the other.
WO2007/148192 also describes a solution with a plurality of connection interfaces between the stationary and the rotating building parts, placed at predetermined positions for the exchange of liquids at only those predetermined positions. The floor would thus stop its rotation at positions enabling the connection fittings to connect automatically for the exchange of liquids. Firstly, such automatically triggered connections necessarily require additional energy as well as high levels of maintenance. Secondly, if the floor's rotation unexpectedly stops, e.g. due to a failure of the general rotation imparting device, e.g. electric motors, the connection fittings may not be in correspondence with one another, thus preventing any liquid transmission. Such a design would likely not meet fire safety requirements, not to mention the comfort of the occupants.
WO2007/148192 finally describes a system comprising flexible pipes connected to the core whose “exterior ends” (e.g. their nozzles) are moved by motors along a circumferential rail in order to bring them in correspondence with a connection point through which liquids can be exchanged. When a flexible pipe becomes completely stretched due to the rotation of the connection point, it disconnects from the rotating floor while other such flexible pipes connected to the same rotating floor ensure the continued ability to exchange liquids. These constantly moving, connecting and disconnecting flexible pipe “exterior ends” require additional energy as well as high levels of maintenance, thus making them energetically inefficient and prone to failure. Furthermore, such high-precision mechanisms require an impeccable functioning of both the hardware and the underlying software because any failure, albeit momentary, may potentially result in leakages, spills or floods of any type of liquid (e.g. wastewater).
U.S. Pat. No. 7,107,725B2 describes a swivel joint apparatus for supplying utilities (gas, water) to a rotating building rotatable about a central axis. The described clean water transmission system necessarily requires that the water be constantly under pressure, which puts undesired strain on the sealing elements, as described above. The first embodiment of U.S. Pat. No. 7,107,725B2, illustrated in FIGS. 1 to 8, describes horizontal exchanges of liquids via a plurality of chambers, while the second embodiment, illustrated in FIGS. 10 to 13 of U.S. Pat. No. 7,107,725B2, describes vertical exchanges of liquids via a plurality of chambers of a broadly similar concept to that of the first embodiment. While the second embodiment seems more efficient because it reduces the risk of the liquids mixing following a failure of the sealing element, both embodiments require gaskets for sealing the chambers, which is an inefficient solution for the previously stated reasons. In addition, U.S. Pat. No. 7,107,725B2 requires sensor chambers between each pair of adjacent liquid transmission chambers to detect possible leakages. The present invention describes a usage of sensors to prevent any leakage instead of detecting the leakage once it has occurred, which is a more rational and efficient approach.
U.S. Pat. No. 7,107,725B2 describes a system wherein clean water and wastewater are transmitted very close to each other, possibly being only separated by a gasket. The gasket's eventual failure due to friction may lead to unpleasant consequences for the building's clean water consumers. The present invention describes a system wherein the elements transmitting clean water and wastewater are standalone devices, positioned in different locations with respect to the rotatable story, thus eliminating any risk that clean water and wastewater mix.
Scope and General Description of the Invention
The present invention describes significantly more efficient solutions for transmitting liquids from stationary building parts to rotatable building parts, and vice versa, than any solution described in the prior art.
It is an aim of the present invention to focus on prevention rather than on detection of leakage and system failures.
The present invention greatly reduces the risk that transmitted liquids may leak, let alone mix, thereby effectively rendering impossible such occurrence, except under catastrophic circumstances.
It is a key feature of the present invention to provide, between a clean water feeding line at the stationary building part and a clean water receiving line at the rotatable building part, a buffer space in communication with air under atmospheric pressure, thereby maintaining the water at atmospheric pressure during transmission thereof from the stationary building part to the rotatable building part.
Similarly, between a wastewater feeding line at the rotatable building part and a wastewater receiving line at the stationary building part, there is a buffer space in communication with air under atmospheric pressure, thereby maintaining the transmitted wastewater at atmospheric pressure. Both for clean water and wastewater, or for other liquids that may need to be transmitted, the purpose of the buffer space at atmospheric air pressure is to be able to separate, e.g. by vertical distance, the transmitted liquid from an interface region between the stationary and the rotatable building parts, thus obviating the need of leak-tight and pressure resistant gaskets, reducing the frictional resistance, hence reducing the energy required to impart the rotation, and significantly reducing the risk of leakage.
With respect to clean water, some prior art solutions could only work if the water was kept constantly under pressure, although they did not state this requirement explicitly. The atmospheric air pressure buffer removes this constraint, thereby significantly reducing the risk of leakage as stated above. With respect to wastewater, the author of the present invention is not aware of any prior art providing a reliable and efficient way to evacuate the so-called grey and black wastewaters—which is, instead, a further aim of the present invention.
These and other aspects and advantages of the present invention shall be made apparent from the accompanying figures and the description thereof, which illustrate embodiments of the invention and, together with the general description of the invention given above, as well as the detailed description of the embodiments given below, serve to explain the principles of the present invention.
In the accompanying figures, which show exemplary non-limiting embodiments of the invention:
With reference to the figures, reference numeral 1 denotes a system for transmitting liquids, e.g. clean water and wastewater, between a stationary core 2 and a rotatable story 3 of a building 4 in which said rotatable story 3 is arranged/extended substantially circumferentially around said stationary core 2 and rotatable with respect to said stationary core 2 about a vertical reference axis 5 that is the longitudinal axis of the core 2 or of a section of the core 2 at which the corresponding story 3 is arranged.
The system 1 comprises a substantially annular buffer duct 6 extending substantially circumferentially around the reference axis 5 of the stationary core 2, preferably externally around the core 2, and having a substantially annular lower duct portion 7 (buffer channel ring) extending along the entire circumferential length of the buffer duct 6, and an upper duct portion 8 (inlet mouth) arranged from above in liquid communication with the lower duct portion 7 and slidingly engaging the lower duct portion 7, preferably in a dust proof manner, in at least one interface 9 extending along the entire circumferential length of the buffer duct 6.
One of the lower duct portion 7 and upper duct portion 8 is fixed to the stationary core 2 and the other one of the lower duct portion 7 and upper duct portion 8 is fixed to the rotatable story 3, so that upon rotation of the story 3 with respect to the core 2 about the reference axis 5, the upper and lower duct portions 8, 7 rotate relative to each other about the reference axis 5.
The buffer duct 6 internally defines a substantially annular transmission chamber 10 into which the liquid enters from above through one or more inlet ports 11 formed in the upper duct portion 8, and from which the liquid exits through one or more outlet ports 12 formed in the lower duct portion 7.
The transmission chamber 10 is at atmospheric pressure, e.g. in communication with ambient air at atmospheric pressure through the interface/s 9 and/or through one or more venting ducts 13. In this manner, the transmitted liquid is buffered in the buffer duct 6 at ambient air pressure with the result that the interface/s 9 do/does not need to be configured as a gasket or as a continuous fluid tight and pressure resistant ring which would otherwise suffer wearing and generate considerable friction resistance and stick-slip phenomena, considering the circumferential length of approximately 60 meters.
In accordance with an embodiment the system 1 comprises a control system 16. The main purpose of the control system 16 is to ensure a continuous supply of clean water, as needed, from the stationary core 2 to the rotatable story 3 and the evacuation of wastewater from the rotatable story 3 to the stationary core 2.
Said control system 16 may be connected to sensor means for detecting the transmitted liquid level 15 and adapted to control one or more inlet valves of the inlet ports 11, and/or one or more outlet valves of the safety draining apertures 21, and/or one or more clean water pumps 23, and/or one or more sealing liquid discharge valves 36, and/or one or more inlet valves of the sealing liquid replenishment system 38. The control system 16 may perform said control/s in dependency on signals from the transmitted liquid level 15 sensor means and/or based on other criteria, e.g. regular liquid replenishment schedules, independent of the transmitted liquid level 15.
The transmitted liquid level 15 sensor means may comprise upper level sensors 17 (
The control system 16 may be configured in such a way that the transmitted liquid level 15 inside the transmission chamber 10 is maintained always below the interface/s 9. This prevents contact between the interface/s 9 and the transmitted liquid, thus eliminating the risk of mutual contamination, corrosion, and wear.
For the same purpose, the inlet port/s 11 and the outlet port/s 12 are arranged at a distance from the interface/s 9 and oriented in such a way that the transmitted liquid does not flow over or into the interface/s 9 (
Alternatively, or in addition, safety overflow apertures 20 may be positioned in the lower duct portion 7 for automatically gravity-draining excess transmitted liquid, above the upper limit level 14 but still below the interface/s 9. Alternatively, or in addition, the outlet port/s 12 or additional safety draining apertures 21 in the bottom of the lower duct portion 7 may be provided with level- or pressure-controlled safety valves for automatically gravity-draining excess transmitted liquid above the upper limit level 14 but still below the interface/s 9 (
The control system 16 may be further configured in such a way that, in one or more selected buffer ducts 6 (chiefly for clean water transmission), the transmitted liquid level 15 inside the transmission chamber 10 is maintained always at or above a predetermined lower limit level 19 (
In the case of a fire emergency, flexible hoses fixed to the stationary core 2 may be reeled out manually and brought onto the rotatable story 3, whose movement can be stopped for this purpose, to supply additional firefighting water.
Alternatively, or in addition, in the case of an emergency requiring a significant amount of clean water to be brought in a short time to the rotatable story 3, or in the case of any malfunctioning of the clean water transmission system 1 (e.g. due to water contamination in the clean water transmission chamber 10), flexible hoses may be arranged to connect the stationary core 2 to the rotatable story 3, whose movement can be stopped for this purpose, thus ensuring a continued clean water supply to the clean water pressure accumulation tank/s 51. Such connection could be realized by plugging the flexible hoses' nozzles into emergency ports positioned on the rotatable story 3 and/or the stationary core 2. The hoses may be fixed to one of the stationary core 2 or the rotatable story 3. Alternatively they may be entirely loose and transportable, in which case they may be brought up to the level of the rotatable story 3 during the emergency. The hoses and emergency water supply system are not illustrated in the figures.
In an embodiment (
In a further embodiment (
The clean water transmission system 1 may comprise more than one said clean water buffer duct 6 (for a same rotatable story) to enable the transmission to the rotatable story 3 of clean water at different temperatures.
If an at least dust proof separation is required between adjacent transmission chambers 10, 10′ of the same buffer duct 6, one or more additional interfaces 9′ can be arranged between the internal separation wall/s 24 and the upper duct portion 8. The additional interface/s 9′ can be made in a similar way as the interface/s 9.
In the exemplary embodiment of
In embodiments, the interface/s 9 comprise/s a dust proof interface seal, e.g.:
which closes the interface/s 9 in an at least dust proof manner, preferably in a dust and odor proof manner, even more preferably in a dust, odor and water repellent manner, so as to make the buffer duct 6 of a substantially closed cross-section and to effectively separate and protect the liquid flowing through the annular transmission chamber 10 from the ambient, and vice versa.
One or more horizontal surfaces of the interface/s 9 may be covered with damping layers (not illustrated in the figures) made of shock absorbing material such as some polymers, in order to protect the interface/s 9, as well as to contribute to the damping of the entire building 4, during extreme events such as earthquakes.
It should be understood that any alternative component, either known in the art or yet to be invented, of the interface/s 9, other than a ring seal, falls within the scope of the present invention. The term “ring seal” is to be construed as a solid elastomeric mechanical gasket in the shape of a torus.
The liquid seal 28 comprises a trough 29 containing a sealing liquid (preferably water), and a lip, wall or sheet 30 projecting from above into the trough 29 and being immersed in the sealing liquid, wherein the trough 29 forms the lower duct portion 7 face of the interface 9, and the lip, wall or sheet 30 forms the upper duct portion 8 face of the interface 9, or vice versa.
In the liquid seal 28 the radial and vertical clearance between the lip, wall or sheet 30 and the internal walls and bottom of the trough 29 must be sufficient to ensure that during a destabilizing event such as an earthquake the lip, wall or sheet 30 will not come in contact with the internal walls and/or the bottom of the trough 29.
Moreover, the immersed portion of the lip, wall or sheet 30 must be sufficiently high to ensure immersion of the lip, wall or sheet 30 and, hence, its sealing ability, also when the entire rotatable story 3, or part of it, is lifted, e.g. for maintenance.
In an embodiment, the transmission chamber 10 bottom reaches its maximum height or locally highest point 32 in a region or section of the transmission chamber 10 close to where the liquid seal 28 trough 29 bottom reaches its point of minimum height or locally lowest point 40.
The liquid seal 28 may comprise a drainage system which allows the sealing liquid to flow out of the liquid seal 28, and a replenishing system 38 for feeding fresh sealing liquid into the liquid seal 28, thus preventing the sealing liquid from becoming stagnant.
The sealing liquid replenishing system 38 comprises a replenishing duct system with one or more replenishing pumps and/or one or more replenishing valves, which may be controlled by the control system 16 or via other means, for the purpose of replenishing the liquid seal 28 trough 29 with sealing liquid.
In an embodiment (
In alternative embodiments (
In the case of wastewater, a plurality of outlet ports 12 has the advantage of enabling wastewater disposal from the rotatable story 3 to the stationary core 2 even in the event that one or more of the outlet ports 12 clog up.
It should be understood that, whichever liquid is transmitted, an embodiment in which the transmission chamber 10 bottom does not vary in height falls within the scope of the present invention.
In an embodiment the system 1 comprises a flushing means adapted to convey a flushing liquid in the buffer duct 6 through one or more flushing ports 34 opening out into the transmission chamber 10 at a distance from the inlet port/s 11. While flushing and cleaning of the drain duct 26 can be also carried out by feeding a flushing liquid through the inlet ports 11, one or more separate and independent flushing ports 34 can direct the flushing liquid flow in a more purposeful manner, may comprise spraying nozzles and/or flushing flow orientation adjustment means, or may be orientable or oriented to flush also at least part of the interface/s 9. The flushing means may comprise pumping means to pump the flushing liquid through the flushing port/s 34.
In embodiments (
In line with this embodiment, and with the aforementioned embodiment of a variable height wastewater transmission chamber 10, the clean water buffer duct 6 may be positioned at a greater radial distance from the core 2 than the radial distance of the wastewater buffer duct 6 from the core 2. In order to further minimize the vertical space occupied by the system 1, and to minimize the materials required for the construction of the system 1, each clean water supply line to the clean water buffer duct 6 may be arranged to extend through the core 2 under a locally highest point 32 of the wastewater transmission chamber 10 bottom (
In general, in order to further reduce the risk of the liquids mixing, all wastewater transmission chambers 10 and outlet ports 12 may be coated with impermeable material. Impermeable material may also coat the surfaces surrounding the wastewater transmission chamber 10, in order to prevent overflown wastewater to seep through the structural material (e.g. concrete) into the clean water transmission chamber 10.
In order to ensure that the sealing liquid fills the liquid seal 28 trough 29 to a minimum level, thus ensuring that the liquid seal 28 maintains its sealing ability, a control system (not illustrated in the figures) for the monitoring of sealing liquid levels similar to (or integrated in or connected to) the control system 16 described above for controlling transmitted liquid levels in the transmission chamber 10, may be configured to control the sealing liquid level and/or to replenish sealing liquid in the liquid seal 28 trough 29.
As described in connection with the flushing of the transmission chamber 10, a similar flushing effect is performed also by the sealing liquid discharge into the transmission chamber 10 by the liquid seal 28 drainage system. Said flushing of the transmission chamber 10, via any of the mechanisms described above (flushing port/s 34, sealing liquid discharge duct/s 35 or internal overflow wall section/s 37), can be controlled manually, and/or by the control system 16, and/or by any other means. It can also be set to be performed regularly and/or automatically at predetermined times, in order to ensure a constant minimal level of cleanliness, especially in the case of a wastewater transmission chamber 10.
As described in connection with the flushing of the transmission chamber 10, the liquid seal 28 trough 29 bottom may form a plurality of locally highest points 39 and locally lowest points 40 arranged alternately in succession along the entire circumferential length of the buffer duct 6, e.g. at a pitch of approximately 90°, 60°, 45°, 36°, 30°, or any of 360°/(2n) where n is a strictly positive integer, with the advantage of a steeper sloping bottom without excessively increasing the total height of the trough 29.
In the presence of the sealing liquid discharge duct/s 35 described above, multiple liquid seal 28 trough 29 bottom locally lowest points 40 may generate the need of a plurality of sealing liquid discharge ducts 35, corresponding to the number of locally lowest points 40. Advantageously, each liquid seal 28 trough 29 bottom locally lowest point 40, and hence each sealing liquid discharge duct 35, is arranged at or near the locally highest point/s 32 of the transmission chamber 10 bottom, to obtain a flow pattern as shown in
In the embodiments shown in
It should be understood that any embodiment of a wastewater buffer duct 6 lacking such additional sustainment device 45, and hence in which the entire weight of the upper duct portion 8 is supported by the rotatable story 3, falls within the scope of the present invention.
It should also be understood that embodiments in which the supply duct 25 and/or the drain duct 26 comprise non-flexible pipes fall within the scope of the present invention.
On the other hand, the system 1 may require and comprise additional compensation means for compensating a relative vertical displacement of the entire rotatable story 3, or part of it, with respect to the stationary core 2. Such vertical displacement may occur when the story 3 is lifted from its working position to a slightly higher maintenance position, e.g. during repair of elements, e.g. of the rolling track means 42, interposed between the rotatable story 3 and the stationary core 2.
The additional compensation means may comprise one or more of:
The sustainment device 45 or, more generally, an alignment device for aligning the lower and upper duct portions 7, 8 may comprise vertically engaging first rollers 46 and one or more first rolling tracks 47 with a rolling direction that is circumferential to the reference axis 5, and/or horizontally engaging second rollers 48 and one or more second rolling tracks 49 with a rolling direction that is also circumferential to the reference axis 5, wherein the first rollers 46 and the first rolling track/s 47 are connected/fixed the ones to the upper duct portion 8 and the others to the lower duct portion 7, or vice versa, and the second rollers 48 and the second rolling track/s 49 are connected/fixed the ones to the upper duct portion 8 and the others to the lower duct portion 7, or vice versa, as schematically shown in
Such alignment means ensure the planned relative position between the upper and lower duct portions 8, 7, thereby preventing undesired disengagement of the interface/s 9, preventing leakage of undesired odors in case of wastewater disposal, and transmitting forces and gravitational loads between the upper and lower duct portions 8, 7.
While the atmospheric pressure within the annular transmission chamber 10 can be ensured through (an) air previous interface/s 9 or through an air pressure monitoring and adjustment system, e.g. controlled by the control system 16, for the same purpose one or more venting ducts 13 may be provided, which put the transmission chamber 10 in communication with a venting duct system of the stationary core 2 (
In case the venting duct 13 is connected to the lower duct portion 7 (
It is understood that, when the system 1 comprises two or more interfaces 9, the interfaces 9 may be at different elevations (
Although preferred embodiments of the invention have been described in detail, it is not the intention of the applicant to limit the scope of the invention to such particular embodiments, but to cover all modifications and alternative constructions falling within the scope as defined by the claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2018/057609 | 10/1/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/070537 | 4/9/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
407877 | Rowe | Jul 1889 | A |
2563531 | Kirkman | Aug 1951 | A |
2927599 | Stetson | Mar 1960 | A |
3905166 | Kaiser | Sep 1975 | A |
6742308 | Johnstone, III et al. | Jun 2004 | B1 |
7107725 | Johnstone, III et al. | Sep 2006 | B2 |
8032256 | Wolf | Oct 2011 | B1 |
20020045383 | Johnstone, III | Apr 2002 | A1 |
20060248808 | Franco et al. | Nov 2006 | A1 |
20090205264 | Fisher | Feb 2009 | A1 |
Number | Date | Country |
---|---|---|
102007047259 | Apr 2009 | DE |
1242847 | Oct 1960 | FR |
1420219 | Dec 1965 | FR |
2063633 | Jul 1971 | FR |
2007148192 | Dec 2007 | WO |
Entry |
---|
International Search Report and Written Opinion for International Patent Application No. PCT/IB2018/057609, dated Jul. 11, 2019, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20210404171 A1 | Dec 2021 | US |